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Abstract

Cellular FLICE-like inhibitory protein (c-FLIP) has been identified as a protease-dead, 

procaspase-8-like regulator of death ligand-induced apoptosis, based on observations that c-FLIP 

impedes tumor necrosis factor-α (TNF-α), Fas-L, and TNF-related apoptosis-inducing ligand 

(TRAIL)-induced apoptosis by binding to FADD and/or caspase-8 or -10 in a ligand-dependent 

fashion, which in turn prevents death-inducing signaling complex (DISC) formation and 

subsequent activation of the caspase cascade. c-FLIP is a family of al ternatively spliced variants, 

and primarily exists as long (c-FLIPL) and short (c-FLIPS) splice variants in human cells. 

Although c-FLIP has apoptogenic activity in some cell contexts, which is currently attributed to 

heterodimerization with caspase-8 at the DISC, accumulat ing evidence indicates an anti-apoptotic 

role for c-FLIP in various types of human cancers. For example, small interfering RNAs (siRNAs) 

that specifically knocked down expression of c-FLIPL in diverse human cancer cell lines, e.g., 

lung and cervical cancer cells, augmented TRAIL-induced DISC recruitment, and thereby 

enhanced effector caspase stimulation and apoptosis. Therefore, the outlook for the therapeutic 

index of c-FLIP-targeted drugs appears excellent, not only from the efficacy observed in 

experimental models of cancer therapy, but also because the current understanding of dual c-FLIP 

action in normal tissues supports the notion that c-FLIP-targeted cancer therapy will be well 

tolerated. Interestingly, Taxol, TRAIL, as well as several classes of small molecules induce c-

FLIP downregulation in neoplastic cells. Efforts are underway to develop small-molecule drugs 

that induce c-FLIP downregulation and other c-FLIP-targeted cancer therapies. In this review, we 

assess the outlook for improving cancer therapy through c-FLIP-targeted therapeutics.
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INTRODUCTION

Chemotherapeutic drug resistance is a major clinical problem and an important cause of 

treatment failure in cancer. One of the important goals of molecular oncology is to identify 

the underlying drug resistance mechanisms, with the prospect that more effective and novel 
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therapies for cancer can be developed. Several mechanisms have been found to cause 

resistance to chemotherapeutic agents in cancer cells in vitro [1-5]. Identifying novel 

mechanisms of resistance to chemotherapeutic agents will assist in the design of more 

effective strategies to overcome resistance in cancer cells. Defects in apoptotic signaling in 

malignant cells contribute to the drug resistance in various cancer types [6]. Furthermore, 

death receptor-mediated apoptosis is deficient in some drug resistant cancer cells. Therefore, 

strategies to lower the thresholds for triggering apoptosis in various cancers may lead to new 

and more effective therapeutic regimens. The death-inducing cytokine tumor necrosis factor-

related apoptosis-inducing ligand (TRAIL) holds enormous promise as a cancer therapeutic 

due to its highly selective apoptosis-inducing action on neoplastic versus normal cells 

[7-10]. However, to exploit this opportunity, the problems of TRAIL resistance in cancer 

must first be overcome [11-15]. Cellular FLICE-like inhibitory protein (c-FLIP), a 

catalytically inactive caspase-8/-10 homologue, is involved in TRAIL and chemotherapeutic 

drug resistance in a wide range of human malignancies [11, 13, 16-20]. Substantial levels of 

c-FLIP are expressed in deadly human cancers such as ovarian, colon, glioblastoma, breast, 

colorectal, and prostate cancers, and it is implicated in the TRAIL resistance owing to its 

overexpression in a substantial proportion of these malignancies [21-24]. Furthermore, 

interference with c-FLIP expression sensitizes these tumor cells to TRAIL and other tumor 

necrosis factor-related death ligands, such as FAS ligand, in experimental models [17, 20, 

25, 26]. c-FLIP is an important modulator of the initiator procaspases-8 and -10 and thereby 

regulates life and death in normal cells and tissues, and renders resistance to death receptor-

mediated apoptosis in various cancer cells. In addition to its function as an apoptosis 

modulator, c-FLIP exerts other cellular functions including increased cell proliferation and 

tumorigenesis [27]. Moreover, dysregulation of c-FLIP expression has been associated with 

diseases such as cancer and autoimmune diseases [28, 29]. Therefore, c-FLIP is a critical 

target for therapeutic intervention. In this review, we assess the outlook for improving the 

outcome of cancer therapy by targeting c-FLIP and exploring the possibility of its 

degradation and/or decreasing its expression in order to provide a potentially safe approach 

to the treatment of cancer. The possibility of developing novel modalities of cancer therapy 

that improve the efficacy and lessen the toxicity of cancer chemotherapy by targeting 

specific c-FLIP isoforms is discussed.

APOPTOSIS SIGNALING PATHWAYS

Two well-studied pathways are involved in apoptosis, the mitochondrion-initiated pathway 

(Fig. 1) and the cell surface death receptors pathway (Fig. 2) [30-32]. In the mitochondrial 

pathway, cytochrome c, certain caspases, apoptosis-inducing factor, Smac/DIABLO, an 

inhibitor of apoptosis protein (IAP)-binding protein, and other apoptosis-inducing factors are 

released from the mitochondrial intramembrane space to the cytosol [33]. Once released, 

cytochrome c and dATP bind to apoptotic proteinase-activating factor-1 (Apaf-1), and this 

complex along with adenine nucleotides promotes procaspase-9 autoactivation [34], which 

in turn activates caspases-2, -3, -6, -7, -8, and -10. In the death receptor-mediated apoptosis 

pathway (e.g. Fas/Fas ligand interaction and cell death), the initiator caspases-8 and -10 

activate the downstream caspases including caspase-3. Active caspases-8 and -10 are known 

to cleave a pro-apoptotic Bcl-2 family member, Bid, and the truncated Bid induces 
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mitochondrial cytochrome c release [32-35], thereby linking the two pathways. After 

activation, both caspases-8 and -9 activate caspase-3, which in turn cleaves other caspases 

and many cellular proteins including fodrin, protein kinase C, poly(ADP-ribose) 

polymerase, gelsolin, and DNA fragmentation factor-45 (DFF45) [32, 36, 37]. A third 

pathway also has been recently identified [38]. In this pathway, Bid is cleaved downstream 

of the point of Bcl-2 action, catalyzed by caspase-3, which occurs upstream of caspase-8 

activation, thereby acting as a potential feedback loop for amplifying the apoptosis-

associated release of cytochrome c from the mitochondria [38].

c-FLIP AND THE DEATH RECEPTOR APOPTOSIS PATHWAY

The TNF receptor (TNFR) superfamily consists of cell surface receptors that are activated 

by cognate ligands and signal proliferation, differentiation, and apoptosis (Fig. 2). Death 

receptors in the TNFR superfamily include the TNF-α receptor, Fas (APO-1/CD95), and 

TRAIL receptors DR4 (also known as TRAIL receptor 1) and DR5 (also known as TRAIL 

receptor 2). Other TNFR superfamily members protect against apoptosis by serving as cell 

surface decoy receptors that compete for death ligand binding but cannot induce apoptosis 

[39, 40]. The death receptors contain an intracellular death domain (DD) which is essential 

for inducing apoptosis upon receptor ligation; the decoy receptors cannot signal apoptosis 

for lack of a functional DD [40]. The DD is a canonical 80 amino acid cytoplasmic docking 

surface in death receptors, that upon ligand binding to the receptor, homotypically binds a 

similar domain in the death adaptor protein FADD or TRADD [41]. Death adaptor proteins 

also have a death effector domain (DED) that forms a distinct docking surface for 

homotypic binding of initiator (apical) caspases. Once the initiator caspases are recruited to 

death receptor-tethered FADD, the DISC (death-inducing signaling complex) is formed, 

whereupon the caspases are trans-proteolyzed, dimerized, and rendered active; executioner 

caspase activation and apoptosis ensues. An important regulator of death receptor-induced 

death is c-FLIP, which binds to procaspases-8, -10 and FADD, and when overexpressed, can 

protect tumor cells from apoptosis. This supports the notion that cancer therapeutics that 

target apical proteins in the death receptor pathway, e.g., caspase-8 and -10 isoforms and c-

FLIP variants (see below), may have a favorable therapeutic index. In the following sections 

we will discuss apoptosis induced by TRAIL and other chemotherapeutic agents such as 

Taxol (paclitaxel) and doxorubicin, through downregulation of c-FLIP variants, and address 

the possibilities for using c-FLIP as a therapeutic target.

STRUCTURE OF c-FLIP

Initially, viral FLICE-inhibitory proteins (v-FLIPs) were identified by a bioinformatic search 

for novel virus-encoded apoptotic regulatory molecules containing a DED [42-44]. 

Following the characterization of v-FLIPs, the mammalian cellular homologue was 

identified and called c-FLIP [45]. Animal models have revealed that c-FLIP plays an 

important role in T cell proliferation and heart development. Moreover, abnormal c-FLIP 

expression has been found in various diseases such as cancers, multiple sclerosis, 

Alzheimer’s disease, diabetes mellitus, and rheumatoid arthritis. So far, 11 distinct c-FLIP 

splice variants have been reported, three of which are expressed as proteins: the 26 kDa 

short form (c-FLIPS), the 24 kDa form of c-FLIP (c-FLIPR) and the 55 kDa c-FLIPL [46, 
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47] (Fig. 3). The structures of c-FLIPS and the v-FLIPs are similar, except that the two 

DEDs of c-FLIPS are followed by 20 amino acids that appear to be crucial for its 

ubiquitylation and targeting for proteasomal degradation [48]. c-FLIPR also contains two 

DEDs but lacks the additional carboxy (C)-terminal amino acids that are present in c-FLIPS. 

The C-terminus of c-FLIPL is longer than that of c-FLIPS and closely resembles the 

structure of caspases-8 and -10 [47], but this region of c-FLIPL does not contain a functional 

caspase domain. This lack of caspase activity is the result of the substitution of several 

amino acids, particularly the crucial cysteine residue in the catalytic domain which is 

necessary for the catalytic activity of caspases [49]. Additionally, c-FLIPL harbors a 

caspase-8 cleavage site at position Asp-376 (LEVD); c-FLIPL cleavage at this site produces 

the proteolytic fragment variant p43c-FLIP [50, 51].

c-FLIP FUNCTION

As discussed above, c-FLIP has been identified as a protease-dead, procaspase-8-like 

regulator of death ligand-induced apoptosis [27, 45, 52, 53]. It has been shown that c-FLIP 

interferes with TNF-α, Fas-L, and TRAIL-induced signaling pathways by binding to FADD 

and/or caspase-8/10 in a ligand-dependent fashion, which in turn prevents DISC formation 

and subsequent activation of the caspase cascade [27, 53, 54]. However, studies using c-

FLIP-deficient mice support a dual function for c-FLIP by confirming a role for c-FLIP in 

Fas L- and TNF-α-induced apoptosis, and revealing that c-FLIP has a similar function to 

caspase-8 in heart development [55]. Nonetheless, a now extensive literature encompassing 

diverse types of human cancer cells indicates that the action of c-FLIP is generally anti-

apoptotic in cancer cells.

While the precise mechanism of c-FLIP variant regulation of apoptosis remains elusive, the 

profound structural differences between human c-FLIP variants clearly indicate distinct 

regulatory roles for c-FLIPL and c-FLIPS in apoptosis. In fact, c-FLIPS inhibits TRAIL-

induced DISC formation and apoptosis [56], while c-FLIPL is responsible for the above 

described dual functions whereby it inhibits Fas-induced caspase-8 activation when 

expressed at high levels, but enhances caspase-8 activation when its expression level is low 

[53-59]. These opposing c-FLIPL functions may reflect observations that c-FLIPL activates 

caspases-8 and -10 in vitro by forming heterodimeric enzyme molecules with a substrate 

specificity and catalytic activity indistinguishable from caspase-8 homodimers, despite the 

fact that c-FLIPL is protease dead [60]. In addition, accumulating evidence has revealed that 

c-FLIP may be an effector that contributes to survival signaling by the Akt, ERK, and NF-

κB signaling pathways [41, 57, 61, 62] (Fig. 4).

It has been demonstrated that overexpression of c-FLIPL activates NF-κB and ERK 

signaling by binding to adaptor proteins in each pathway, such as TNFR-associated factors 1 

(TRAF1) and 2 (TRAF2), receptor-interacting protein 1 (RIP), and Raf-1 [63, 64] (Fig. 4). 

The caspase-8 processed N-terminal fragment of c-FLIPL (p43cFLIP) is more efficient than 

c-FLIPL at recruiting TRAF2 and RIP1, leading to more robust NF-κB activation [51, 

62-65]. Golks et al. [66] recently showed that in nonapoptotic cells, c-FLIP and the 

procaspase-8 heterodimer result in a novel NH2-terminal fragment of c-FLIP (p22-FLIP) 

which is the key mediator of NF-κB activation by directly binding to the IKK complex. 
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These results provide a new mechanism of c-FLIP-mediated NF-κB activation. Recently, 

Chang et al. [67] demonstrated that TNF-α-mediated JNK activation increases turnover of 

the NF-κB-induced c-FLIP. This is not the result of direct c-FLIP phosphorylation, but 

rather depends on JNK-mediated phosphorylation and activation of the E3 ubiquitin ligase 

Itch which specifically ubiquitinates c-FLIP and induces its proteasomal degradation. Thus, 

JNK antagonizes NF-κB during TNF-α signaling by promoting the proteasomal elimination 

of c-FLIPL.

In addition to inhibiting caspase-8 and -10 activation [68], c-FLIPL interacts with Daxx (a 

death domain-associated protein that has been implicated in proapoptosis and transcriptional 

regulation) and prevents Fas-induced JNK activation [69]. Thus, c-FLIPL acting on both the 

FADD- and Daxx-mediated signaling pathways may be involved in completely inhibiting 

Fas-induced cell death. Furthermore, Nakajima et al. [70] demonstrated that c-FLIPL 

directly interacts with a JNK activator, MAP kinase kinase 7 (MKK7), in a TNF-α-

dependent manner and inhibits the interactions of MKK7 with MAP/ERK kinase kinase 1, 

apoptosis-signal-regulating kinase 1, and TGF-β-activated kinase 1. This interaction of c-

FLIPL with MKK7 might selectively suppress JNK activation (Fig. 4).

Recent results also indicate that the calcium/calmodulin-dependent protein kinase II (CaMK 

II)-mediates the upregulation of c-FLIP, thereby protecting melanoma cells from TRAIL-

induced apoptosis. Treating resistant cells with the CaMK II inhibitor KN-93 inhibited 

CaMK II activity, reduced c-FLIP expression, inhibited c-FLIP phosphorylation, and 

rescued Fas agonistic antibody (CH-11) sensitivity [19, 71]. Targeting this pathway may 

provide novel therapeutic strategies in treating cancers with upregulated CaMK II. 

Interestingly, phosphorylation of c-FLIP variants by CaMK II appears to promote c-FLIPL 

recruitment to the DISC and inhibit TRAIL-induced apoptosis [19, 71], but phosphorylation 

of c-FLIPL by protein kinase C or the bile acid glycochenodeoxycholate results in decreased 

c-FLIPL recruitment to the DISC and increased sensitivity of hepatocellular carcinoma cells 

to TRAIL-triggered apoptosis [72]. Thus, the particular site of phosphorylation in c-FLIPL 

appears to influence the functional outcome of this protein on apoptosis.

c-FLIPS also suppress apoptosis by inhibiting caspase-8 activation, although at different 

levels of procaspase-8 processing [73, 74]. c-FLIPL induces a conformation of procaspase-8 

that triggers partial but not complete proteolytic processing, while in contrast c-FLIPS even 

prevents partial procaspase-8 activation at the DISC [74]. Using an in vitro induced 

proximity assay, Boatright et al. [60] provide evidence that c-FLIPL is an activator of 

caspase-8/-10 and demonstrate that the resulting heterodimer is enzymatically active with a 

substrate specificity identical to that of the caspase-8 homodimer.

Increased expression of c-FLIP can alter cell cycle progression and enhance cell 

proliferation and carcinogenesis. Overexpression of c-FLIPL inhibited the ubiquitinylation 

and proteasomal degradation of -β-catenin, resulting in an increase of the target gene cyclin 

D1, colony formation, and invasive activity in prostate cancer cells. The FLIP/β-catenin/

cyclin D1 signals contributing to colony formation and invasion were reversed by selective 

silencing of c-FLIP expression [41]. Similarly, c-FLIPL, in cooperation with FADD, 

enhances canonical Wnt signaling by inhibiting proteasomal degradation of β-catenin, thus 
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suggesting a new mechanism involved with tumorigenesis, in addition to inhibiting Fas 

signaling [75] (Fig. 4). Recently, Wang et al. [76] demonstrated that c-FLIP overexpression 

is also significantly related to the presence of HR-HPV infection during the progression of 

cervical squamous cell cancer and that c-FLIP is an early marker of cervical carcinogenesis. 

Moreover, c-FLIP overexpression accelerated progression to androgen independence by 

inhibiting apoptosis in LNCaP prostate tumors implanted in nude mice [77]. Similarly, c-

FLIP is also an independent prognostic indicator in colorectal carcinomas [56], and its 

expression in Burkitt’s lymphomas is also associated with a poor clinical outcome and could 

be a reliable prognostic factor in this type of cancer [78]. Furthermore, recent studies show 

that c-FLIP expression may contribute to the carcinogenesis and aggressiveness of 

endometrial carcinomas and may serve as a useful prognostic factor for this tumor [79, 80]. 

Overexpression of c-FLIPL also increases the hypoxia-inducible factor-1α (HIF1α) [81]. 

Overexpression of HIF1α can result in genes responsible for global changes in cell 

proliferation, metastasis, and invasion.

TRANSCRIPTION AND TRANSLATION REGULATION OF c-FLIP

Several transcription factors are known to downregulate c-FLIPL and c-FLIPS expression. 

E2F1, a transcription factor that plays a crucial role during S phase progression and 

apoptosis, triggers apoptosis in various lung adenocarcinoma cell lines by specific 

downregulation of c-FLIPS leading to caspase-8 activation at the DISC. c-FLIPS 

downregulation by E2F1 occurs at the transcriptional level though its mechanism remains to 

be found. The specific overexpression of c-FLIPS is also seen in human lung 

adenocarcinomas with low levels of E2F1 [82].

Androgen receptor (AR) is a ligand-activated transcription factor that mediates androgen 

action and is essential for the growth, function, and cell differentiation of the prostate gland. 

Recently, Gao et al. [77] demonstrated that the prostate apoptosis response factor-4 (Par-4) 

functions as an androgen receptor coactivator. This factor directly interacts with the DNA-

binding domain of the androgen receptor, increases interaction of this receptor with DNA, 

and elevates androgen receptor-dependent transcription. Interestingly, Par-4 is recruited onto 

the c-FLIP promoter in the presence of androgens. The binding to Par-4 to the promoter 

enhanced c-FLIP expression and this elevated expression was reversed by the expression of 

a dominant-negative Par-4. Enhanced c-FLIP expression was associated with prostate cancer 

progression to the androgen-resistant stage [77].

Another regulator of c-FLIP expression is p53 tumor suppressor protein. p53 may exert 

transcriptional upregulating effects on the c-FLIP gene and also has potent effects on 

promoting the degradation of c-FLIP protein [83-86]. Moreover, the gene encoding c-FLIP 

is a direct target of c-myc-mediated transcriptional repression. Chromatin 

immunoprecipitation and luciferase reporter analyses have shown that c-myc binds and 

represses the c-FLIP promoter. Overexpression of c-myc or activation of myc-estrogen 

receptor (ER) decreased c-FLIP levels in both cell culture and mouse models of c-myc-

induced tumorigenesis, while knocking down c-myc using siRNA increased c-FLIP 

expression [87].
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Li et al. [88] reported that c-FLIPL is transcriptionally regulated by the activator protein-1 

(AP-1) family member protein c-Fos and that MG-132, an inhibitor of the proteasome, 

sensitizes TRAIL-resistant prostate cancer cells by inducing c-Fos and repressing c-FLIPL. 

Moreover, c-Fos, which is activated by MG-132, negatively regulates c-FLIPL by direct 

binding to the putative promoter region of the c-FLIPL gene. In addition to activating c-Fos, 

MG-132 activates c-Jun, another AP-1 family member. c-Fos heterodimerizes with c-Jun to 

form AP-1 and repress transcription of c-FLIPL.

Recent results demonstrated that c-FLIP is also regulated at the translational level. Panner et 

al. [89, 90] showed that TRAIL resistance in glioblastoma multiforme cells (GBM) is the 

result of overexpression of c-FLIPS, and that c-FLIPS expression is in turn translationally 

increased by activation of the Akt-mammalian target of rapamycin (mTOR)-p70 S6 kinase 1 

(S6K1) pathway. Conversely, inhibition of mTOR or its target S6K1 suppressed 

polyribosomal accumulation of c-FLIPS mRNA, c-FLIPS protein expression, and promoted 

TRAIL sensitivity in GBM cells. An mTOR-independent pathway can also act through a Ral 

effector protein, RalBP1, to suppress cdc42-mediated activation of S6 kinase and the 

translation of the protein c-FLIPS [90, 91]. However, not much is known about Ral except 

that it is an effector of Ras oncogenesis. The Ral proteins (RalA and RalB) are small 

GTPases and their activity is controlled by the RalGEF family of proteins: RalGDS, Rgl, 

and Rlf [92]. Activated Ral molecules interact with Ral effectors, including RalBP1 (a cdc42 

GTPase-activating protein) [93]. Recently, Panner et al. have shown that (1) the RalA 

pathway is linked to both the translational control and the tumor-suppressive pathways, (2) 

RalA activation is linked to TRAIL sensitivity via the suppression of c-FLIPS levels, and (3) 

RalA activation is linked to c-FLIPS and the extrinsic cell death pathway via RalBP1 and 

cdc42 [90]. These interesting results define an mTOR-independent link between RalA and 

translation. These authors also demonstrated that RalBP1 serves in a membrane-bound, 

GTPase-activating protein (GAP)-dependent manner to link RalA activation to cdc42 

suppression, thereby leading to a decrease in c-FLIPS expression and enhancing TRAIL-

induced apoptosis.

c-FLIP DEGRADATION

c-FLIP is predominantly degraded by the ubiquitin-proteasome degradation system [94]. 

Both c-FLIP isoforms can be degraded by the proteasome, but c-FLIPS appears to be 

particularly sensitive to ubiquitylation and proteasomal degradation, partly due to two 

crucial lysine residues in the C-terminal 20 amino acids that are unique to c-FLIPS [48]. The 

sensitivity of c-FLIPS to ubiquitin-mediated degradation adds a novel concept to DISC 

regulation and its control of apoptosis [48]. Downregulation of c-FLIPL and c-FLIPS due to 

degradation is observed in cells treated with various apoptosis-inducing agents. The cyclin-

dependent kinase inhibitor flavopiridol degrades c-FLIP and increases apoptosis, which in 

turn can be reversed by an inhibitor of the ubiquitin-proteasome system [95]. Combined 

treatment with the anticancer agent 3,3′-diindolylmethane and TRAIL led to significant 

degradation of c-FLIP, predominantly via the ubiquitin-proteasome degradation system [94]. 

Moreover, Peroxisome Proliferator-Activated Receptor γ (PPARγ) agonists sensitize cancer 

cells to TRAIL by ubiquitination and proteasome-dependent c-FLIP degradation [96, 97].

Safa et al. Page 7

Curr Cancer Drug Targets. Author manuscript; available in PMC 2015 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Proteasome inhibitors are a new class of drugs that decrease proliferation and induce 

apoptosis in a variety of hematologic and solid malignancies [98]. Interestingly, several 

proteasome inhibitors lead to the downregulation of c-FLIPL and c-FLIPS [99, 100].

c-FLIP VARIANTS AS TARGETS FOR CANCER THERAPY

Strategies to lower the threshold for triggering cancer cell apoptosis may lead to new and 

more effective therapeutic regimens for cancer. TRAIL holds enormous promise as a cancer 

therapeutic due to its highly selective apoptosis-inducing action on neoplastic versus normal 

cells [2]. However, to exploit this opportunity, the problem of TRAIL resistance in cancer 

must first be overcome. While c-FLIPL may function as a fine-tuned regulator that manifests 

dual pro- and anti-apoptotic actions during development and in normal adult tissues, 

accumulating evidence indicates an anti-apoptotic role for c-FLIP in diverse types of human 

cancer [11, 13, 16, 18, 20, 101-104]. Notably, recent reports demonstrated that small 

interfering RNAs (siRNAs) that specifically knocked down the expression of c-FLIPL or c-

FLIPS in cancer cell lines of various types augmented TRAIL- and chemotherapy-induced 

apoptosis [11, 17, 25, 105]. Therefore, the outlook for the therapeutic index of c-FLIP-

targeted drugs appears excellent, not only because of the therapeutic efficacy observed in 

models of c-FLIP targeting in cancer therapy with TRAIL, but also because the current 

understanding of c-FLIP action in normal tissues supports the notion that c-FLIP-targeted 

cancer therapy will be well tolerated.

There does not appear to be a “handle” to inhibit c-FLIP function with small molecule 

ligands, since the cytoprotective DISC binding is mediated by highly conserved DEDs 

which function by homotypic binding. However, small molecules that induce c-FLIP 

downregulation and sensitize neoplastic cells to apoptosis induction by TRAIL have been 

identified in global, unbiased chemical screens. Our results revealed that forced expression 

of c-FLIPL or c-FLIPS caused resistance to apoptosis in the CCRF-HSB-2 leukemia cell line 

[68] and the MCF-7 breast cancer cell line (Wu CH, Day TW, Najafi F, and Safa AR, 

unpublished results). Moreover, c-FLIPL, but not c-FLIPS, inhibited apoptosis induced by 

the fluoropyrimidine 5-fluorouracil (5-FU), the topoisomerase-1 inhibitor irinotecan 

(CPT-11), and the DNA damaging agent oxaliplatin (OXA) in HCT116 colorectal cancer 

cells, suggesting that c-FLIPL is the more important splice form in mediating 

chemoresistance [20]. Furthermore, c-FLIP inhibits TRAIL-independent, DR5- and caspase 

8-dependent apoptosis in response to chemotherapy in colorectal cancer cells. We (Wu CH, 

Day TW, and Safa AR, unpublished results) and others [106] have found that MCF-7 cells 

overexpressing c-FLIP are resistant to Taxol. The c-FLIPL variant protects against apoptosis 

induced by a diverse group of chemotherapeutic drugs with different mechanisms of action 

[102, 103, 107]. c-FLIP also inhibits spontaneous death ligand-independent cell death [25, 

102], further supporting the notion that targeting c-FLIP may have therapeutic potential for 

cancer treatment. Cisplatin, camptothecin, and etoposide were all shown to downregulate c-

FLIPS expression in human malignant glioma cells [103, 108]. Moreover, doxorubicin 

decreased levels of c-FLIP, particularly c-FLIPS in prostate cancer cell lines, and sensitized 

these cells to TRAIL [109]. Overexpression of the c-FLIPL variant has been found in 

ovarian cancer cells resistance to cisplatin [110]. Interestingly, the damaged DNA-binding 

protein 2 (DDB2), a component involved in the genomic repair of UV damage, was recently 
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shown to be involved in the cross-resistance of a cisplatin-selected HeLa cell line (HR3) to 

Fas-inducing antibody and tumor necrosis factor (TNF)-α-mediated apoptosis [110]. The 

HR3 cell line exhibits enhanced expression of DDB2 and cross-resistance to UV-induced 

activation of caspases and apoptosis. The overexpression of DDB2 was shown to increase 

both endogenous and exogenous c-FLIP mRNA levels, and inhibition of c-FLIP by 

antisense oligonucleotides suppressed DDB2 protection, revealing that DDB2 regulates TNF 

signaling-mediated apoptosis via c-FLIP. Therefore, therapeutics capable of modulating the 

death-inducing ligands and/or chemotherapeutic agents by downregulating c-FLIP variants 

should hold enormous promise in future clinical trials.

We recently published the novel findings that Taxol downregulates c-FLIP (both c-FLIPS 

and c-FLIPL) in cancer cells [68], and that doses of the drug that induced concentration-

dependent apoptosis were sufficient to abrogate the expression of both c-FLIP variants (Fig. 

5). The significance of these findings to paclitaxel-induced neoplastic cell apoptosis was 

demonstrated by our results showing that transfection with an antisense c-FLIP plasmid 

abrogated c-FLIPS and c-FLIPL expression and sensitized cancer cells to Taxol [68]. These 

results demonstrate that c-FLIP isoforms are major contributing factors to cancer cell 

resistance to paclitaxel-induced apoptosis.

AGENTS KNOWN TO DOWNREGULATE c-FLIP

Many therapeutics capable of downregulating c-FLIP levels enhance the expression of the 

TRAIL receptor DR5, and in some cases enhance levels of both the DR4 and DR5 TRAIL 

receptors. One such agent is lexatumumab, a humanized agonistic monoclonal antibody 

specific for the DR5 receptor, which is currently in Phase I/II clinical trials in patients with 

advanced malignancies. Recently, lexatumumab was shown to decrease the expression of c-

FLIPL and increase the level of DR5 in primary and metastatic renal cell carcinoma [111]. 

Similarly, the induction of apoptosis by the proteasome inhibitors MG-132 and PS-341 

(bortezomib, VelcadeR) in primary chronic lymphocytic leukemia (CLL) cells and the 

Burkitt lymphoma cell line BJAB was associated with upregulation of TRAIL and its death 

receptors, DR4 and DR5, and decreased c-FLIP protein expression [99]. As mentioned 

earlier, c-FLIP is degraded via a ubiquitin-proteosome system. Therefore, PS-341 should 

increase c-FLIP and prevent apoptosis. Interestingly, Zhao et al. have shown that PS-341 

decreases c-FLIP at the gene level [112]. In contrast, Liu et al. reported that PS-341 

upregulates DR5 as well as c-FLIP and survivin in human non-small cell lung carcinomas 

(NSCLC) cells [113]. Thus, the effect of PS-341 on the regulation of c-FLIP expression may 

be cancer cell-type specific. A proposed central mechanism of action of PS-341 is the 

inhibition of NF-κB activation through inhibition of IκB degradation [114]. NF-κB 

activation results in upregulation of c-FLIP [115]. Thus, downregulation of the c-FLIP gene 

by PS-341 may be due to inhibition of NF-κB activation by this agent. PPARγ ligands exert 

PPARγ-independent effects on inducing DR5 expression and downregulating c-FLIP levels, 

leading to enhanced TRAIL-induced apoptosis [97]. Synthetic triterpenoids sensitize 

TRAIL-resistant T47D and MDA-MB-468 breast cancer cells to TRAIL-mediated apoptosis 

by downregulating c-FLIPL, and upregulate cell surface TRAIL receptors DR4 and DR5 in 

breast cancer cell [116]. Similarly, the p53 protein increased the sensitivity of testicular 

germ cells to mono-(2-ethylhexyl)phthalate-induced apoptosis by elevating the membrane 
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levels of DR5 and Fas and decreasing the intracellular level of c-FLIP [86]. Progesterone 

induces apoptosis in TRAIL-resistant ovarian cancer cells by circumventing c-FLIPL 

overexpression [117].

Another class of agents known to downregulate c-FLIP expression are the histone 

deacetylases inhibitors (HDACi). These compounds are considered to be among the most 

promising agents for the developing novel cancer therapeutics [118, 119]. In diverse types of 

cancer cells, HDACi induce growth arrest, differentiation, and apoptosis. The results of 

clinical trials with several of these agents indicate that they are well tolerated at doses that 

have antitumor activity [119, 120]. Importantly, normal cells are almost always more 

resistant to HDACi than tumor cells [119, 120]. The mechanism of their antitumor activity is 

likely related at least in part to hyperacetylation of the promoter regions of the TRAIL and 

DR5 genes [121-123]. Co-treatment with the histone deacetylase inhibitor LAQ824 

enhanced the mRNA and protein expression of the death receptors DR5 and/or DR4, but 

reduced the c-FLIP mRNA and protein levels and increased TRAIL-triggered apoptosis 

[124].

Elucidating the mechanisms regulating c-FLIP expression in neoplastic disease may lead to 

c-FLIP-downregulating targeted therapeutics that are efficacious and well tolerated in 

combination with TRAIL, conventional chemotherapeutic agents, or other therapies that 

activate the caspase-8/10-dependent apoptosis pathway. This approach may be especially 

effective in human malignancies that overexpress c-FLIP, i.e., glioblastoma multiforme, 

prostate, colorectal, endometrial, ovarian, mesothelial, and lung cancer [11, 17, 20, 41, 79, 

89, 101, 125].

In an exciting twist in identifying regulators of TRAIL-triggered apoptosis, Jin et al. [126] 

used the intracellular death domain (DD) of DR5 as a target to screen a phage-displayed 

combinatorial peptide library. The DD of DR5 identified a peptide from the library that 

showed sequence similarity to a stretch of amino acids in the C-terminus of c-FLIPL. In 

vitro binding assays revealed that this peptide selectively interacted with the DD of DR5. 

Similarly, these authors demonstrated that full-length c-FLIPL and the C-terminal p12 

domain of c-FLIP interacted with DR5 both in vitro and in mammalian cells, and that this 

interaction was independent of TRAIL. Moreover, when cancer cells were treated with 

TRAIL, c-FLIPL was released from DR5 and FADD was recruited to the active DR5 

signaling complex. Of particular significance, a cellular membrane-permeable version of 

this peptide induces apoptosis in mammalian cells. Therefore, these results provide a basis 

for rationally designing peptidomimetic or small molecule targeted therapeutics which, by 

interacting with the C-terminal domain of c-FLIPL, release DR5 and subsequently form the 

active DR5 signaling complex for triggering apoptosis by TRAIL and/or chemotherapeutic 

agents in cancer cells resistant to these agents.

Selective c-FLIPL and c-FLIPS knockdown strategies to sensitize cancer cells to TRAIL 

may lead to combination therapies consisting of TRAIL plus innovative c-FLIP variant-

selective gene therapy strategies. c-FLIPL and c-FLIPS knockdown could provide significant 

clinical advances in the use of TRAIL in treating lung cancer. Similarly, many agents 

mentioned above abrogate expression of the c-FLIP variants, suggesting that these 
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experimental therapeutics have potential value to reverse cancer cell resistance to TRAIL, 

paclitaxel and cisplatin.

Oncolytic viruses are known to infect, replicate in, and eventually eliminate tumor cells 

without harming normal cells [127]. Reoviruses are oncolytic viruses that multiply 

preferentially in tumor cells that harbor activated ras family or ras-signaling pathways, while 

sparing normal cells [127]. Recently, Clarke et al. [128] demonstrated that reovirus infection 

results in the downregulation of c-FLIP and increased TRAIL-induced apoptosis in ovarian 

cancer cells, and overexpression of c-FLIP blocked reovirus-induced sensitization of these 

cells to TRAIL-induced apoptosis. Using oncolytic viruses aimed at downregulating c-FLIP 

may be potentially useful in combination with TRAIL and/or chemotherapeutic agents to 

eradicate cancer cells.

c-FLIPS and/or c-FLIPL serve as rational target(s) in various cancers for novel small 

molecule targeted therapeutics and/or gene therapy strategies., e.g., small molecule 

therapeutics that selectively downregulate c-FLIPS or c-FLIPL and gene therapy strategies 

that knock down a specific c-FLIP variant. Developing these innovative therapeutic 

strategies in conjunction with TRAIL and Taxol will potentially overcome the barrier of 

dose-limiting toxicity in cancer chemotherapy. Furthermore, rather than empirically 

combining cytotoxic drugs to attempt to enhance their therapeutic response, modulating 

specific targets in cancer cells based on rational preclinical design is the most logical 

approach to eradicate cancer. The validity of this approach in treating metastatic solid 

tumors is exemplified by the efficacy of targeted inhibition of the protein kinase c-Kit by 

imatinib mesylate (GleevecR) in the first-line treatment of metastatic gastrointestinal stromal 

tumor (GIST) [129]. TRAIL or chemotherapy resistance in diverse cancer cell types can be 

reversed by parallel treatment with other substances, such as agents known to downregulate 

c-FLIP variants.

CONCLUSION

Apoptosis is a mechanism of programmed cell death involving cellular signaling pathways 

that induce cells to self-destruct in response to specific cellular cues or environmental 

hazards. The mechanism of action of chemotherapeutic agents often involves the induction 

of cancer cell apoptosis, and resistance to apoptosis in these cells is a major contributing 

factor in drug resistance. Therefore, using targeted therapeutics to restore apoptosis 

signaling in cancer cells has great potential to improve the outcome of cancer chemotherapy. 

Several studies have demonstrated elevated c-FLIP levels in various tumor types suggesting 

that c-FLIP may be a relevant clinical target. The current state of the art reviewed in this 

article suggests that c-FLIP may represent an important clinical marker of drug resistance, 

and that targeting c-FLIP in combination with TRAIL or standard chemotherapies has 

therapeutic potential for treating cancer. The foregoing discussion justifies optimism that 

future cancer therapy will be improved by innovations that replace current standard 

chemotherapy with targeted therapy or combined chemotherapy with drug resistance-

reversing targeted therapy, e.g., combination regimens of chemotherapy and small molecule 

drugs that downregulate c-FLIP.
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Fig. (1). Mitochondrial death pathway
The mitochondrial pathway of apoptosis is usually caused by disruption of mitochondrial 

membrane potential (ΔΨm), release of cytochrome c, activation of caspase-9, and 

subsequent activation of downstream caspases-2, -3, -6, -7, -8 and -10, which eventually 

leads to apopto sis. On the other hand, caspase-dependent apoptosis induced by death 

receptor ligation (e.g., Fas ligand/Fas or TNF-α/TNF- α receptor) can function 

independently of the mitochondria by caspase-8 activation, which directly activates 

caspase-3, -6 and -7, or by causing proteolytic cleavage of the pro-apoptotic protein Bid to a 

truncated form (tBid), which in turn is inserted in the mitochondrial membrane and induces 

release of cytochrome c. Release of the apoptosis inducing factor (AIF) from mitochondria 

causes caspase-independent apoptosis.
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Fig. (2). The cell death receptor pathway
FAS-ligand, TNF-α, and TRAIL bind to their respective receptors leading to the recruitment 

of FADD via a death domain (DD) interaction. After FADD binding, the death effector 

domain (DED) of FADD interacts with the DEDs of procaspases-8 and -10 forming the 

death-inducing signaling compex (DISC). Following DISC formation, caspases-8 and -10 

are activated, disassociate from the DISC, and activate downstream effector caspases. c-

FLIP binds to procaspases-8, -10, and FADD, and inhibits DISC formation.
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Fig. (3). Structures of c-FLIP variants
Three c-FLIP variants, c-FLIPL, c-FLIPS, and c-FLIPR, contain two death effector domains 

(DEDs) at their N-termini. In addition to two DEDs, c-FLIPL contains a large (p20) and a 

small (p12) caspase-like domain without catalytic activity. c-FLIPS and c-FLIPR consist of 

two DEDs and a small C-terminus (adapted from [46]).
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Fig. (4). Model depicting the multifunctional roles of c-FLIP on various signaling pathways
As discussed in the text, in addition to its functional role in inhibiting apoptosis by binding 

to procaspases-8 and -10 and inhibiting their activation, c-FLIP also has the following 

functions: (1) initiating cell proliferation by recruiting and activating (a) downstream 

signaling proteins including TRAF, RIP, IKK, and NFkB, or (b) RAF and extracellular 

signal-regulated kinase (ERK), (2) controlling cell survival by activating Akt, JNK, and Wnt 

signaling pathways, and (3) participating in carcinogenesis.
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Fig. (5). Caspase-independent downregulation of c-FLIPL and c-FLIPS levels by Taxol
(a) CCRF-HSB-2 cells were treated with 0.5, 1, 5, 10, or 50 nM Taxol for 24 h. Cell lysates 

were subjected to immunoblot analysis using an anti-c-FLIP antibody. (b) MCF-7 cells were 

treated with 10, 100, or 500 nM Taxol for 48 h. Cell lysates were subjected to immunoblot 

analysis using an anti-c-FLIP antibody. (c) CCRF-HSB-2 cells were treated with 100 μM of 

z-VAD-fmk for 3 h followed by 10 nM Taxol for an additional 24 h. Immunoblot analysis 

was conducted on cell lysates treated with or without z-VAD-fmk using anti-c-FLIP 

antibodies. Equivalent loading was confirmed by reprobing the same blot with anti-β-actin.
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