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Abstract

Multidrug resistance-associated protein 1 (MRP1/ABCC1) is the first identified member of ABCC 

subfamily which belongs to ATP-binding cassette (ABC) transporter superfamily. It is 

ubiquitously expressed in almost all human tissues and transports a wide spectrum of substrates 

including drugs, heavy metal anions, toxicants, and conjugates of glutathione, glucuronide and 

sulfate. With the advance of sequence technology, many MRP1/ABCC1 polymorphisms have been 

identified. Accumulating evidences show that some polymorphisms are significantly associated 

with drug resistance and disease susceptibility. In vitro reconstitution studies have also unveiled 

the mechanism for some polymorphisms. In this review, we present recent advances in 

understanding the role and mechanism of MRP1/ABCC1 polymorphisms in drug resistance, 

toxicity, disease susceptibility and severity, prognosis prediction, and methods to select and 

predict functional polymorphisms.
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Multidrug resistance-associated protein 1 (MRP1/ABCC1) is a member of the ATP-binding 

cassette (ABC) transporter superfamily which contains 49 members in human that are 

divided into 7 subfamilies, named from ABCA to ABCG (http://nutrigene.4t.com/

humanabc.htm)[1-2]. MRP1/ABCC1 is the first identified gene in the ABCC subfamily and 

was cloned from a multidrug resistant small cell lung cancer cell line H69AR[3]. Subsequent 

studies revealed the important role of MRP1/ABCC1 as an exporter of drugs and 

metabolites in many physiological, pathological and pharmacological processes. Thus, 

polymorphism is likely an important feature of MRP1/ABCC1 in disease susceptibility, drug 

response, and treatment outcomes[4]. In this review, we will evaluate recent advances in 

discovery of MRP1/ABCC1 polymorphisms and understanding their potential clinical 

applications.
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1 STRUCTURE AND TISSUE DISTRIBUTION

The MRP1/ABCC1 gene is located in chromosome 16p13. 1 and spans approximately 200 

kb. It contains 31 exons and encodes a protein of 1 531 amino acid residues with an apparent 

molecular weight of 180-190 kD[3-5]. MRP1/ABCC1 is an atypical ABC transporter with 

three membrane-spanning domains (MSD) and two cytosolic nucleotide binding domains 

(NBD) [6]. While MSD1 and MSD2 each consists of 6 transmembrane ( TM) segments, 

MSD0 has 5 TM segments with a predicted extracellular amino terminus (Fig. 1A). 

However, recent studies showed that the amino terminus of human MRP1/ABCC1 may have 

an unusual U-shaped structure which possibly serves as a gate for MRP1/ABCC1 

function[7-9].

The sequence of MSD is highly divergent among different members of ABC transporter 

family, consistent with MSD’s possible function in determining substrate specificity[10]. 

Thus, polymorphisms in this domain may affect the substrate spectrum of MRP1/ABCC1. 

While a typical ABC transporter has two MSDs, the additional MSD0 of human MRP1/

ABCC1 is peculiar and its function is not yet fully elucidated. However, our recent studies 

showed that MSD0 contributes to MRP1/ABCC1 homo-dimerization[11-12].

In contrast to MSD, NBD is highly conserved among different ABC transporters. It is 

responsible for binding and hydrolysis of ATP to provide energy for substrate transport[10]. 

Similar to other ABC transporters, the NBD of MRP1/ABCC1 has two consensus motifs 

designated as “Walker A” and “Walker B”[13] and a third consensus motif designated as 

ABC-signature motif of approximate 13 amino acids between Walker A and Walker B[10]. 

These highly conserved motifs are critical for MRP1/ABCC1 function and a single mutation 

may abolish the activity of the whole protein[14-15]. Thus, polymorphisms in NBD may 

produce inactive MRP1/ABCC1.

MRP1/ABCC1 appears to be ubiquitously expressed in almost all human tissues[16-18]. Its 

expression level is high in lung, spleen, testis, kidney, placenta, thyroid, bladder and adrenal 

gland, but low or no expression in some cells of circulatory system, such as eosinophils, 

helper T-cells and erythrocytes[19]. MRP1/ABCC1 is also expressed in blood-brain, blood-

testis and blood-cerebrospinal fluid (CSF) barriers, which was thought to contribute to 

protection of these organs by keeping out toxic substances[20-21]. Indeed, it has been shown 

that accumulation of etoposide in CSF increased 10-fold in MRP1/ABCC1 knockout 

mice[20]. At the cellular level, in contrast to the apical membrane location of other ABC 

transporters, MRP1/ABCC1 is predominantly located in the basolateral membrane of 

polarized cells[22-23]. Thus, MRP1/ABCC1 likely pumps its substrate into the interstitial 

space of body, rather than excreting them into bile, urine or gut.

2 SUBSTRATES

MRP1/ABCC1 can transport a wide spectrum of substrates ranging from anticancer drugs to 

fluorescent dye (Tab. 1). A wide variety of anticancer drugs including anthracyclines, 

epipodophyllotoxins, vinca alkaloids, camptothecins, methotrexate and mitoxantrone are 

known substrates of MRP1/ABCC1 and, thus, MRP1/ABCC1 over-expression leads to 

multidrug resistance in cancer chemotherapy. In addition to anticancer drugs, MRP1/
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ABCC1 also transports many other types of drugs, such as anti-HIV drugs. Therefore, 

MRP1/ABCC1 gene polymorphisms may affect patient response to chemotherapy of these 

diseases. Previously, we have shown that G2168A polymorphism significantly reduced 

MRP1/ABCC1 activity in resistance to anthracyclines, vinca alkaloids and etoposide[24].

Another important group of substrates of MRP1/ABCC1 is organic anion conjugates 

including glutathione, glucuronides and sulfate conjugates. Transporting these conjugates 

helps cells to remove toxins and protect tissues from damage[25-26]. LTC4, a very 

important mediator of inflammatory response which controls vascular permeability and 

smooth muscle contraction, is another high affinity substrate of MRP1/ABCC1[19,27]. Thus, 

MRP1/ABCC1 polymorphisms may affect therapeutic efficiency of some LTC4 targeting 

drugs, such as montelukast and zileuton [28-29].

3 POLYMORPHISMS

A large number of naturally occurrmg MRP1/ABCC1 polymorphisms have been identified 

with most studies in Asian and Caucasian populations[30-37]. A comprehensive list of 

naturally occurring MRP1/ABCC1 polymorphisms in different populations can be found in 

several publicly accessible databases [Pharmacogenetics Research Network: http://

www.pharmgkb.org; National Central for Biotechnology Information (NCBI): http://

www.ncbi.nlm.nih.gov/snp; Japanese Single Nucleotide Polymorphisms (JSNP) database: 

http://snp.ims.u-tokyo.ac.jp/; International HapMap Project: www.hapmap.org/].

Most identified MRP1/ABCC1 polymorphisms are single nucleotide polymorphisms (SNPs), 

although repeats, insertions and deletions are also found. There are vast ethnical differences 

in MRP1/ABCC1 polymorphism distribution and frequency, especially between Asian and 

Caucasian. For example, G2168A is a common SNP in the Asian population, but it has not 

been found in Caucasian[24]. On the contrary, G2012T polymorphism is common in 

Caucasian, but not found in Asian populations [31]. Most MRP1/ABCC1 polymorphisms 

have a very low frequency (< 5%), which indicating that MRP1/ABCC1 is a highly 

conserved gene. The majority of identified polymorphisms are located in the untranslational 

region (UTR) and introns and few polymorphisms are located in the coding region. 

Polymorphisms in the coding region are more likely to be functional and can be divided into 

three types: synonymous (no change in amino acid sequence resulting in a wild-type 

protein), non-synonymous (change in amino acid sequence resulting in a mutant protein), 

and nonsense (change to a stop codon resulting in a truncated protein). Up to date, only 14 

non-synonymous polymorphisms have been identified with very low frequencies and no 

nonsense polymorphism has been found (Fig. 1). These non-synonymous polymorphisms 

were intensively studied both in vitro and in vivo since they could be easily recreated using 

site-directed mutagenesis and they might affect the expression and function of MRP1/

ABCC1[24-39]. Although the polymorphisms in the non-coding region do not affect the 

sequence of the protein, they are also important and can be used as genetic markers[40-41].
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4 ASSOCIATION OF MRP1/ABCC1 POLYMORPHISMS WITH THERAPEUTIC 

RESPONSE

As discussed above, many therapeutic drugs are substrates of MRP1/ABCC1. Thus, it is 

conceivable that some MRP1/ABCC1 polymorphisms may affect treatment responses and 

toxicities. Tab. 2 lists MRP1/ABCC1 polymorphisms that have been studied for their 

association with therapeutic responses. One of these polymorphisms, G2012T which was 

first identified by Conrad et al.[34] in Caucasian population, has been extensively studied. It 

causes mutation of a highly conserved Gly671 to Val. Investigation of its potential 

relationship with response to atorvastatin in treatment of hypercholesterolemia, telatinib in 

treatment of solid tumors, and induction therapy of leukemia, however, showed no 

significant correlattion with treatment responses[42-44]. Consistent with these clinical 

observations, in vitro studies also showed that the mutant MRP1/ABCC1 carrying this 

mutation had no detectable difference in drug transport activity from the wild type MRP1/

ABCC1 [34], Thus, the G2012T polymorphism may not have functional impact on 

chemotherapy.

Another extensively studied polymorphism is G4002A, a synonymous SNP located in exon 

28. Several studies exploring the correlation of G4002A polymorphism and responses to 

anticancer drugs gemcitabine, cisplatin, taxanes and methotrexate showed no significant 

association in pancreatic cancer patients [45-47]. However, Lee et al. [48] found that this 

polymorphism was strongly associated with the response of patients with major depressive 

disorder to antidepressant citalopram. Although patients with the G4002A polymorphism 

had a 4. 7-fold increase in citalopram response, there is no evidence that G4002A 

polymorphism of MRP1/ABCC1 in the blood-brain barrier affects citalopram uptake and if 

citalopram is a substrate of MRP1/ABCC1. Another non-synonymous polymorphism 

located in exon 28, A4009G, was found to correlate with methotrexate therapeutic efficacy 

in a study of 374 chronic plaque psoriasis patients who received methotrexate 

monotherapy[49]. It was found that the heterozygous A4009G in the responders is 

significantly higher than that in non-responders, suggesting that the A4009G polymorphism 

may increase methotrexate responses. However, it has not yet been determined if the 

A4009G polymorphism affects MRP1/ABCC1 expression, trafficking, or function. Future 

studies on the possible effects of the A4009G polymorphism on these aspects of MRP1/

ABCC1 are needed.

A well studied polymorphism that has been shown to significantly reduce drug transport 

activity of MRP1/ABCC1 is G2168A[24]. It has also been shown to increase chemotherapy 

response in advanced ovarian cancer patients[50]. In the study of advanced ovarian cancer 

patients, several other polymorphisms of MRP1/ABCC1 (T825C, T1062C, T1684C, C2007T 

and G4002A) were also investigated. However, none of these polymorphisms were found to 

significantly associate with chemotherapy responses. Thus, the G2168A polymorphism may 

be an indicator of chemotherapy response of advanced ovarian cancers. However, whether 

this polymorphism also affects chemotherapy responses of other human cancers need to be 

investigated.
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In addition to the polymorphisms in the coding region, some polymorphisms in the non-

coding region of MRP1/ABCC1 are also found to associate with drug responses. Two such 

polymorphisms in the non-coding region are IVS23 G-1960A and IVS9 T-176C located in 

intron 23 and 9, respectively. They both have been shown to significantly associate with 

methotrexate response in psoriasis patients and patients carrying these polymorphisms 

appear to have worse response to methotrexate treatment[49]. Another example of 

polymorphisms in the non-coding region is IVSI C-14840T which is located in intron 1 and 

has been found to correlate with significantly higher response to both montelukast and 

zileuton in asthma patients than wild-type homozygotes [28-29]. Thus, polymorphisms in 

MRP1/ABCC1 may affect montelukast and zileuton response and lung function. 

Interestingly, in another study of two independent cohorts, polymorphisms of MRP1/ABCC1 

in the 3'-UTR (G3361A and A2615G) and IVS14 C-1575T also significantly correlate with 

lung function[51]. While 3'-UTR G3361A correlates with higher forced expiratory volume at 

one second (FEV1), 3'-UTR A2615G correlates with lower FEVI. Another polymorphism, 

IVS14 C-1575T in the intron 14 of MRP1/ABCC1, correlates with highly excessive FEVI 

decline. However, how these polymorphisms in the non-coding region possibly affect 

MRP1/ABCC1 is not yet known. It is also unknown if MRP1/ABCC1 plays any role in lung 

function. While the polymorphisms in the UTR may affect the translation and expression of 

MRP1/ABCC1, the polymorphisms in the intron may affect RNA processing. Clearly, these 

hypothetical mechanisms of action and the role of MRP1/ABCC1 in lung function needs to 

be investigated in the near future.

5 ASSOCIATION OF MRP1/ABCC1 POLYMORPHISMS WITH PROGNOSIS 

PREDICTION

Based on the above discussion of association of MRP1/ABCC1 polymorphisms with 

therapeutic response, it is tempting to speculate that polymorphisms of MRP1/ABCC1 may 

be used as markers to predict prognosis. Indeed, two polymorphisms have been shown to 

associate with prognosis (Tab. 3). In a study of possible contribution of four non-

synonymous polymorphisms of MRP1/ABCC1 to neuroblastoma outcome in a cohort of 195 

Caucasian patients, it was found that the presence of the G2010T polymorphism has 

significant improvement in outcome[52]. It was also found that the G2010T polymorphism 

reduces the stability and expression level of MRP1/ABCC1 mRNA. Hence, it is possible that 

patients with the G2010T polymorphism may have reduced level of MRP1/ABCC1, which 

would enhance drug response and increase chemotherapy efficacy. In another study of 

correlating 5'-UTR G-1666A polymorphism with hepatocellular carcinoma (HCC) outcome 

in 162 Chinese patients, it was found that the mutant genotype carriers had better prognosis 

with increased 4-year disease free survival[53]. Using in vitro electrophoretic mobility shift 

assay (EMSA), these authors also found that the mutant allele had much less binding affinity 

to nuclear proteins, suggesting that this promoter polymorphism may cause decreased 

transcription of MRP1/ABCC1. However, whether this promoter polymorphism inhibits 

MRP1/ABCC1 transcription has not yet been demonstrated. It is also unknown if the nuclear 

proteins that bind to this region are involved in the transcription of MRP1/ABCC1. Never-

theless, these polymorphisms may be used as makers predicting prognosis and survival in 

neuroblastoma and HCC.
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6 ASSOCIATION OF MRP1/ABCC1 POLYMORPHISMS WITH DRUG 

TOXICITY

Since some toxicants and drug metabolites are also substrates of MRP1/ABCC1, possible 

association of MRP1/ABCC1 polymorphisms and drug toxicity is also of importance and 

interest to investigate. In this regard, correlation of MRP1/ABCC1 polymorphisms and drug-

induced neuropathy is mostly studied (Tab. 4). In a recent study correlating polymorphisms 

of MRP1/ABCC1 (IVS9A8G, IVS11C-48T, T1684C, IVS18C-30G, G4002A and 

IVS30A18G) with irinotecan-induced neutropenia in cancer patients, it was found that the 

TT genotype carriers of IVSI1 C-48T had significant lower neutrophil count (ANC) in 

patients receiving irinotecan monotherapy[54]. Irinotecan-induced neutropenia is thought to 

be due to production of the cytotoxic irinotecan metabolite, SN-38, which is a substrate of 

MRP1/ABCC1. Consistent with this study, MRP1/ABCC1 polymorphism has also been 

found to correlate with peripheral neuropathy induced by vincristine[55]. In this study of 833 

myeloma patients, it was found that the carriers of MRP1/ABCC1 polymorphism IVS16 

A1695T were more likely to develop vincristine-induced peripheral neuropathy than the 

wild type carriers. Similar to SN-38, it is also speculated that this polymorphism may 

decrease MRP1/ABCC1-mediated transport of vincristine and, thus, increases vincrinstine-

induced peripheral neuropathy. However, the molecular mechanisms need further 

investigation.

One interesting polymorphism is G2012T, which shows correlation with doxorubicin 

toxicity in non-Hodgkin lymphoma patients[56]. The patients with this polymorphism have 

more anthracycline-induced cardiotoxicity than the wild-type patients. It was thought that 

the special subcellular localization of MRP1/ABCC1 in cardiomyocytes, in both plasma and 

lysosome membranes, permits sequestration of doxorubicin in lysosomes and prevent 

doxorubicin cardiotoxicity[17-57]. However, it has been demonstrated previously that the 

G2012T polymorphism of MRP1/ABCC1 has no effect on its function and substrate 

transport activity[34]. Thus, it is not clear how this polymorphism affects anthrocycline-

induced cardiotoxicity. Furthermore, since multidrug chemotherapy was used for these 

cohorts of patients, interpretation of these observations should be cautious. Doxorubicin 

mono-therapy and further investigation of G2012T mutation on MRP1/ABCC1 activity in 

transporting doxorubicin would help clarify this issue.

Several other polymorphisms of MRP1/ABCC1 (IVS3 G-3198A, IVS4 G409A, 

IVS5G413A, IVS5 A-7942G, IVS5G-1641A and IVS23 G-1960A) have been found to 

significantly correlate with methotrexate toxicity in liver and GI tract of psoriasis 

patients[49]. All these polymorphisms are located in introns and form a haplotype although it 

is not yet known if they affect the expression of MRP1/ABCC1 individually or as a 

haplotype. Based on the above discussion, MRP1/ABCC1 polymorphisms are likely 

important genetic indicators in drug toxicity during chemotherapy.
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7 ASSOCIATION OF MRP1/ABCC1 POLYMORPHISMS WITH DISEASE 

SUSCEPTIBILITY AND SEVERITY

Association of MRP1/ABCC1 with disease susceptibility has also been identified (Tab. 5). 

In a case control study of 500 lung cancer patients and 517 cancer free control subjects in 

Chinese population, Wang et al. [58] detected the association of three polymorphisms in the 

3'-UTR of MRP1/ABCC1 (C543T, T866A and T1512C) with lung cancer susceptibility. 

They found that subjects carrying mutant allele of 3'-UTR T866A had an increased risk of 

lung cancer. However, the other two polymorphisms had no significant correlation with lung 

cancer susceptibility. Further investigation showed that these three polymorphisms form a 

haplotype and the GTA haplotype was associated with increased risk of lung cancer 

compared with the most prevailing AAA haplotype. Therefore, this polymorphism 

haplotype may increase lung cancer predisposition in Chinese population. We recently 

identified association of another non-synonymous polymorphism G2168A with lung cancer 

susceptibility[59]. In our study of 77 lung cancer patients and 71 control individuals in 

Chinese population, we showed that the subjects carrying the G2168A allele had 3. 5 fold 

increased risk (adjusted OR = 3. 42; 95% CI, 1. 29 - 9. 06; P =0. 013) of lung cancer 

compared with wild-type carriers. Further stratified analysis showed that the elderly people 

(> 50 years) carrying mutant allele of this polymorphisms were more likely to develop lung 

cancer (adjusted OR, 4. 10; 95% CI, 1. 25-13. 48; P =0. 020) than younger ones. Taken 

together, it is possible that MRP1/ABCC1 polymorphisms may play important roles in lung 

cancer susceptibility. Although the mechanism of MRP1/ABCC1 action in lung cancer 

susceptibility is unknown, it is tempting to speculate that MRP1/ABCC1 may protect lung 

tissues against carcinogens by preventing them from entering bronchial epithelial cells. 

Carriers of these MRP1/ABCC1 polymorphisms are likely more susceptible to 

carcinogenesis due to reduced protection by MRP1/ABCC1. This possibility is consistent 

with our observation that the G2168A polymorphism decreases MRP1/ABCC1 function in 

drug transport activity (unpublished observations). However, further clinical studies are 

needed to test this possibility.

Possible impact of MRP1/ABCC1 polymorphisms on disease severity has also been reported 

in other studies (Tab. 5). In a study of 203 cystic fibrosis (CF) patients, it was found that the 

G-260C polymorphism in the 5'-UTR of MRP1/ABCC1 significantly increased CF 

severity[60]. Patients with CC genotype had earlier onset of chronic colonization by 

Pseudomonas aeruginosa (PA). Although in vitro study showed no impact of this 

polymorphism on promoter transcriptional activity, mRNA levels, basal and cAMP-induced 

anion transport, the possibility that this polymorphism affects translation/synthesis of 

MRP1/ABCC1 and, thus, its expression level cannot be ruled out.

In another study of five MRP1/ABCC1 polymorphisms (3'-UTR T866A, 3'-UTR G3361A, 

5'-UTR C-435G, IVSl T5977G and IVS14 C-1575T) and their possible effect on chronic 

obstructive pulmonary disease (COPD) severity, it was found that the 3'-UTR T866A was 

associated with higher FEV1 level and less airway wall inflammation while the 3'-UTR 

G3361A was associated with lower FEV1 level and higher inflammation. However, the 

other three polymorphisms have no significant association with COPD severity[61]. The 
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mechanism of the 3'-UTR T866A in affecting COPD severity remains unknown. However, 

it is speculated that 3'-UTR T866A may affect MRP1/ABCC1 mRNA stability together with 

another 3'-UTR polymorphism 801 C > GR[51-61] They were found to be in complete 

linkage disequilibrium[40]. Clearly, MRP1/ABCC1 polymorphisms are likely associated with 

lung cancer susceptibility and with COPD and CF disease severity. However, whether and 

how each polymorphism possibly affects disease susceptibility and severity need to be 

investigated in the future.

8 CONCLUSIONS SPECTIVES

Since the discovery of MRP1/ABCC1 in 1992, many MRP1/ABCC1 polymorphisms have 

been identified. Most of the identified polymorphisms are synonymous and have low 

frequency, indicating that MRP1/ABCC1 is a highly conserved gene. Some of the MRP1/

ABCC1 polymorphisms have been found to associate with drug response, prognosis, 

toxicity, disease susceptibility and severity. Some of these polymorphisms have also been 

shown to affect MRP1/ABCC1 expression or function which may indicate the underling 

mechanism of association with the observed phenotype. With the advances of next 

generation sequencing, International HapMap Project and 1 000 Genomes Project[62-63], 

more MRP1/ABCC1 polymorphisms are likely to be identified. However, identifying 

functional MRP1/ABCC1 polymorphisms and their mechanisms of action will not be easy. 

Thus, both opportunities and challenges exist.

Because not every polymorphism is functional, selecting potentially functional 

polymorphisms for further clinical relevance study is important considering the large 

number of polymorphisms is to be identified. Use of in silico and bioinformatics tools such 

as SIFT, PANTHER and Polyphen algorithms to detect sequence conservation can help 

identify the likely functional polymorphism since sequences that are highly conserved across 

different species tend to be functionally important[64-66]. However, this strategy should be 

used with caution due to both false positive and negative predictions. For example, G689A, 

G1057A and G3173A polymorphisms of MRP1/ABCC1 are predicted as deleterious 

polymorphisms using SIFT. However, none of these polymorphisms adversely affects 

MRP1/ABCC1 function[24-39].

Examination of polymorphism databases shows that most polymorphisms are located in 

introns and UTRs. In addition, some polymorphisms located in the exons are synonymous 

polymorphisms. Thus, study of sequence conservation will unlikely be able to predict if 

these polymorphisms are functional. For these polymorphisms, a genome-wide approach to 

identify polymorphisms of positive and negative selection is helpful[41-67]. Positive selection 

is an evolutionary process and the positively selected polymorphisms contribute to the 

favorable phenotype of species and, thus, these polymorphisms may be of higher frequency 

in the population and important for the gene function[66-68]. Opposite to positive selection, 

negative selection is the decline of disadvantage phenotype and harmful and, thus, the 

negatively selected polymorphisms usually have very low frequency (minor allele frequency 

< 0. 05) in the population although they may be important for the function and rare drug 

adverse effects[66]. Both strategies have been used to identify functional MRP1/ABCC1 

polymorphisms[38,41,56,67]. However, it is noteworthy that combination of sequence 
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conservation and evolutionary features may be more powerful than any approach alone to 

predict and identify functional polymorphisms.

Another challenge is to understand how each polymorphism affects gene function. While it 

is easy to study the effect of the non-synonymous polymorphisms on the structure and 

function of MRP1/ABCC1 by re-creating the mutant protein and analyzing the protein in 

cell lines[24-39], it is challenging to investigate the synonymous or non-coding region 

polymorphisms due to complexity of their functional gene effect by different mechanisms 

such as transcription, splicing, RNA stability, and combined haplotype [40, 49, 53, 69-70].
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Fig. 1. 
A:Schematic representation of the topological structure of MRP1/ABCC1 protein predicted 

using TOPO2 program with modification (http://www.sacs.ucsf.edu/TOPO-run/wtopo.pl). 

The consensus sequences of Walker A and B are highlighted in orange and green, 

respectively. The ABC-signature motif is highlighted in red. TM, transmembrane; MSD, 

membrane spanning domain; NBD, nucleotide-binding domain. B: Distribution of clinically 

relevant MRP1/ABCC1 exon polymorphisms.
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Tab. 1

Clinically relevant substrates of MRP1/ABCC1 *

Type of substrates Examples

Drugs Anticancer drugs

 Vinca alkaloids: vinblastine and vincristine

 Epipodophyllotoxins: etoposide (VP-16) and teniposide

 Camptothecins: topotecan, irinotecan and SN-38

 Methotrexate and mitoxantrone

Other drugs

 Anti HIV drugs; ritonavir and saquinavir

 Antibiotics: difloxacin and grepafloxicin

 Tyrosine kinase inhibitors: imatinib mesylate and gefitinib

Heavy metal anions Arsenite

Arsenate

Trivalent and pentavalent antimonials

Glutathione conjugates(-GS) Dinitrophenyl-GS

Etacrynic acid-GS

Doxorubicin-GS

Cyclophosphamide-GS

Melphalan-GS

Aflatoxin B1-epoxide-GS

Hydroxynonenal-GS

Prostaglandin A2-GS

Glutathione (GSH, GSSG)

Glucuronide conjugates (-G) Bilirubin-G

Estradiol 17βD-G

Hyodeoxycholate-G

Etoposide (VP-16)-G

NS-38-G

Sulfate conjugates (-S) Estrone-3-S

Taurocholate-3-S

Dehydroepiandrosterone-3-S

Sulfatolithocholyl taurine

Folates Folic acid

L-leucovorin

Toxicants Aflatoxin B1

Methoxychlor

Fenitrothion

Others Leukotrienes C4, D4 and E4

Curcuminoids

Calcein

*
The primary references are available from the following reviews. [1, 10, 19, 71]
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Tab. 2

Association of MRP1/ABCC1 polymorphisms with therapeutic response

Polymorphisms rs number Amino acid exchange Location Drugs Disease/Observation References

G2012T rs45511401 Gly671Val Exon 16 Atorvastatin Hypercholesterolemia/No correlation [42]

Telatinib Solid tumor/No correlation [44]

Induction Therapy Leukemia/No correlation [43]

G4002A rs2239330 No change Exon 28 Gemcitabine, 
cisplatin, taxane, 
methotrexate

Pancreatic cancer/No correlation [45-47]

Citalopram Major depressive disorder/Strong 
correlation

[48]

G2168A rs4148356 Arg723Gln Exon 17 Platinum Ovarian cancer/Correlation [50]

Taxane Ovarian cancer/Correlation [50]

A4009G rs28364006 Alal337Thr Exon 28 Methotrexate Psoriasis/Correlation [49]

IVS23 G-1960A rs2238476 No change Intron 23 Methotrexate Psoriasis/Correlation [49]

IVS9 T-176C rs35592 No change Intron 9 Methotrexate Psoriasis/Correlation [49]

T2684C No change Exon 21 Leukemic/No correlation [43]

C2007T rs2301666 No change Exon 16 Leukemic/No correlation [43]

G2012T rs45511401 Gly671Val Exon 16 Leukemic/No correlation [43]

C2665T No change Exon 21 Leukemic/No correlation [43]

IVS1 C-14840T rsll9774 No change Intron 1 Montelukast Asthma/Correlation [28]

Zileuton Asthma/Correlation [29]

GCC repeat No change 5′UTR Azithromycin Cystic fibrosis/No correlation [72]

IVS18 C -30G rs2074087 No change Intron 18 Taxanes Ovarian cancer/No correlation [47]
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Tab. 3

Association of MRP1/ABCC1 polymorphisms with prognosis prediction

Polymorphisms rs number Amino acid exchange Location Disease/Observation References

G2012T rs45511401 Gly671Val Exon 16 Neuroblastoma/Correlation [52]

5′-UTR G-1666A rs4148330 No change 5′UTR Hepatocellular carcinoma/Correlation [53]
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Tab. 4

Association of MRP1/ABCCl polymorphisms with drug toxicity

Polymorphisms rs number Amino acid exchange Location Drugs Drug toxicity/Disease/Observation References

G4002A rs2239330 No change Exon 28 Irinotecan Neutropenia/Solid tumor/Correlation [54]

Methotrexate Overall MTX toxicity/Rheumatoid arthritis/No 
correlation

[46]

IVS11 -48C > T rs3765129 No change Intron 11 Irinotecan Neutropenia/Solid tumor/Correlation [54]

IVS9 A8G rs35588 No change Intron 9 Irinotecan Neutropenia/Solid tumor/No correlation [54]

T1684C rs35605 No change Exon 13 Irinotecan Neutropenia/Solid tumor/No correlation [54]

IVS30 A18G rs212088 No change Intron 30 Irinotecan Neutropenia/Solid tumor/No correlation [54]

IVS3 G-3198A rsll075291 No change Intron 3 Methotrexate Hepatic and gastrointestinal toxicity/Psoriasis/
Correlation

[49]

IVS4 G409A rsl967120 No change Intron 4 Methotrexate Hepatic and gastrointestinal toxicity/Psoriasis/
Correlation

[49]

IVS5 G413A rs3784862 No change Intron 5 Methotrexate Hepatic and gastrointestinal toxicity/Psoriasis/
Correlation

[49]

IVS5 A-7942G rs246240 No change Intron 5 Methotrexate Hepatic and gastrointestinal toxicity/Psoriasis/
Correlation

[49]

IVS5 G-1641A rs3784864 No change Intron 5 Methotrexate Hepatic and gastrointestinal toxicity/Psoriasis/
Correlation

[49]

IVS23 G-1960A rs2238476 No change Intron 23 Methotrexate Hepatic and gastrointestinal toxicity/Psoriasis/
Correlation

[49]

IVS14 C115T No change Intron 14 Methotrexate Overall MTX toxicity/Rheumatoid arthritis/No 
correlation

[46]

IVS18 C-30G rs2074087 No change Intron 18 Methotrexate Overall MTX toxicity/Rheumatoid arthritis/No 
correlation

[46]

G2012T rs45511401 Gly671Val Exon 16 Doxorubicin Cardiotoxicity/NHL/Correlation [56]

IVS16 A1695T rs3887412 No change Intron 16 Vincristine Peripheral neuropathy/Multiple myeloma/Correlation [55]
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Tab. 5

Association of MRP1/ABCC1 polymorpliisms witli disease susceptibility and severity

Polymorphisms rs number Amino acid exchange Location Diseases Phenotype/Observation References

3′-UTRT866A rs212090 No change 3′-UTR Lung cancer Susceptibility/Correlation [58]

COPD Severity/Correlation [61]

3′-UTR C543T rs3743527 No change 3′-UTR Lung cancer Susceptibility/No correlation [58]

3′-UTRT1512C rs212091 No change 3′-UTR Lung cancer Susceptibility/No correlation [58]

T825C rs246221 No change Exon 8 Autism Susceptibility/No correlation [73]

G2168A r9tt48356 Arg723Gln Exon 17 Lung cancer Susceptibility/Correlation [59]

5′-UTR G -260C rs504348 No change Promoter Cystic fibrosis Severity/Correlation [60]

3′-UTR G3361A rs4148382 No change 3′-UTR COPD Severity/Correlation [61]

Lung function Severity/Correlation [51]

5′-UTR C435G rs504348 No change 5′-UTR COPD Severity/No correlation [61]

IVS1 T5977G rs4781699 No change Intron 1 COPD Severity/No correlation [61]

IVS14 C-1575T rs35621 No change Intron 14 COPD Severity/No correlation [61]

Lung function Severity/Correlation [51]

3′-UTR A2615G rs212093 No change 3′-UTR Lung function Severity/Correlation [51]
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