Counting Photobleach Steps and the Dynamics of Bacterial Predators

Hossein Jashnsaz¹, Konstantinos Tsekouras¹, Mohammed Al Juboori², Corey Weistuch⁴, Nick Miller², Tyler Nguyen⁶, Bryan McCoy³, Stephanie Perkins⁶, Bruce Ray¹, Gregory Anderson⁵, Steve Presse¹

¹Physics Department, ²Biomedical Engineering, ³Biological Chemistry, ³Biology Department, Indiana University-Purdue University Indianapolis ³Stark Neurosciences Research Institute, IU School of Medicine ⁴Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794

In this work, we develop a method based on MaxEnt that can be applied to FCS data from fluorophore-tagged proteins diffusing in the cell's complex environment. Although the FCS curves are often fit to anomalous diffusion models, we propose a biologically motivated alternative to explain how apparent anomalous diffusion arises in the cell. From our method we extract diffusion coefficient distributions which in turn let us determine how molecular crowding, fluorophore artifacts and affinity site binding contribute to the apparent anomalous behavior. We validate our method using actual experimental data from red fluorescent protein-tagged BZip transcription factor protein domains as they diffuse within different cellular environments. In addition, we explore the role of hydrodynamic interactions on the dynamics of bacterial predators. Our study shows that Bdellovibrio (BV) - a model predatory bacterium - is susceptible to self-generated hydrodynamic forces. Near surfaces and defects, these hydrodynamic interactions co-localize BV with its prey, and this may enhance BV's hunting efficiency