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ABSTRACT  

The knee replacement is the second most common orthopedic surgical intervention in the United States, but currently 

only 1 in 5 knee replacement patients are satisfied with their level of pain reduction one year after surgery. It is 

imperative to make the process of knee replacement surgery more objective by developing a data driven approach to 

ligamentous balance, which increases implant life. In this work, piezoelectric materials are considered for both sensing 

and energy harvesting applications in total knee replacement implants. This work aims to embed piezoelectric material in 

the polyethylene bearing of a knee replacement unit to act as self-powered sensors that will aid in the alignment and 

balance of the knee replacement by providing intraoperative feedback to the surgeon. Postoperatively, the piezoelectric 

sensors can monitor the structural health of the implant in order to perceive potential problems before they become 

bothersome to the patient. Specifically, this work will present on the use of finite element modeling coupled with 

uniaxial compression testing to prove that piezoelectric stacks can be utilized to harvest sufficient energy to power 

sensors needed for this application. 
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1. INTRODUCTION 

The practice of using sensors for intraoperative and postoperative sensing has become a subject of growing interest in 

the field of biomedical research in recent years, particularly in the field of orthopedics. Intraoperative sensors are 

currently used in total knee replacements (TKR), but they must be removed after the data is collected during surgery
1-3

. 

There are some in-vivo sensors that use electromagnets as their power source. It is possible for these sensors to remain in 

place postoperatively, however in order to power these sensors and collect data, a fixture must be attached to the outside 

of the knee. The use of this external fixturing can impede natural movement and lead to data sets that are not 

representative of uninhibited human motion
4, 5

. The optimum data collection method would allow for collection during 

surgery as well as during typical daily activities without disturbing the patient. 

For reference, Figure 1 provides an X-ray image of a standard total knee replacement showing the femoral component, 

tibial tray, and location of polyethylene bearing. In a study conducted by Kaufman et al.
1
, a transducer was designed to 

fit within a standard tibial tray with an overall increase in height of 6 mm from the standard implant design. The tibial 

component was instrumented with four wired load cells. These load cells provided data containing the magnitude and 

location of the forces applied to the load cell. Due to size constraints, the device was unable to measure shear forces 

generated in the knee. The impetus behind this study was the collection of in-vitro data concerning the most common 

failure mode of a TKR: lift-off of the tibia’s lateral aspect. The work of Morris et al.
2
 was closely related to the study 

conducted by Kaufman with a few notable differences. The tibial tray used in the study conducted by Morris was 

instrumented with four load cells, which were placed in the four quadrants of the tibial tray. These load cells transmitted 

their data wirelessly with a micro transmitter, which was incorporated into the tibial prosthesis. The micro transmitter is 

then powered using an external coil. Both of these devices have been used in in-vitro testing, but neither has continued 

on to the in-vivo testing stage
1, 2

. 
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In the work of D’Lima et al.
4
, a standard tibial tray was fitted with a micro transmitter and strain gauges. This 

instrumented tibial tray was then implanted into a single patient. After three months it was used to collect data while the 

patient performed normal tasks associated with daily life. This data aligned closely with mathematical models, which 

have been developed for knee joint forces. While very useful, this data cannot accurately forecast joint loads during 

unpredictable activities. Kirking et al.
5
 conducted a study using twelve strain gauges, which were installed in the stem of 

the implant, to measure all six components of the tibial forces. The data was transmitted using a short radio antenna for 

high frequency transmission from the implant. The devices in both Kirking and D’Lima’s work were powered with 

external electromagnetic coils. 

This paper aims to show, through the use of finite element analysis and uniaxial compression testing, that the electricity 

generated by compressing a piezoelectric element inserted into a knee replacement would be sufficient to power a low 

power sensor. Specifically, this work aims to embed piezoelectric materials in the polyethylene tibial component of a 

knee replacement unit to act as sensors that will aid in the alignment and balance of the knee replacement by providing 

intraoperative feedback to the surgeon. Recently, clinical studies have shown that proper alignment and balance of the 

implant’s ligamentous forces between the medial and lateral compartments during surgery have a significant effect on 

the success of the operation
6, 7

. The piezoelectric sensors can postoperatively monitor the structural health of the implant 

to detect potential problems before they become bothersome to the patient. It is possible to continually monitor the 

implant for the duration of its use through multifunctional applications of the piezoelectric devices to also harvest 

mechanical energy to power the sensor, thus eliminating the need for batteries that are incapable of lasting for the life of 

the implant. 

2. METHODOLOGY 

2.1 OpenSim modeling 

It is necessary to profile the force applied to the knee joint by a normal walking gait to accurately predict the voltage and 

power output of the piezoelectric material embedded in the tibial tray. The development of such a force profile has been 

the subject of many studies in recent years
8-11

. While these studies have provided valuable information about the force 

model of the knee joint, none of these models have produced a predictive model that closely matches data collected from 

instrumented knees.  

A force profile (shown later in Figure 5) was developed using OpenSim
12

, which is an open source biomechanical 

modeling software that was developed at Stanford University intended for modeling of musculoskeletal structures and 

simulation of dynamic movement
13

. To calculate joint reaction loads, it is first necessary to set up a relevant model and 

static optimization. This paper utilizes a model file, which is included in the basic OpenSim software package. This 

 

Figure 1. Standard components of a total knee replacement unit 
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model is a 165.7 pound male who is 70.8 inches tall. The knee joint of this model is shown for reference in Figure 2. 

This model is then used to create a static optimization study. The static optimization study utilizes many different inputs: 

such as motion files, force actuators, and external load, which makes OpenSim modeling exceedingly customizable. The 

parameters used to establish the static optimization study can then be ported directly into the joint reaction analysis tool. 

Once the joint reaction analysis tool has been used, the forces calculated can be exported to be used in further 

calculations. MATLAB is used in this study for further analysis of these joint reaction loads. 

 

2.2 Electromechanical modeling 

A key feature of piezoelectric material is the ability to convert mechanical strain energy to electrical output. This 

electromechanical coupling can be shown by the piezoelectric constitutive relations, given in compact (Voight) 

notation
14

 as 

 

E

i ij j ik k

T

m mj j mk k

S s T d E

D d T E

 

  
 (1) 

wherein S represents mechanical strain, 
Es represents the elastic compliance, T represents the mechanical stress, d

represents the piezoelectric strain constant, E represents the electrical field, D represents the electrical displacement, 

and 
T represents the dielectric constant. 

In this work, a piezoelectric stack is placed under compressive loading from the knee forces calculated using OpenSim. 

The ‘33’ operating mode of the piezoelectric is utilized in this configuration, and the only nonzero stress and electric 

field are in the ‘3’ direction, leaving 

 
3 3 3 33 3

3 33 3 33 3

E

T

S s T d E

D d T E

 

  
. (2) 

If the electrodes of each piezoelectric layer are connected in parallel to a single resistive load, then the governing 

equation can be obtained by applying Gauss’s law as follows 

  
1

( )N

i

d v t
D ndA

dt R

    (3) 

where N  is the number of layers in the stack, A is the surface area of the electrode (it is assumed that the electrode 

covers the entire piezoelectric surface), D is the vector of electric displacement, n  is the vector of outward normal of 

the electrode, and ( )v t  is the voltage output across the load resistor, R . Applying Eq.(3) to the 3D expression given in 

Eq.(2) and noting that stress can be expressed as 3 ( ) /T F t A , where ( )F t is the compressive force applied to the 

 

Figure 2. Geometry used in OpenSim modeling. 
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piezoelectric stack, and the electric field can be stated as 
3 ( ) /E v t h  , where h  is the thickness of each piezoelectric 

layer, gives the governing equation of the system as 

  33

( ) ( )eff eff

p

dv t v t
C d F t

dt R
   (4) 

where 
eff

pC is the effective piezoelectric capacitance and 
33

effd is the effective piezoelectric constant. The effective 

piezoelectric capacitance can be expressed as 

 33

T
eff

p

N A
C

h


  (5) 

and the effective piezoelectric constant can be expressed as 

 33 33

effd Nd . (6) 

P , the instantaneous power, can be calculated with the expression 

 

2 ( )
( )

v t
P t

R
  (7) 

where the average power,
avgP , can be found by integrating the instantaneous power as follows  

 

2

0

1 ( )
T

avgP
v t

dt
T R

   (8) 

where T is the time used in the simulation. 

 

It should be noted that the governing expression given in Eq.(4) is a first order expression for the voltage generated by a 

piezoelectric cylinder due to an input force. This expression, unlike typical resonant energy harvester models, is only 

valid for excitation frequencies that fall far below the resonance of the cylinder, where the device exhibits first-order 

dynamics. Therefore, the frequency of the input force must remain low in relation to the stack resonance. 

 

2.3 Finite element modeling 

To predict the voltage output without having to build the correlated physical system with many different parameters, it is 

advantageous to use finite element modeling to predict the behavior of the system being studied. In this study, ANSYS 

has been utilized to create a finite element model of the polyethylene TKR bearing with embedded piezoelectric, which 

has 25,419 nodes and 10,643 elements, as seen in Figure 3, using SOLID186 and SOLID 187 elements. Once the 

 

Figure 3. ANSYS mesh. 
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percentage of force transferred through the bearing to the piezoelectric device is determined, the force profile is then run 

through the MATLAB architecture as seen in the author’s previous work
12

 to determine the voltage output of the 

embedded piezoelectric device. The system has been simplified from the complex geometry found in a TKR bearing to a 

simple cylindrical geometry so that the finite element model can be verified with simple uniaxial compression testing. It 

should be noted that the eventual design will incorporate four piezoelectric transducers (one in each of the anterolateral, 

anteromedial, posterolateral, and posteromedial compartments of the knee), however, a single embedded piezoelectric is 

investigated in this study for simplicity. The cylinder is modeled as ultra high molecular weight polyethylene 

(UHMW)
15

, and has been modeled having a thickness ranging from 5 mm to 10 mm in 1 mm increments. 5 mm to 10 

mm is considered a realistic range of thicknesses for UHMW TKR bearings given current TKR implant designs. Each 

cylinder is initially modeled as having a monolithic piezoelectric element embedded in the center. While piezoelectric 

stacks are of interest, a monolithic piezoelectric is initially investigated due to commercial availability for the prototype 

discussed in the following section. For each thickness of UHMW investigated, a piezoelectric element of varying 

thicknesses is included from a one millimeter minimum to a maximum of the thickness of the UHMW insert minus two 

millimeters, as seen in Table 1, to allow for a sufficiently thick layer of UHMW on either side of the piezoelectric. 

Table 1. ANSYS testing parameters. 

 
UHMW Bearing Thickness (mm) 

5 6 7 8 9 10 

Piezoelectric 

Element 

Thickness (mm) 

1 1 1 1 1 1 

2 2 2 2 2 2 

3 3 3 3 3 3 

 4 4 4 4 4 

  5 5 5 5 

   6 6 6 

    7 7 

     8 

 

 

Figure 4. Experimental compression test setup including (a) MTS 810 servo hydraulic load frame, (b) close-up view of 

compression fixturing, (c) assembled prototype bearing, and (d) prototype bearing showing inserted piezoelectric. 
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2.4 Uniaxial compression testing 

To verify the models created in both ANSYS and MATLAB it is necessary to perform physical experimentation. 

Uniaxial compression testing is conducted using an MTS 810, Model 647.10A-01 servo-hydraulic load frame, which can 

be seen in Figure 4(a)-(b). Due to mechanical constraints of the machine it is impossible to replicate the desired load 

profile with complete accuracy, therefore some approximations are necessary. The specimen used in the uniaxial 

compression tests is an 8 mm thick disk of UHMW, which is cut into two 4 mm thick halves with a 1.5 mm deep pocket 

milled in each half with an 8 mm by 3 mm APC 850 (PZT-5A) monolithic piezoelectric cylinder embedded in the center. 

As mentioned above, monolithic piezoceramics are used in the prototype device due to availability, however, stack 

configurations will be investigated numerically once the models are validated. Tests were run in order to determine the 

voltage output across a series of resistances, ranging from 100 k to 1 M , from the monolithic piezoelectric cylinder 

installed directly into the load frame fixture (with no UHMW bearing), and from the piezoelectric cylinder embedded in 

the disk of UHMW, both subjected to the load profile generated using OpenSim and shown in Figure 5. It should be 

noted that the load profile corresponds to a quarter of the tibiofemoral force calculated in OpenSim since the prototype 

contains a single piezoelectric device and the eventual instrumented implant will contain four embedded piezoelectrics. 

The voltage output data is acquired during compression testing using a National Instruments NI-9215 data acquisition 

card, and the applied force is recorded directly in the MTS load frame software. 

3. RESULTS & DISCUSSION 

The OpenSim joint reaction load simulation discussed earlier
12

 generates the force profile (a quarter of the total 

tibiofemoral force) that can be seen in Figure 5. This force profile has two distinct peaks. The first peak correlates to the 

impact force from the heel striking the ground; the second peak correlates to the maximum force experienced by the 

knee joint as weight is transferred from one leg to the other. In D’Lima et al.
16

, peak forces are given as 2.5-2.8 times 

body weight for a normal walking gait. These numbers correlate closely to the force profile generated with OpenSim. 

The force profile generated in OpenSim is used as the input for the MTS load frame controller software. A comparison 

between the desired load profile and the load profile generated by the load frame can be seen in Figure 5. While there are 

some discrepancies, the generated load profile tracks the desired profile well. The data collected from uniaxial 

compression testing is used to verify that the models constructed in ANSYS and MATLAB generate expected results. A 

comparison of the generated voltage and the simulated voltage output for a monolithic piezoelectric alone and a 

monolithic piezoelectric embedded in a disk of UHMW can be seen in Figure 6 and Figure 7, respectively.  

It can be seen from the comparison of the data collected in uniaxial compression testing and the simulated data from the 

models that the model results match the experimental results with reasonable accuracy. While very similar, the results, 

however, are not entirely identical. The differences between the results can be partially attributed to the nonlinear 

behavior of UHMW
17

 and partially attributed to geometric simplifications made in the finite element analysis. It can also 

be seen that the data collected has many small peaks and valleys that do not appear in the simulation results. This can be 

attributed to the piezoelectric cylinder discharging slightly as the load varies. The magnitude of the voltage generated 

 

Figure 5. Comparison of the load profile generated by OpenSim with the profile generated by the MTS test frame. 
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displays slight discrepancies which may be attributed to the assumed boundary conditions used in ANSYS. Overall, the 

model results compare favorably to the experimental results, thereby validating the modeling framework adopted in this 

research. 

Now that the model has been verified it can be used to determine the maximum achievable power output given the space 

constraints of the system. As in the author’s previous work
12

 a piezoelectric stack will be used in order to maximize 

average power in such a small space. The parametric study was conducted using a PZT-5H stack with 100 layers as it 

was previously found to give the best power output for its cost in comparison to PZT-4, PZT-5A, PZT-8, and PMN-PT
12

. 

The results of this parametric study can be seen in Figure 8. Again, the overall UHMW thickness as well as the thickness 

of the embedded piezoelectric devices are varied in the study. Each graph shown represents a different thickness of 

UHMW. The parametric study shows clear trends that the thicker the piezoelectric element is in comparison to the 

UHMW bearing the higher the voltage output. 

It is clear from the results of the parametric study that the thickness ratio of the configuration used in the experimental 

testing is not the optimum configuration. The study predicts that an 8 mm thick stack generates the highest power output, 

however, it is important to note that for some resistances a 7 mm stack will generate a higher voltage output than the 8 

mm stack, so in some cases it may be advantageous from a fatigue perspective to have the extra .5 mm thickness of 

UHMW on the top and bottom of the stack. As shown in Figure 8 the optimum configuration to produce the highest 

expected power would be a 10 mm thick disk of UHMW with an 8 mm thick piezoelectric embedded in the center of the 

disk. This takes into account an additional parametric study that was conducted concerning the effect the lateral 

placement of the piezoelectric stack has on the voltage output. The results of this study can be seen in Figure 9. This 

study shows that locating the piezoelectric stack at the center of the bearing or closest to the edge of the bearing give the 

highest voltage output. The optimum configuration (an 8 mm thick piezoelectric in the center of the bearing) gives an 

average power output of 0.37 mW per step over its optimal load resistance of 265 k . Given this power output and 

considering the fact that the eventual design will incorporate four piezoelectric stacks into the UHMW bearing Figure 10 

presents the average power output per step expected for the optimal configuration considering four embedded stacks. 

Considering that the average person takes 9,500 steps a day,
18

 one embedded piezoelectric element would be able to 

produce 4.76 J in a day and the total energy output for the device containing four embedded piezoelectrics in a day is 

19.04 J. 

  

Figure 6. Comparison of simulation results and data collection for a monolithic piezoelectric. 

  

Figure 7. Comparison of simulation results and data collected for a monolithic piezoelectric embedded in UHMW. 
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4. CONCLUSION 

This work explores the use of piezoelectric materials as a power source for low power sensors given the force input of 

the normal human walking gait. Specifically, it is proposed to embed piezoelectric stacks into the UHMW tibial bearing 

surface of a total knee replacement unit to sense forces in the knee during surgery and postoperatively, as well as harvest 

energy to power the sensor. While many studies have investigated in-vivo sensing, few studies have investigated using 

piezoelectric materials as a power source for both in-vitro and in-vivo data collection. In this study, the open source 

biomechanical modeling software OpenSim has been used to approximate the knee forces exerted in the human knee for 

the average sized man. Using uniaxial compression testing, an electromechanical model has been verified so that 

parametric studies could be conducted in order to ascertain the optimum configuration for the thicknesses of the UHMW 

and piezoelectric stack. The electromechanical model then calculates the voltage and power output for this optimum case 

which is an 8 mm thick, 4 mm diameter PZT-5H piezoelectric stack with 100 layers embedded in a 10 mm thick UHMW 

tibial bearing. Results show that 0.37 mW of average power can be generated by one stack. The device, having four 

stacks embedded within it, will be able to produce 19.04 J of power over the course of one day. These power levels are 

thought to be sufficient to power a low power sensor for use in in-vitro and in-vivo data collection in TKR patients
19

. 

(a)

 

(b)

 

(c)

 

(d)

 

(e)

 

(f)

 

Figure 8. Results of parametric study of the effect of thickness of the piezoelectric element and the UHMW with N=100 

for UHMW thicknesses of (a) 5 mm, (b) 6 mm, (c) 7 mm, (d) 8 mm, (e) 9 mm, and (f) 10 mm. 
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