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A sequential classification rule based on multiple
quantitative tests in the absence of a gold
standard

Jingyang Zhang1∗, Ying Zhang2,3, Kathryn Chaloner 4,5 and Jack T. Stapleton6

In many medical applications, combining information from multiple biomarkers could yield a better diagnosis than

any single one on its own. When there is a lack of a gold standard, an algorithm of classifying subjects into the case

and non-case status is necessary for combining multiple markers. The aim of this paper is to develop a method to

construct a composite test from multiple applicable tests and derive an optimal classification rule under the absence

of a gold standard. Rather than combining the tests, we treat the tests as a sequence. This sequential composite test

is based on a mixture of two multivariate normal latent models for the distribution of the test results in case and

non-case groups and the optimal classification rule is derived returning the greatest sensitivity at a given specificity.

This method is applied to a real data example and simulation studies have been carried out to assess the statistical

properties and predictive accuracy of the proposed composite test. This method is also attainable to implement

nonparametrically. Copyright c© 2015 John Wiley & Sons, Ltd.
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1. Introduction

This work is motivated by some methodological research in HIV/AIDS studies. Some studies have observed that co-

infection of a human RNA virus, GB virus C (GBV-C), can prolong the survival for HIV patients [1–8]. GBV-C is not

currently known to definitely cause any disease although a recent observational study suggested a potential link between

GBV-C and non-Hodgkins lymphoma [9]. Approximately 14%-43% of the individuals with HIV infection have the GBV-

C viraemia [10,11]. Some studies also found an association between GBV-C and improved response to HIV therapy [11].

The mechanism is still under investigation [12–14]. GBV-C viraemia is shown to be cleared in a great portion of patients

from several months to several years [15, 16], and antibodies that are directed against the viral envelope glycoprotein 2

(E2) develop [17]. Hence the E2 antibodies are a marker of past GBV-C infection[18, 19]. An association between the
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E2 antibodies and the prolonged survival from HIV in subjects without GBV-C viraemia has also been observed [5]. To

detect the presence of E2 antibodies in human serum samples,one commonly used method is through the Enzyme Linked

Immunosorbent Assay (ELISA); however, there is no commercial and validated test available for the E2 antibodies. In the

motivating example from Dr. Jack Stapleton’s lab at the University of Iowa, a total of 100 independent blood specimens

obtained from HIV infected subjects were tested by two ELISAs, which are not perfect and return a quantitative result with

respect to the concentration of the E2 antibodies. The primary goal of the paper is to establish and evaluate a composite

diagnostic test based on the two ELISAs in the absence of the true antibody status and any other reference test.

In diagnostic testing, a gold standard is defined as a reference test or a benchmark that is assumed 100% accurate in

discriminating case from non-case. When a gold standard is available, the accuracy of a single diagnostic test has been

well studied. The accuracy of a binary test is evaluated by the true positive fraction (TPF, or sensitivity) and false positive

fraction (FPF, or 1-specificity). For a continuous-scale test, different binary tests can be induced by selecting different

threshold values. At each threshold, a pair of TPF and FPF is obtained, and the curve that connects all pairs of TPF and

FPF over all possible thresholds, which is the receiver operating characteristic (ROC) curve, is a commonly used tool to

evaluate a continuous marker. These are detailed in Zhouet. al.[20] and Pepe [21].

When there are multiple imperfect tests available, combining them into one composite test may yield a better diagnostic

test than any single test. For continuous tests, a simple case is to repeat testing on a single test. Tolleyet. al. [22] and

Murtaugh [23] consider the scenario of repeated applications of the samecontinuous test. At each test application, the

threshold remains the same. For a set of different tests, various composite tests exist for a given overall specificity. The

most straightforward way is to form a linear combination. SupposeX ∼ N(µx,Σx) represents the test results in the case

population andY ∼ N(µy,Σy) represents the test results in the non-case population. Thelinear composite rule is then

based onU = aTX andV = aTY . Su and Liu [24] justifies that the linear discriminant function is the optimal linear

combination that produces the maximum AUC in this case, i.e., the coefficient for the best linear combination is

a0 ∝ (Σx +Σy)
−1(µy − µx).

The linear combination is easy to implement and straightforward to interpret, however, the optimality is only guaranteed

when the results are normal and homoscedastic.

Rather combining the multiple tests in parallel, we could also treat them as a sequence. Thompson [25] considers the

combination of a sequence of tests. The sequence of tests canbe the repeated applications of the same test on the same

subject, or different tests simultaneously. The development of the sequential rule does not limit to the linear combination

of multiple tests, and the application of the sequential rule on a new population does not require the practice of all tests on

each subject. Two main concepts are usually used to define thesequential rule [26,27]. The first one is “believe negative”

(BN), where individuals who have negative diagnosis from any particular test will not receive subsequent tests. The other

one is “believe positive” (BP), where individuals who have positive diagnosis from any particular test will not receivesub

sequential tests. In this work, we will focus on the sequential rule defined by the BP approach. Thompson [25] provides

the evaluation of accuracy of a sequence of tests. For two continuous testsX1 andX2, based on the BP rule, an individual

is defined as positive ifX1 > c1,p1
or X2 > c2,p2

, whereci,pi
is thepith percentile of the distribution ofXi in non-case

population fori = 1, 2. The ROC curve of the sequence test as a function of an overallfalse positive fractions can be

expressed as (1) [25].

ROCX1∨X2
(s | p1) = 1− F2.1D

(
F−1
2.1D̄

(
1− s

p1

))
F1D(c1p1

), (1)
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whereF2.1D and F2.1D̄ are the conditional distribution functions forX2 given X1 < c1p1
in the case and non-case

populations. The accuracy of the test sequence could be assessed by the MaxROC curve expressed as

MaxROC(s) = max
p1

ROCX1∨X2
(s | p1),

so that the sensitivity for any given specificity will be at least as high as that for either of the individual tests, applied on

its own with the same threshold. The choice of threshold in implementation, however, is not addressed in this paper.

Both the aforementioned combinations are based on the knowledge of a gold standard, or the true case status. In

practice, such information is not always available, because it may be difficult or even impossible to determine the true

case status, and even the available reference test against which new tests are compared is subject to error. Kraemer [28]

argues the opinion that the true case status is almost never ascertained. For ordinal or continuous-scale tests, the sensitivity

and specificity are computed based on a certain classification rule with a specific threshold value, hence are dependent

on the choice of the classification rule. When the true case status is unknown and there is no gold standard or even an

imperfect binary reference test, like the E2 antibodies data example, a decision rule established from multiple imperfect

test needs to be studied [21]. The statistical issues in diagnostic testing without a gold standard are addressed by Hui

and Walter [29] mainly focusing on binary tests and summarized by Hui and Zhou [30] with many available methods

for quantitative tests. Using the finite mixture model for continuous data , one could acquire the pointwise estimates of

the sensitivity and specificity for a continuous-scale testover all possible threshold values by the maximum likelihood

method [31]. The estimated ROC curve composed by all estimated sensitivities and specificities, however, may not retain

the monotonicity, as in Figures. 2, 3, 4, 5 of [31]. Henkelman et al. [32] propose an estimation of the ROC curve of an

ordinal-scale test via a mixture of multivariate normal latent model and Choi et al. [33] provide a parametric Bayesian

method for a continuous-scale test under the same distributional assumption. Both methods guarantee that the estimated

ROC curve is monotone. The ROC curve can also be estimated nonparametrically instead of assuming the multivariate

normal distributions as proposed by Hall and Zhou [34] in which the monotonicity of the estimated ROC curve is assured

without any parametric assumptions on the distributions ofthe test results.

The methods above primarily focus on the evaluation of diagnostic tests when there is no definitive diagnosis or a gold

standard, rather on the formulation of a decision rule by combining several available continuous markers. In fact, under

some assumptions, those methods could be extended to develop a decision rule from multiple continuous-scale tests. For

example, Su-Liu’s linear discriminant method is still applicable with the parameters in the normal distributions estimated

through the maximum likelihood method using the EM algorithm [35]. Our aim in this paper is to derive an optimal

composite test in a sequential way. The optimal sequential composite test is described in Section2, and applied to the

motivating ELISA data in Section3. The statistical properties are explored through simulation studies in Section4. We

conclude this paper by discussion in Section5.

2. Optimal sequential composite test without a gold standard

For simplicity in illustration, suppose that there are two quantitative diagnostic tests on each subject and for each test, a

greater value of the result indicates a larger chance of case. DenoteXi as the random variable representing the result from

testi for i = 1, 2 andD as the random variable indicating the case presence, withD = 1 meaning case present andD = 0

meaning case absent. Moreover,F1 andF0 are the joint distribution functions ofX = (X1, X2) for the case and non-case

populations, respectively, andf1 andf0 are the corresponding probability density functions.

Statist. Med.2015, 001–16 Copyright c© 2015 John Wiley & Sons, Ltd. www.sim.org 3
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2.1. Model setup

Suppose Test 1 is superior to Test 2 judged by a greater value of AUC. The decision rule driven by the sequential composite

test is determined by a pair of cut-off values(C1, C2) such that:

1. if X1 > C1, then this subject is classified as positive for the study event; else,

2. if X2 > C2, then classified as positive;

3. otherwise, classified as negative.

It is theoretically equivalent to the “believe the positive” (BP) rule defined in Marshall [26] and Politser [27] given the

threshold valuesC1 andC2.

Given the cut-off(C1, C2), the sensitivity and specificity for evaluating this composite test can be expressed as follows:

Sensitivity= Pr (Positive classification|case)

= Pr (X1 > C1|D = 1) + Pr (X1 ≤ C1, X2 > C2|D = 1)

= 1− F1(C1, C2). (2)

Specificity= Pr (Negative classification|control)

= Pr (X1 ≤ C1, X2 ≤ C2|D = 0)

= F0(C1, C2). (3)

Equations (2) and (3) are actually equivalent to (1) assuming that neitherp1 norp2 is pre-fixed.

We are searching for the optimal sequential composite test in the sense that it achieves the maximum sensitivity among

all the sequential composite tests whose specificity is fixedat p0. Based on (2) and (3), this task can be converted to a

constrained non-linear optimization problem:

min
F0(C1,C2)=p0

F1(C1, C2). (4)

An efficient algorithm for finding the optimal(C1, C2) in (4) is essential in the development of this sequential method.

2.2. Estimation and statistical inferences

2.2.1. MLE of multivariate normal modelSuppose we have a sample of results from two quantitative diagnostic tests

X1,X2, · · · ,Xn that are assumed to be independent and identically distributed copies ofX with distributionF . The

implementation of all the foregoing methods requires estimation ofF1 andF0 from observed data in the first place. Here

we follow the set-up of Su and Liu’s method [24] for the distribution of the tests resultsX, i.e.X|D = 1 ∼ F1 ≡ N(µ1, V1)

andX|D = 0 ∼ F0 ≡ N(µ0, V0). A mixture distribution ofF1 andF0 is adopted to model the observed data, that is

Fθ(·) = πF1,θ1(·) + (1− π)F0,θ0(·), (5)

whereπ is an unknown parameter indicating the mixture proportion,or equivalently, the case prevalence, andθ =

(π, θ1, θ0) = (π, (µ1, V1), (µ0, V0)) denotes the model parameters. The log-likelihood of the observed data can be

expressed as:

l(θ) =

n∑

k=1

lk(θ) =

n∑

k=1

log fθ(X1k, X2k)

=

n∑

k=1

log [πf1,θ1(X1k, X2k) + (1− π)f0,θ0(X1k, X2k)].
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Figure 1. Illustration of the search for the optimal(C1, C2) at a given specificityp0. The solid line represents the contour curve given byF0(C1, C2) = p0, and the dashed
lines represent the contour curves given byF1(C1, C2) = t at various values oft.

We note that if the gold standard does exist so that the exact membershipsD = (D1, . . . , Dn) are known, the log

likelihood for the augmented data{(X1, D1), · · · , (Xn, Dn)} is given by

la(θ) =

n∑

k=1

Dk log πf1,θ1(X1k, X2k) + (1−Dk) log(1− π)f0,θ0(X1k, X2k) (6)

and

Pr(Dk = 1|(X1, · · · ,Xn); θ) =
πf1,θ1(X1k, X2k)

πf1,θ1(X1k, X2k) + (1− π)f0,θ0(X1k, X2k)
.

Hence the MLE of the model parametersθ̂n is easily computed using the EM algorithm [35] due to its numerical stability

and algorithmic convenience for this problem. The details of the EM algorithm are provided in AppendixA.

2.2.2. Computation of the optimal sequential composite test Under the normality assumption, the feasible set of(C1, C2)

defined by a given specificityF0(C1, C2) = p0 constitutes a convex contour curve [36]. When the diagnostic markers are

more variant for the case subjects, it is expected that the contour given byF1(C1, C2) = t is also convex but with less

curvature and moves towards the origin of(C1, C2) domain ast decreases. The optimization problem (4) can be illustrated

geometrically in Figure1.

As seen in Figure1, the constrained optimal valuet corresponds to the value given by the contour that touches the

Statist. Med.2015, 001–16 Copyright c© 2015 John Wiley & Sons, Ltd. www.sim.org 5
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contour ofF0(C1, C2) = p0. The threshold vector(C1, C2) for the decision rule is simply the tangent point of the two

contour lines and can be uniquely determined. Therefore, the original optimization problem (4) is converted to solving the

system of bivariate nonlinear equations (7) for the tangent point of the contour lines ofF1 andF0.

G(C, θ) =





F0,θ0(C1, C2) = p0

∂F1,θ1

∂C1
(C1, C2)

∂F0,θ0

∂C2
(C1, C2)−

∂F1,θ1

∂C2
(C1, C2)

∂F0,θ0

∂C1
(C1, C2) = 0.

(7)

The first equation represents the constraint given by the fixed specificity and the second equation reflects that the two

contour lines have the same gradient at the tangent point. The Newton-Raphson method with the step-halving line search

procedure is utilized to solve the system.

Let Ĉn = (Ĉ1n, Ĉ2n) denote the solution of (7) with the MLE ofθ, θ̂n = (θ̂1n, θ̂0n), then the sensitivity is estimated by

ŝenC = 1− F1,θ̂1n
(Ĉ1n, Ĉ2n).

2.2.3. Asymptotic propertiesSupposeθ0 is the true vector of the model parameters under the mixture of bivariate normal

distribution. Assuming that the regularity conditions forMLE hold, it is known that asn → ∞, θ̂n →P θ0, and

√
n
(
θ̂n − θ0

)
→d N(0, I−1),

whereI is the Fisher information matrix given by−E
[

∂2

∂θ2 l1(θ)
∣∣∣ θ0

]
[37].

For the optimal sequential composite test, letC0 = (C10, C20) denote the solution of the system (7) underθ = θ0, then

the true sensitivity issenC = 1− F1,θ10(C10, C20). The estimated sensitivitŷsenC is consistent and asymptotically normal

under the mild condition (8) given in Theorem2.1. The proof of the theorem is also deferred to AppendixB

Theorem 2.1 If F0 andF1 are continuously differentiable with respect toC = (C1, C2) andθ and satisfy the following

inequality(8) at C0 andθ0,

[
∂2F1

∂C1∂C2

∂F0

∂C2
+

∂F1

∂C1

∂2F0

∂C2
2 − ∂2F1

∂C2
2

∂F0

∂C1
− ∂F1

∂C2

∂2F0

∂C1∂C2

]
∂F0

∂C1

−
[
∂2F1

∂C1
2

∂F0

∂C2
+

∂F1

∂C1

∂2F0

∂C1∂C2
− ∂2F1

∂C1∂C2

∂F0

∂C1
− ∂F1

∂C2

∂2F0

∂C1
2

]
∂F0

∂C2
6= 0

(8)

then as sample sizen → ∞,
√
n (ŝenC − senC) converges to a normal distribution with mean0 and variance given by

(B.1).

Remark 2.1 Condition(8) can be justified algebraically for bivariate normal random variables whenF1 andF0 have a

different covariance matrix. In fact, the left side is the determinant of the Jacobian matrix of(7).

Remark 2.2 Although the asymptotic normality holds for the estimator under fairly mild conditions, the asymptotic

variance of the sensitivities is hard to estimate directly.Therefore for the inference, the standard error is estimated using

the nonparametric bootstrap method [38]. Specifically, 200 samples with the same size are drawn fromthe original data

with replacement. Each sample yields an estimated sensitivity at the given specificity from the estimated optimal sequential

composite test, and the standard error is then estimated by the standard deviation of the 200 estimated sensitivities.
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3. An analysis of the ELISA data

The optimal sequential composite test based on the two ELISAs is applied to classify the 100 independent blood samples

for the presence of E2 antibody in the motivating data example. Figure2 presents a scatter plot of the results from the two

ELISAs. We fit the data by a mixture of two bivariate normal distributions:N(µ1, V1) andN(µ0, V0), and obtain the MLE

of the parameters aŝµ1 = (1.01, 0.84)T , µ̂0 = (0.16, 0.24)T , and

V̂1 =

(
0.54 0.22

0.22 0.40

)
, V̂0 =

(
0.004 0.001

0.001 0.017

)
.

Assuming the mixture of two bivariate normal models is true for this data example, the model-based estimated ROC

curves are depicted in Figure3 for the two individual ELISAs. It is apparent in the figure that Test 1 is preferred to Test

2 as it has a higher sensitivity at any prefixed specificity from their ROC curves, and hence Test 1 is utilized as the initial

test for the proposed sequential composite test.

The optimal linear composite test for comparison is applicable here by extending the Su-Liu’s method [24] under the

assumption of normality. The technical details of the extended optimal linear composite test are referred to Zhang [39].

At the specificity of 90%, the ith sample is diagnosed as positive ifX1i > 0.24 using test 1 alone,X2i > 0.41 using test

2 alone,1.2X1i + 0.8X2i > 0.57 under the optimal linear composite test andX1i > 0.27 orX2i > 0.43 under the optimal

sequential composite test, whereX1i andX2i are the results from test 1 and test 2 on the ith sample. If the future data set

is the same as the data used to derive the classification rules, the classifications based on both composite decision rules

are represented in Figure2. The diagnoses from the two composite test do not disagree too much except that the linear

composite test tends to attribute more samples into the E2 antibody negative group. We also plot the ROC curves for

the two composite tests shown in Figure3. Combining the two tests into a composite test does improve the discriminant

capability compared to any individual test. This improvement is possible because we allow the cut-off value for each of

the tests when used as a composite is different from the cut-off value when used individually. The improvement from the

linear composite test is not as substantial as the sequential composite test. It appears that the sequential test is superior

to the linear composite test at all values of specificity for this case. Moreover, the optimal sequential composite test only

needs 53% of the blood samples for the second test at average over 1000 bootstrap samples. This implies that under the

optimal sequential composite test, the probability that a patient needs to be tested by T2 is only about 50%. Hence it has

a profound significance in practice when the tests are expensive or present some strong side effects.

4. Simulation studies

4.1. Simulations on the model-based estimate of sensitivity for the proposed optimal sequential composite test

In this section, we conduct simulation studies to assess thestatistical properties of the model-based sensitivity forthe

proposed optimal sequential composite test. We generate two diagnostic markers for the case group from a bivariate

normal distributionN(µ1, V1) of

µ1 = (3.77, 1.51)T andV1 =

(
3.97 0.69

0.69 1.42

)
,

and the markers for the non-case group from a bivariate normal distributionN(µ0, V0) of

µ0 = (2, 0.81)T andV0 =

(
0.68 0.03

0.03 0.18

)
.

Statist. Med.2015, 001–16 Copyright c© 2015 John Wiley & Sons, Ltd. www.sim.org 7
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Figure 2. Results from the two tests in 100 blood samples along with theoptimal linear composite test and the optimal sequential composite test at specificity= 0.90.
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Figure 3. ROC curves for Test 2, Test 1, the optimal linear and sequential composite tests (from bottom to top).

The values of the parameters in the model are selected to mimic our motivating ELISA data example. A sample of 100

simulated data is shown in Figure4. With the parameter values given above, the sensitivities at specificities 80% and 90%

are 71% and 64%, respectively, for Test 1, and 61% and 55% for Test 2. Test 1 is superior to Test 2.
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Figure 4. Scatter plot of a simulated data set of 100 subjects from the mixture model of two bivariate normal distributions with case prevalence as 0.5.

Three total sample sizes (100, 200 and 400) and two differentcase prevalence values (0.25 and 0.5) are examined,

respectively. At each combination of sample size and case prevalence, sample data are generated from the underlying

mixture of two bivariate normal models. The exact sensitivity of the optimal sequential composite test at a given specificity

is computed by solving the nonlinear system (7) with the bivariate normal distribution functionsF0 andF1, and similarly,

the exact sensitivity of the optimal linear composite test is calculated using the true parameters in the bivariate normal

distributions as depicted by Su and Liu [24]. The model-based sensitivities are estimated withF1 andF0 replaced by

their MLE, F̂0 andF̂1. The standard error of the estimated sensitivity is obtained via the nonparametric bootstrap method

aforementioned and its 95% Wald confidence interval is constructed using the bootstrap standard error. Subsequently, the

bias, root mean square error (RMSE) and coverage probability of the 95% Wald confidence interval (CP) are calculated.

In addition, the empirical sensitivity (Esen) and specificity (Espe) are assessed since the true case status is known in

simulations. We repeat the Monte-Carlo simulation for 1000times for each combination of the sample size and case

prevalence, and the results are summarized in Table1.

Indicated by Table1, the composite tests perform generally better than an individual test and the optimal sequential

composite test is superior to the optimal linear composite test in view of the sensitivities for a given specificity. Under the

correct normal mixture model, as the sample size increases,the bias of the model-based sensitivity tends to be negligible

and the coverage probability tends to arrive at the nominal value 95%, asserting the asymptotic properties declared by

Theorem2.1. Our simulation study indicates for a study with small sample size of 100 as in the ELISA study in Section

3, the estimated sensitivity of the derived optimal sequential composite test is fairly accurate with a negligible bias as

illustrated by Table1. The corresponding classification results are also reliable as illustrated by Table1, because both the

empirical sensitivity and specificity closely agree to their designed values. However making the model-based inference

about the sensitivity needs a caution as the coverage probability is systematically lower than its target value (95%). It is

also inferred by the RMSE that the estimated sensitivity maybe more precise with a higher case prevalence.

Statist. Med.2015, 001–16 Copyright c© 2015 John Wiley & Sons, Ltd. www.sim.org 9
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Table 1. Summary of the simulation study at the given specificities based on 1000 Monte-Carlo samples in Section4.1
with different total sample sizeN and different case prevalencesπ.

π= 0.25

Test 1 alone
Specificity=80%, Sensitivity=0.705 Specificity=90%, Sensitivity=0.640

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP
100 0.038 0.145 0.701 0.797 0.836 0.044 0.138 0.634 0.898 0.852
200 0.030 0.113 0.710 0.799 0.874 0.032 0.099 0.641 0.900 0.900
400 0.010 0.077 0.705 0.799 0.945 0.011 0.070 0.640 0.899 0.948

Optimal Linear Composite Test
Specificity=80%, Sensitivity=0.738 Specificity=90%, Sensitivity=0.682

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP
100 0.058 0.149 0.742 0.793 0.741 0.064 0.141 0.685 0.892 0.771
200 0.039 0.113 0.743 0.797 0.844 0.042 0.100 0.686 0.897 0.867
400 0.014 0.074 0.739 0.798 0.942 0.014 0.066 0.684 0.898 0.946

Optimal Sequential Composite Test
Specificity=80%, Sensitivity=0.802 Specificity=90%, Sensitivity=0.750

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP
100 0.037 0.119 0.794 0.794 0.777 0.044 0.116 0.741 0.895 0.822
200 0.026 0.092 0.800 0.798 0.856 0.029 0.084 0.747 0.899 0.872
400 0.009 0.063 0.800 0.798 0.941 0.010 0.059 0.749 0.899 0.947

π= 0.5

Test 1 alone
Specificity=80%, Sensitivity=0.705 Specificity=90%, Sensitivity=0.640

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP
100 0.031 0.120 0.698 0.800 0.882 0.034 0.111 0.630 0.896 0.903
200 0.018 0.084 0.708 0.799 0.929 0.019 0.072 0.642 0.899 0.939
400 0.006 0.065 0.704 0.800 0.957 0.007 0.060 0.637 0.900 0.961

Optimal Linear Composite Test
Specificity=80%, Sensitivity=0.738 Specificity=90%, Sensitivity=0.682

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP
100 0.044 0.122 0.732 0.792 0.818 0.048 0.111 0.674 0.891 0.839
200 0.023 0.081 0.741 0.795 0.917 0.024 0.067 0.684 0.896 0.932
400 0.009 0.061 0.737 0.799 0.959 0.010 0.054 0.681 0.898 0.960

Optimal Sequential Composite Test
Specificity=80%, Sensitivity=0.802 Specificity=90%, Sensitivity=0.750

N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP
100 0.029 0.098 0.788 0.795 0.848 0.034 0.091 0.730 0.893 0.894
200 0.016 0.066 0.800 0.796 0.927 0.018 0.056 0.747 0.896 0.951
400 0.007 0.053 0.800 0.799 0.947 0.007 0.048 0.747 0.898 0.961
RMSE: Root mean square error. ESen/ESpe: Empirical sensitivity/specificity. CP: 95% confidence interval coverage probability.

4.2. Simulations on the classification accuracy of the proposed sequential composite test

In our motivating example, the true GBV-C status is unknown.A series of simulations are carried out to study the accuracy

and robustness of the prediction on a new dataset by the proposed composite classification rule. The simulation study is

designed in the following steps:

1. Simulate a training dataset by the two settings, respectively:

(a) The two markers follow the same mixture of two bivariate normal distributions as in Section4.1.

(b) The two markers follow a mixture of two Gaussian copulas with student-t marignals (4 degrees of freedom;

parameters are scaled to retain the values of means and variances in the bivariate normal distributions above).

The case prevalence is 0.5 in both settings.
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2. For each simulated training set:

• Fit the data by the bivariate normal mixture model (5).

• Use the MLE to derive the classification rules for one single marker, the optimal linear composite test and the

optimal sequential composite test under two specificities,0.8 and 0.9.

• Simulate one testing dataset with the same sample size and the same simulating distribution as the training

data, for each of the three values of the case prevalence, 0.25, 0.5 and 0.75.

• Apply the classification rules to each testing set and calculate the true positive fraction (TPF) and true negative

fraction (TNF).

3. Repeat steps above for 1000 times, for each of the three sample sizes (100, 200 and 400).

Table2 listed the TPFs and TNFs of the three classification rules averaged over the 1000 experiments. The test based on

one single marker alone has a poor discriminating power. Both composite tests improve the accuracy substantially in terms

of a higher TPF under the pre-specified specificities in the training set. The optimal sequential composite test outperforms

the other two tests with the highest TPF and the accordant TPF, even when the multivariate normal assumption is violated

(Setting b). Note that when normal assumption holds (Setting a), the empirical sensitivities of both composite tests inthe

testing set approach to the exact value as the sample size goes up.

Under both settings, different case prevalences in the new data do not affect the classification accuracy, but the optimal

sequential test would be more efficient when applied to a datawith a greater case prevalence since more subjects can be

identified as case by one test at the first step of the test.

5. Discussion

In this paper, we develop a classification method from an alternative perspective based on multiple quantitative tests

without a gold standard. The constitution of the optimal sequential composite test is statistically equivalent to the

implementation of a sequence of tests discussed by Thompson[25]. Illustrated by the real data application and simulation

studies, for the data of the pattern shown in Figures2 and 4, the optimal sequential composite test demonstrates a

considerable improvement in the discriminating power between case and non-case in view of the area under the ROC

curve (AUC). Moreover, it has an additional advantage of engaging fewer tests. This is especially desired when the tests

are costly or not applicable to all study subjects under somecircumstances. The optimality of the composite test in this

article is purely based on the classification accuracy without considering risk or cost associated with the tests. Some

modifications of the optimizing system for the decision ruleis needed if the risk or cost ought to be considered for

determining an optimal decision rule in some applications.

The sequential composite test in this work uses the “believethe positive” rule based on the biological mechanism in our

motivating example. It can be constructed by the “believe negative” rule accordingly in other applications. Also therehas

been some works in the framework of group sequential design to evaluate diagnostic tests with a gold standard [40,41].

Further topics could be to generalize this method to the design of clinical trials.

The sequential classification method is illustrated with two tests throughout the paper but it can be similarly designedfor

the situation with more than two tests. It is, however, a mathematically challenging problem because finding the optimal

cut-off values may not be equivalently converted to the problem of solving a nonlinear system as it does for the two-test

case. The grid search is a straightforward option but it can be very numerically inefficient, especially for high dimensional

data. There is still a space for improving the numerical algorithm in order to accommodate an arbitrary number of tests.

The proposed method has a fundamental assumption of multivariate normal distribution for the test results in both

case and non-case groups. This assumption is likely violated in applications. In our second simulation study, when the

distributional assumption is violated, the predication based on the mis-specified model is quite accurate. When the data are
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Table 2. Summary of TPFs and TNFs in the simulation study in Section4.2. The case prevalenceπ = 0.5 in the training
set and three different values in the testing set, 0.25, 0.5,and 0.75. Two specificities (Spe), 0.8 and 0.9, are used to derive

the classification rules in the training set.

Setting a
TPFs

π = 0.25 π = 0.5 π = 0.75

Spe N 1 marker Linear Sequential 1 marker Linear Sequential 1marker Linear Sequential
0.8 100 0.188 0.729 0.793 0.188 0.727 0.794 0.188 0.727 0.794

200 0.197 0.735 0.802 0.196 0.736 0.802 0.196 0.736 0.802
400 0.196 0.738 0.802 0.197 0.737 0.802 0.198 0.737 0.802

0.9 100 0.097 0.674 0.741 0.099 0.672 0.740 0.099 0.671 0.741
200 0.100 0.677 0.749 0.101 0.679 0.750 0.100 0.679 0.750
400 0.100 0.681 0.750 0.100 0.681 0.751 0.100 0.681 0.751

TNFs
π = 0.25 π = 0.5 π = 0.75

Spe N 1 marker Linear Sequential 1 marker Linear Sequential 1marker Linear Sequential
0.8 100 1.000 0.780 0.778 1.000 0.780 0.776 1.000 0.777 0.776

200 1.000 0.788 0.787 1.000 0.787 0.786 1.000 0.786 0.785
400 1.000 0.795 0.794 1.000 0.795 0.794 1.000 0.796 0.795

0.9 100 1.000 0.879 0.876 1.000 0.879 0.875 1.000 0.877 0.873
200 1.000 0.888 0.886 1.000 0.888 0.887 1.000 0.887 0.886
400 1.000 0.895 0.894 1.000 0.895 0.894 1.000 0.896 0.894

Fraction of subjects classified by one test only in the optimal sequential composite test (%)
π = 0.25 π = 0.5 π = 0.75

Spe N 1 marker Linear Sequential 1 marker Linear Sequential 1marker Linear Sequential
0.8 100 28.7 41.2 53.8

200 27.7 40.6 53.8
400 27.1 40.3 53.5

0.9 100 21.5 34.3 47.2
200 20.6 33.7 47.0
400 20.2 33.5 47.0

Setting b
TPFs

π = 0.25 π = 0.5 π = 0.75

Spe N 1 marker Linear Sequential 1 marker Linear Sequential 1marker Linear Sequential
0.8 100 0.164 0.752 0.822 0.164 0.752 0.823 0.164 0.751 0.823

200 0.163 0.756 0.827 0.163 0.757 0.827 0.163 0.758 0.828
400 0.159 0.771 0.838 0.161 0.770 0.838 0.161 0.771 0.839

0.9 100 0.085 0.697 0.770 0.085 0.696 0.770 0.085 0.695 0.770
200 0.081 0.701 0.774 0.082 0.701 0.775 0.081 0.702 0.775
400 0.077 0.718 0.788 0.077 0.717 0.788 0.077 0.717 0.788

TNFs
π = 0.25 π = 0.5 π = 0.75

Spe N 1 marker Linear Sequential 1 marker Linear Sequential 1marker Linear Sequential
0.8 100 0.998 0.814 0.793 0.998 0.814 0.793 0.997 0.813 0.792

200 0.997 0.821 0.801 0.998 0.821 0.801 0.998 0.821 0.801
400 0.998 0.830 0.808 0.998 0.831 0.808 0.998 0.831 0.809

0.9 100 0.999 0.888 0.863 0.999 0.887 0.864 0.999 0.885 0.862
200 0.999 0.895 0.874 0.999 0.895 0.874 0.999 0.894 0.873
400 0.999 0.904 0.881 0.999 0.904 0.881 0.999 0.904 0.881

Fraction of subjects classified by one test only in the optimal sequential composite test (%)
π = 0.25 π = 0.5 π = 0.75

Spe N 1 marker Linear Sequential 1 marker Linear Sequential 1marker Linear Sequential
0.8 100 27.7 41.6 55.6

200 26.8 41.1 55.7
400 26.4 41.3 56.2

0.9 100 22.2 35.8 49.5
200 21.4 35.4 49.6
400 21.2 35.6 50.2
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not normal, we could also estimate the mixing probability distributions nonparametrically using the method developedby

Hall and Zhou [34]. But Hall-Zhous’s estimation method is very complicated to implement and is restrictive. The tensor

spline-based sieve maximum likelihood estimation [42] of the multivariate distribution function is a compromiseto the

Hall-Zhou’s nonparametric estimation of mixture distribution. Although the optimal sequential composite tests can still

be computed with the tensor spline-based sieve estimation in principle, the numerical implementation of the test is much

more demanding and challenging than the multivariate normal model. Moreover, the spline-based model would add more

complexity to studying the statistical properties of the test. Study and implementation of the spline-based model for the

optimal sequential composite test in this context are currently under our investigation.
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Appendices
A. Details of the EM algorithm in Section 2

The EM algorithm treats the exact case membershipD as missing. Therefore, the complete data consist of

{(X1, D1), · · · , (Xn, Dn)}, and the complete-data log-likelihood is given by (6).

Let θ(i) denote the estimate ofθ after theith iteration of the EM algorithm.
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• E step: The E step computes the conditional expectation ofla(θ) given the observed data(X1, . . . ,Xn) and the

current estimates ofθ, θ(i),

E
(
la(θ)|θ(i)

)
=

n∑

k=1

{
Pr(Dk = 1|θ(i)) log πf1(X1k, X2k|θ1)+

Pr(Dk = 0|θ(i)) log(1− π)f0(X1k, X2k|θ0)
}
.

If we write

π̃
(i)
k = Pr(Dk = 1|θ(i)),

f
(i)
1 (X1k, X2k) = f1(X1k, X2k|θ(i)1 ),

f
(i)
0 (X1k, X2k) = f0(X1k, X2k|θ(i)0 ),

it is easy to show that

π̃
(i)
k =

π(i)f
(i)
1 (X1k, X2k)

π(i)f
(i)
1 (X1k, X2k) + (1− π(i))f

(i)
0 (X1k, X2k)

, (A.1)

and

E
(
la(θ)|θ(i)

)
=

n∑

k=1

π̃
(i)
k log πf1(X1k, X2k|θ1) + (1− π̃

(i)
k ) log(1− π)f0(X1k, X2k|θ0). (A.2)

• M step: The M step updates the estimateθ(i+1) for θ by maximizingE
(
la(θ)|θ(i)

)
in (A.2) with respect toθ. We

can show thatθ(i+1) has the following explicit expression:

π(i+1) =
1

n

n∑

k=1

π̃
(i)
k , (A.3)

µ
(i+1)
1 =

1

nπ(i+1)

n∑

k=1

π̃
(i)
k Xk, (A.4)

V
(i+1)
1 =

1

nπ(i+1)

n∑

k=1

π̃
(i)
k (Xk − µ

(i+1)
1 )(Xk − µ

(i+1)
1 )T , (A.5)

µ
(i+1)
0 =

1

n(1 − π(i+1))

n∑

k=1

(1− π̃
(i)
k )Xk, (A.6)

V
(i+1)
0 =

1

n(1 − π(i+1))

n∑

k=1

(1− π̃
(i)
k )(Xk − µ

(i+1)
0 )(Xk − µ

(i+1)
0 )T , (A.7)

whereXk = (X1k, X2k)
T .

B. Proof of Theorem2.1

SinceF1 and F0 are the cumulative distribution function of bivariate normal distributions, the functionG(C, θ) is

continuously differentiable with respect toC andθ. Condition (8) is equivalent to the statement that the Jacobian matrix

∇CG(C0, θ0) is invertible by deriving the determinant of∇CG(C0, θ0) and setting it not equal to zero. Hence, according
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to the implicit function theorem [43], there exists an open setU containingθ0, an open setV containingC0, and a unique

continuous differentiable functiong : U → V such thatC = g(θ) andG(g(θ), θ) = 0 for all θ ∈ U .

Based on the MLE properties, it is known thatθ̂n →p θ0 and
√
n(θ̂n − θ0) →d N(0, I−1). So for anyǫ > 0 andδ > 0,

there exists anN , such thatn > N , Pr(|θ̂n − θ0| > δ) < ǫ. This implies that for anyn > N , θ̂n ∈ U in probability,

and hence the proposed method for finding the cut-offĈn = (Ĉn,1, Ĉn,2) through solving forG(Ĉn, θ̂n) = 0 results in

Ĉn = g(θ̂n) in probability.

Further note thatF1(C, θ) = F1(g(θ), θ) is a continuously differentiable function ofθ, and consequently, by the

continuous mapping theorem and the delta method, we have

√
n (ŝenC − senC) =

√
n
(
F1(Ĉn, θ̂n)− F1(C0, θ0)

)

=
√
n
(
F1(Ĉn, θ̂n)− F1(C0, θ̂n) + F1(C0, θ̂n)− F1(C0, θ0)

)

=
√
n
(
∇CF1(C0, θ̂n)(Ĉn −C0) +∇θF1(C0, θ0)(θ̂n − θ0)

)
+ op(1)

=
√
n
(
∇CF1(C0, θ̂n)∇θg(θ0)(θ̂n − θ0) +∇θF1(C0, θ0)(θ̂n − θ0)

)
+ op(1)

=
(
∇CF1(C0, θ̂n)∇θg(θ0) +∇θF1(C0, θ0)

)√
n(θ̂n − θ0)

→d N(0, BI−1BT ),

where

B = ∇CF1(C0, θ0)∇θg(θ0) +∇θF1(C0, θ0). (B.1)

16 www.sim.org Copyrightc© 2015 John Wiley & Sons, Ltd. Statist. Med.2015, 001–16
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