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Abstract

Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of
patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade
inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due
to bone marrow (BM) pathology leading to increased activity of BM-derived pro-inflamma-
tory monocytes and impaired function of BM-derived reparative circulating angiogenic cells
(CACs). We propose that diabetes has a significant long-term effect on the nature and pro-
portion of BM-derived cells that circulate in the blood, localize to the retina and home back
to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP
BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory
monocytes are increased in diabetes while reparative CACs are trapped in the BM and
spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes
and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived
GFP cells that migrate to the retina express microglial markers, while others express endo-
thelial, pericyte and Muller cell markers. Diabetes significantly increases infiltration of BM-
derived microglia in an activated state, while reducing infiltration of BM-derived endothelial
progenitor cells in the retina. Further, control CACs injected into the vitreous are very effi-
cient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indi-
cating that the in vivo homing efficiency of diabetic CACs is dramatically decreased.
Moreover, diabetes causes a significant reduction in expression of specific integrins regulat-
ing CAC migration. Collectively, these findings indicate that BM pathology in diabetes could
play a role in both increased pro-inflammatory state and inadequate vascular repair contrib-
uting to diabetic retinopathy.
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Introduction

DR is an important long-term complication of diabetes, affecting around 93 million people and
is a leading cause of blindness among working adults worldwide [1]. The initial stages of DR
are characterized by various clinical features including increased microvascular permeability,
vessel leakage and appearance of microaneurysms [2]. Diabetic metabolic insult affects retinal
vascular degeneration at several levels: First, by contributing to chronic retinal low-grade
inflammation resulting in endothelial cell injury [3-6]; Second, by inadequate repair of the
injured retinal capillaries by bone marrow (BM)-derived circulating angiogenic cells (CACs),
which are exquisitely sensitive to the damaging diabetic milieu [7, 8]; finally, by activating
monocytes [9] and further promoting a pro-inflammatory environment in the retina [10]. Reti-
nal endothelial cell injury, activated monocytes and failed attempts by CACs to repair injured
retinal capillaries collectively result in progression to the vasodegenerative stage of the disease
[11-13].

Efficient release of CACs from the BM and spleen into circulation and extravasation into
blood vessels in the tissues is a critical component of their surveillance and vascular repair
function. We have previously shown that BM neuropathy precedes retinal vascular degenera-
tion in DR, leading to trapping of diabetic progenitor cells in the BM, and affecting circadian
release of these cells into circulation [7]. Homeostatic recirculation of cells back to the BM
niche is an equally important aspect of their role in maintaining the BM progenitor microenvi-
ronment [14-16]. Chemokine gradients such as SDF-1, and up-regulation of specific receptors
such as CXCR-4 on the CACs are believed to play crucial roles in regulating the process of
homing and retention in niches [17, 18]. Expression of specific integrins such as 041, B2 and
ovP3 by CACs are major determinants of CAC adhesion to endothelial cells, homing and
mobilization from the BM [19, 20]. However, the effect of diabetes on the ability of CACs to
home from the tissues back to their BM niche has not been adequately studied.

Besides hosting the CACs, the BM is an important niche for several cells types such as stem
cells, stromal supporting cells, myeloid and lymphoid precursors. Some of these cell types are
recruited to the retina from the BM for retinal remodeling. The hematopoietic progenitors are
also known to migrate from the BM to other niches such as peripheral blood and spleen [21,
22]. Interestingly, spleen acts as an important reservoir during CAC trafficking and as a storage
site for lymphocytes, dendritic cells (DC) and monocyte populations [22, 23]. Leukocytes can
be potentially activated by interaction with BM-derived DC, which secrete cytokines in
response to immune stimulation and determine the nature of the leukocyte response during
inflammation [24-26]. Aberrant activation of immune cells, as well as decreased mobilization
of CACs may contribute to vascular complications in diabetes [23, 27-29].

The BM is also the source of myeloid-derived circulating monocytes, which contribute to
DR-associated inflammation. We have previously demonstrated that diabetes induces a shift in
hematopoiesis resulting in a reduction of reparative cells (CACs) and an increase in pro-
inflammatory monocytes that are released into circulation [7, 30, 31]. Just like CAC dysfunc-
tion, immune cell imbalance and inflammation are critical participants in the pathogenic
events associated with DR [10, 32]. Previously, we have shown that diabetes leads to increased
accumulation of inflammatory monocytes in the retina [30]. It has been shown recently that
pro-inflammatory BM-derived myeloid cells like monocytes play an important role in retinal
endothelial cell death and capillary degeneration in diabetes [33]. However, the influence of
diabetes on a range of other types of BM-derived cells, their migration to niches such as spleen
and peripheral blood, and their association with retinal vasculature has not been explored in
detail.
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In this study, we propose that diabetes has a significant long-term effect on the nature and
proportion of BM-derived cells that circulate in the blood, localize to the retina and home back
to their BM niche. To test this hypothesis, we generated chimeric mice with long-term, stable
reconstitution of their BM with GFP" cells. After four months to allow for stable reconstitution
of the BM, diabetes was induced by streptozotocin (STZ) injections and the retinas were ana-
lyzed for the type and number of BM-derived cells after 8 weeks of diabetes.

Materials and Methods

Mice

All procedures involving the animal models were approved by the Institutional Animal Care
and Use Committee at Michigan State University. Male C57BL/6] and C57BL/6-Tg
(CAG-EGFP) mice were purchased from Jackson Laboratory and made diabetic by injections
of streptozotocin (STZ) dissolved in 0.5% sodium citrate buffer, with a daily dose of 65mg/Kg
for five consecutive days. The control mice received sodium citrate buffer only. Mice with
blood glucose greater than 13.8 mmol/L were considered diabetic. Starting 14 days after STZ
injections, insulin injections (with a dose of 0-2 units/day) were administered to prevent acute
weight loss, but allowing hyperglycemia in the range of 20 mmol/L blood glucose.

Generation of chimeric mice

The C57BL/6-Tg(CAG-EGFP) transgenic donor strain was obtained from Jackson Laboratory.
Chimeric mice were generated by irradiating recipient 8-weeks old C57BL/6 mice with 1100
rads followed by retroorbital injection of whole bone marrow (2 X 10° cells) from donor
C57BL/6 or GFP™ mice. After 120-130 days to allow stable hematopoietic reconstitution, we
performed flow cytometry to enumerate GFP" cells in the BM of chimeric mice. Diabetes was
induced using STZ as described above.

Isolation of hematopoietic progenitors/CACs from mice

Mice were euthanized and tibias and femurs were collected. The bones were flushed with ice-
cold PBS and made into a single cell suspension. The cell pellet was treated with ammonium
chloride solution (STEMCELL technologies) to remove contaminating red blood cells. The
bone marrow cells were then enriched for mouse hematopoietic stem/progenitor cells using a
lineage-negative selection kit (STEMCELL Technologies) followed by a Scal positive selection
kit (STEMCELL Technologies) to obtain Lin™ Sca® progenitor cells.

Homing of CACs from retina

Lin™ Sca™ progenitor cells were obtained from GFP* diabetic and control mice, as described
above. The duration of diabetes was 9 months. The cells were maintained overnight in EGM-2
media with SingleQuot supplements and growth factors (Lonza) to allow them to recover from
the isolation process. Cells were then washed with PBS, counted and 10,000 cells were injected
intravitreously using a 33-gauge Hamilton syringe, into healthy wild type mice. After 7 days,
the wild type mice were sacrificed, and their eyes removed.

Tissue preparation and Immunohistochemistry

Eyes were pierced with a 30-gauge needle and fixed in freshly prepared 4% paraformaldehyde
for 1 hour at room temperature. The eyes were then washed in three changes of PBS before dis-
section. Intact retinas were isolated and permeabilized overnight at 4°C in HEPES-buffered
saline containing 0.1% Tween 20 and 1% bovine serum albumin. Vasculature was stained with
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rabbit anti-collagen IV (abcam) diluted 1:400 in PBS with 2% non-immune goat serum, incu-
bating overnight at 4°C, followed by a change into PBS for 6-8 hours. Secondary antibody
chicken anti-rabbit (Alexa Fluor 594, Invitrogen) diluted 1:1000 was used, followed by a final
wash in PBS.

For characterization of vascular and perivascular GFP™ cells in chimeric mice, retinas were
further stained with primary antibodies: endothelial cells using 1:400 diluted rabbit anti-colla-
gen IV (abcam); astrocytes using 1:200 diluted rabbit anti-GFAP (Cell Signaling); microglial
cells using 1: 100 diluted goat anti-Ibal (Novus Biologicals); pericytes using 1:100 diluted rab-
bit anti-PDGFR-B (abcam); and Miiller cells using 1:300 diluted rabbit anti-glutamine synthe-
tase (Novus Biologicals). After overnight incubation at 4°C and three PBS washes, respective
chicken anti-rabbit or anti-goat secondary antibodies (Alexa Fluor 594, Invitrogen) diluted
1:1000 was used, stained specimens incubated for an hour, followed by a final wash in PBS. Ret-
inas were mounted flat with four to five radial incisions, and placed between glass coverslips
with Fluoromount medium (Sigma).

Tissue sectioning and Immunohistochemistry

Tissue samples previously fixed in Zinc Fixative (BD biosciences) were processed and vacuum
infiltrated with paraffin on the ThermoFisher Excelsior tissue processor; followed by embed-
ding with the ThermoFisher HistoCentre III embedding station. Once blocks were cooled,
excess paraffin was removed from the edges, and they were placed on a Reichert Jung 2030
rotary microtome exposing the tissue sample. Then the blocks were cooled and finely sectioned
at 4-5 microns. Sections were dried at a 56°C slide incubator to ensure adherence to the slides
for 2-24 hours. Slides were then deparaftinized and rinsed in several changes of distilled water
followed by Tris buffered saline pH 7.4. Sections were incubated with 10% normal blocking
serum (chicken serum, Santa Cruz Biotechnology) in PBS for 20 minutes to suppress non-spe-
cific binding of IgG, and then washed with PBS. For localization of GFP™ cell types in the dif-
ferent layers of the retina, retinas were stained with primary antibodies for vascular and
perivascular cells such as endothelial cells, astrocytes, microglial cells and Miiller cells using
antibodies and dilutions described above. Further, retinas were also stained for retinal neuronal
cells such as amacrine cells using 1:200 diluted rabbit anti-tyrosine hydroxylase (Millipore),
rod photoreceptors using 1:200 diluted rabbit anti-rhodopsin (Sigma) and ganglion cells using
1:50 diluted goat Brn-3a (Santa Cruz Biotechnology). After 1 hour incubation and three PBS
washes, sections were incubated for an hour with Alexa Fluor 594-conjugated chicken second-
ary antibody against rabbit or goat (Invitrogen), diluted to 5 pg/ml, followed by a final wash in
PBS. Retinal sections were mounted on coverslips with Fluoromount medium (Sigma).

Sample processing and LPS treatment

Mice were euthanized and tibias and femurs were collected. The bones were flushed with ice-
cold PBS and made into a single cell suspension. The cell pellet was treated with ammonium
chloride solution (STEMCELL technologies) to remove red blood cells. For enrichment of den-
dritic cells, 1 million BM cells per well in 24-well plates were incubated at 37°C for 7 days in
R10 medium (RPMI 1640 with 10% fetal bovine serum, 100 U/mL penicillin, 100 ug/mL strep-
tomycin and 55 UM B-mercaptoethanol) supplemented with 10 ng/mL of GM-CSF (Pepro-
tech). The culture medium was changed every 2 days by aspirating 50% of the medium and
adding back fresh medium with supplements. Spleen was gently crushed, subjected to red
blood cell lysis and then filtered through a 40um nylon mesh. 1 million splenocytes per well in
24-well plates were also maintained in R10 medium for 7 days. The dendritic cell-enriched
population from BM and splenocytes were stimulated with 10 ng/mL of lipopolysaccharide
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(LPS, Sigma) for 24 hours. Culture supernatant was collected and stored at -80°C. ELISA
(eBiosciences) was performed to measure cytokine levels of IL-1B and TNF-qu.

Cell preparation and Flow cytometry

Single cell suspensions from bone marrow and spleen were obtained as described earlier. Blood
was collected in heparinized tubes, and mononuclear cells were isolated using 1083 Histopaque
(Sigma-Aldrich) according to manufacturer’s instructions. Eyes were collected, the retinas
were isolated and disrupted mechanically by vigorous pipetting and digestion with 0.5 mg/ml
collagenase D (Roche, Indianapolis, IN) and 750 U/ml DNase (Sigma) in HBSS for 15 min at
37 oC according to Kerr et al [34]. One million cells were stained with the appropriate antibod-
ies on ice for 30 minutes according to standard cell surface staining protocol. The primary con-
jugated monoclonal antibodies that were used were purchased from BD biosciences or
ebiosciences: PE-CD34 (RAM34), PerCPCy5.5 -Ly6A/E (D7), biotin- lineage (CD3e,
CD45RA, GR1, CD11b, TER119), Alexa Fluor 700- CD45 (30-F11), APC-CD309 (Avas 12a1),
PECy7-CD117 (2B8), streptavidin APC efluor780, PE-Tie2 (TEK4), PerCP efluor710-CD31
(390), APC Cy7-CD11b (M1/70), PerCPefluor 710-F4/80 (BM8), PE-Ly6G (1A8), PECy7--
Ly6C (AL-21), APC-CD90.2 (53-2.1), FITC-CD61 (2C9.G3), PECy7-CD29 (HMb1-1),
PE-CD49d (R1-2), FITC-CD18 (M18/2), PECy7-CD49f (GoH3), PE-CD51 (RMV-7). Dead
cells were excluded using DAPI staining. Retinal endothelial cells were gated as CD45” CD31"
and Tie2" cells. Retina microglial cells were gated as CD4574™, CD11b" cells. CACs in bone
marrow, blood and spleen were defined as CD45%™", lineage’, CD34" and CD309" cells.
Integrin expression (subunit $1:CD29, B2:CD18, $3: CD61, 04:CD49d, a:6:CD49f and awv:
CD51) was detected after gating on CACs. Data were acquired with a LSR II instrument (BD)
with three lasers at 488, 405 and 640 at the Flow Cytometry Core at Michigan State University
and data were analyzed with Flow]Jo software (Tree Star, Inc.).

Data Collection and Analysis

Digital images of flat-mounted retinas were captured using an Olympus FluoView 1000 Laser
Scanning confocal microscope. For imaging retinal sections, a Nikon TE2000 fluorescence
microscope equipped with Photometrics CoolSNAP HQ2 camera was used. A minimum of
three random fields was captured for each retina. Colocalization of green (for GFP* cells) and
red (stained vascular endothelium or other retinal cells) fluorescence was examined and area of
fluorescence calculated using MetaMorph imaging system (Molecular Devices, Downingtown,
PA).

Statistical analyses

Data are presented as mean + S.E.M. Results were analyzed for statistical significance by the
Student’s t-test or one-way ANOVA followed by Tukey’s or Bonferroni’s post-hoc test (Graph-
Pad Prism5, GraphPad Software, San Diego, CA), where appropriate.

Results
Characterization of BM-derived cells in control retina

To track the movement of BM-derived cells into the retina, we created chimeric mice on a
C57BL/6] background by transplanting with GFP™ age-matched BM at 8 weeks of age. 98%
reconstitution of transplanted BM was confirmed by flow cytometry. 6 months after BM trans-
plantation, characterization of the vasculature-associated GFP™ cells in retinas of chimeric
mice by immunofluorescent staining of flat-mounted retinas indicated that BM-derived cells
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predominantly express markers of perivascular microglia, pericytes, Miiller cells or vascular
endothelial cells (Fig 1A-1D). A majority of the BM-derived cells infiltrating the retina
expressed the pan-microglial marker, Iba-1 (Fig 1F). BM-derived astrocytes were not observed
in the neural retina or associated with the retinal vasculature (Fig 1E).

To further analyze localization of the different BM-derived cell types within the retinal cell
layers, immunohistochemical staining of retinal sections was performed. GFP™ cells in the ret-
ina localized predominantly to the ganglion cell layer (GCL), inner nuclear layer (INL), inner
(IPL) and outer plexiform layers (OPL), where the retinal vasculature is located (Fig 2). The
BM-derived cells in the retina were immunoreactive for Ibal (labelling microglia, Fig 2A), col-
lagen IV (labelling endothelial cells, Fig 2D), glutamine synthetase (labelling Miiller cells, Fig
2C) and PDGF-RP (labelling pericytes, Fig 2B). However, GFP" cells in the retinas were not
recognized by antibodies against GFAP (labelling astrocytes, Fig 2E) and neuronal markers
such as tyrosine hydroxylase (labelling amacrine cells, Fig 2F) and rhodopsin (labelling rod
photoreceptors, Fig 2G). The observed fate of BM-derived cells in the retina is in agreement
with a previous study characterizing BM-derived cells in the mouse retina [35].

Flow cytometry of GFP" cells in retinas of chimeric mice was done to further confirm the
immunohistochemical data. We observed that 93% of the GFP™ cells in the retina were
CD45%™ or CD45 cells (Fig 3B). The CD45 marker is expressed in high levels by all differenti-
ated hematopoietic cells but not endothelial cells, [36, 37], and its expression is reduced on
microglia [38, 39]. Approximately 20% of CD45 GFP" cells in the retina expressed endothelial
markers, CD31 and Tie-2, while 33% of them expressed microglial markers, CD45%™ CD11b*.

Effect of diabetes on BM-derived inflammatory cells in the retina

To determine whether diabetes has an effect on infiltration of pro-inflammatory BM cells into
the retina, we examined the retinas of chimeric mice 2 months after the induction of diabetes.
We observed similar total numbers of GFP cells as well as GFP™ CD45%™ infiltrating diabetic
and control retinas (Fig 3A and 3B). We then examined the effect of diabetes on infiltration of
BM-derived microglia-like cells in the retina of chimeric mice. Using immunohistochemistry
to stain retinas with the pan-microglial marker Iba-1, we observed no significant difference
between control and diabetic mice in infiltration of total BM-derived microglia-like cells into
the retina (Fig 4A). Next, we used flow cytometry to select for GEP* CD45%™ CD11b" cells in
diabetic and control retinas, since high CD11b expression indicates increased microglial activa-
tion [40, 41]. Our studies revealed that 41% of GFP™ cells in diabetic retinas expressed activated
microglial markers compared to 33% in control retinas (Fig 4B). The significant increase in
percentage of CD11b* GFP" cells in diabetic retinas indicates increased infiltration and/or dif-
ferentiation of activated microglia-like cells from BM to the diabetic retina. To further explore
how diabetes affects activation of BM-derived pro-inflammatory cells, we examined phenotype
of the microglia-like cells in flat-mounted retinas. In the control mouse retinas, most of the
BM-derived microglia-like cells (Iba-1" GFP™") displayed a resting phenotype characterized by
their highly ramified morphology. However, in the diabetic retina, these BM-derived cells dis-
played a more amoeboid morphology with marked retraction of their dendrites, indicating
microglial activation. (Fig 4C and 4D; white arrowheads).

In addition to microglia, early diabetes is associated with activation of the Miiller glia, which
are important contributors to retinal inflammation [42]. We studied the effect of diabetes on
infiltration of BM-derived Miiller cells in the retina. From immunohistochemical staining of
flat-mounted retinas and retinal sections, we observed that 10% of BM-derived cells in the ret-
ina expressed markers of Miiller cells (glutamine synthetase) (Fig 1F). In the diabetic retina,
the percentages of BM-derived cells expressing markers of Miiller cells did not change.
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Fig 1. Characterization of BM-derived cells in retinas of GFP* BM chimeras at 6 months after transplantation. GFP* cells (green) colocalized with (A)
microglial marker Iba-1 (red), (B) endothelial cell marker Collagen IV (red), (C) Muiller cell marker Glutamine synthetase (red), (D) pericyte marker PDGFR-3
(red) but not with (E) astrocyte marker GFAP (red). Colocalization of GFP™* cells with the respective markers was observed as yellow stain. Scale bars are
10 pm. (F) Percentages of GFP* cells expressing markers for specific cell types, N = 4-5.

doi:10.1371/journal.pone.0146829.g001

Diabetes increases BM-derived monocytes in circulation

Next, we examined whether this increase in pro-inflammatory microglia-like cells is reflected
in the numbers of the circulating progenitors of BM-derived microglia-like cells in control and
diabetic mice. After 2 months of diabetes, we observed a significant increase in CD11b* GFP*
circulating monocytes with surges of Ly6C™ as well as Ly6C'® monocyte populations in the
blood of diabetic mice (Fig 5).

Diabetes alters immune responses of BM-derived DC and splenocytes

In vitro stimulation of cultured cells by lipopolysaccharide (LPS) is a widely used assay to study
the ability of immune cells to become activated. For BM-derived DC and splenocytes, immune
activation levels can be detected by changes in cytokine production, higher expression of costi-
mulatory molecule or the production of inflammatory mediators [26]. To determine whether
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Fig 2. Characterization of BM-derived cells in retinal sections of GFP* BM chimeras at 6 months after transplantation. Nuclei were counterstained
with DAPI (blue). Overlays of confocal images of GFP* cells (green) immunoreactive for (A) Iba1 (red) labeling microglia, (B) Collagen IV (red) labeling
endothelial cells, (C) Glutamine synthetase (red) labeling Muller glia, (D) PDGF-Rp (red) labeling pericytes. Colocalization of GFP* cells with the respective
markers was observed (yellow) in (A-D). (E) GFAP (red) labeling astrocytes, (F) Tyrosine hydroxylase (red) labeling amacrine cells, (G) Rhodopsin (red)
labeling rod photoreceptors. No colocalization of GFP* cells with these markers was observed in (E-G). Scale bars are 20 um. N = 4-5.

doi:10.1371/journal.pone.0146829.g002

diabetes affects activation of BM-derived dendritic cells (DC) and splenocytes, we analyzed
cytokine secretion by diabetic and control cell populations in response to LPS. We demon-
strated that increased levels of pro-inflammatory cytokines, IL-1f and TNF-o were secreted by
BM-derived DC and splenocytes derived from diabetic mice (Fig 6), indicating that diabetes
may lead to aberrant activation of BM and splenic derived immune cells.

Effect of diabetes on BM-derived microvascular cells in the retina

To determine whether diabetes has an effect on infiltration of vascular reparative BM cells into
the retina, we examined the retinas of chimeric mice after 2 months of diabetes. We observed
that only 13% of GFP” cells expressed endothelial cell markers compared to 20% in control ret-
inas (Fig 7), indicating that infiltration and/or differentiation of BM-derived progenitor cells
into retinal endothelial cells is deficient in the diabetic retina.

Pericytes are microvascular mural cells providing support and stability to the retinal vascu-
lature. Pericyte loss and microaneurysm formation are characteristic features of diabetic reti-
nopathy [43]. We studied the effect of diabetes on infiltration of BM-derived pericytes in the
retina. From immunohistochemical staining of flat-mounted retinas and retinal sections, we
observed that 10% of BM-derived cells in the retina expressed markers of pericytes (PDGF-Rp)
(Fig 1F). In the diabetic retina, the percentages of BM-derived cells expressing the pericyte
marker did not change.

Diabetes impairs release of BM-derived vascular reparative cells

To study the effect of diabetes on the release of vascular reparative cells, we tracked the move-
ment of BM-derived CACs in chimeric mice. CACs were identified by flow cytometry as
CD45%™* cells that do not express lineage markers but express CD34 and CD309 [44]. After 2
months of diabetes, we observed impaired release of CACs, shown as a significantly higher
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Fig 3. BM-derived cells in the retina of chimeric mice. (A) Number of BM-derived cells per mm? area of
control or diabetic retina. Representative flow charts of GFP™* cells in the retina shown below. (B) ~ 93% of
GFP* cells detected in the retina are CD45" cells. Diabetes does not change the number of CD45 cells in the
retina. Representative flow charts gated on GFP* cells of CD45  and CD45" cells shown below. N = 4.

doi:10.1371/journal.pone.0146829.9003

number of these cells trapped in the BM and spleen of diabetic mice compared to controls (Fig
8A and 8B). Significantly lower numbers of BM-derived CACs were observed in the blood of
diabetic mice, as compared to controls (Fig 8C).

CAC homing capability to BM is impaired in diabetes

In order to study the recirculation of CACs from the retina to the BM niche, we injected GFP™*
CAG: in the vitreous of control mice with healthy retinal vasculature. Seven days post
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doi:10.1371/journal.pone.0146829.g004
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injection, we examined the retina as well as BM for presence of GFP" cells (Fig 9A). With injec-
tion of control GFP™ CACs, very few remained trapped in the vitreous, while GFP™ cells were
detected in the BM, demonstrating that the injected CACs are capable of homing to their BM
niche. However, with injection of diabetic GFP™ CACs, we observed a significant number of
CAGs trapped in the vitreo-retinal space, while no GFP" cells were detected in the bone mar-
row (Fig 9B and 9C), implying impaired migration and homing efficiency of diabetic CACs.
To determine whether diabetes has an effect on integrins that regulate the process of CAC
homing, we examined the expression of integrins a4, 0.6, B1, 2, ov and B3 on CACs isolated
from the blood of control and diabetic mice. We observed significantly decreased expression of
integrins B2 and B3, as well as a trend towards decreased expression of 04, a6 and av integrins
on diabetic CACs (Fig 9D). These data demonstrate that diabetes alters expression of integrins
on the surface of CACs in peripheral blood, indicating that these adhesion molecules may be
involved in dysregulation of CAC migration and homing efficiency associated with diabetes.

Discussion

Diabetes affects the entire neurovascular unit of the retina, leading to chronic low-grade
inflammation [45], gradual neurodegeneration [46], loss of capillary components such as peri-
cytes and endothelial cells [47], causing acellular capillaries formation [48] and increased vas-
cular permeability [49, 50]. The resulting loss of cellular support leads to microaneurysms,
leakage of lipid exudates due to increased permeability, capillary non-perfusion, and subse-
quent ischemia and hypoxia of retinal tissue [50]. Many factors contribute to the pathophysiol-
ogy of DR, such as accumulation of advanced glycation end-products (AGEs), inflammation,
chronic oxidative stress and vascular as well as neuronal dysfunction [2, 51-54]. Diminished
insulin signaling in retinal neurons may lead to neurodegeneration, which may further contrib-
ute to breakdown of the blood-retinal barrier in DR [46].

More recently, another mechanism, inadequate repair by deficient CAC in diabetes has
been implicated in the pathogenesis of DR [7, 13, 30, 55]. The combination of retinal cell dam-
age, pro-inflammatory changes and failed attempts by BM-derived CACs to repair injured
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retinal capillaries eventually result in progression to clinically significant DR. With significant
contribution of BM-derived cells to retinal pathology in DR, it is important to understand the
effect of diabetes on BM-derived cells contributing to retinal inflammation, as well as the cells
promoting retinal vascular repair.

In agreement with previous studies, our data demonstrate that BM-derived cells infiltrating
the retina differentiate into various cell types such as pericytes, endothelial cells, Miiller cells
and microglia (Figs 1 and 2) but not astrocytes or retinal neurons [33, 35]. Diabetes did not
affect the numbers or activation status of BM-derived Miiller cells and pericytes, indicating
that these cells may be recruited from BM for normal maintenance functions in both control
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doi:10.1371/journal.pone.0146829.9009

and diabetic retina [56]. However, diabetes significantly altered the numbers of BM-derived
activated microglia-like cells as well as endothelial cells in the retina, suggesting that these BM-
derived cell types may be involved in the pathogenesis of DR (Figs 4B and 7).

Diabetes is known to activate monocytes, which play an important part in promoting a pro-
inflammatory environment in the retina [9, 10]. Circulating monocytes are classified as Ly6C™
or Ly6C'®, depending on their expression levels of Ly6C on the cell surface. Ly6C'® monocytes
perform surveillance functions and resolve inflammation, while Ly6C™ monocytes are charac-
terized as reactive cells that can be actively recruited into diabetic retina, contributing to the
observed pathology [30, 57]. We and others have previously demonstrated a shift in the profile
of BM cells and circulating BM-derived cells towards myeloid cells, contributing to diabetes-
associated inflammation [12, 30, 51, 58]. Indeed, reactive (Ly6C ™) as well as the patrolling
(Ly6C '°) monocyte subsets of this BM-derived population (GFP* CD11b") were found to be
increased in the blood of diabetic chimeric mice (Fig 5).

Under normal conditions, retinal microglia survey the retinal microenvironment and help
maintain homeostasis. Resident microglia, along with astrocytes are also believed to play a vital
role in formation and maintenance of the retinal vasculature [59]. However, during inflamma-
tion these microglia become activated and produce cytokines, contributing to vascular and
neural damage in the diabetic retina [60]. Circulating monocytes can infiltrate the diabetic
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retina, assume a microglia-like phenotype and contribute to retinal inflammation by secreting
pro-inflammatory cytokines and further activating resident glial cells in the retina [38, 61, 62].
In our study, we demonstrate increased infiltration of BM-derived pro-inflammatory cell types
expressing microglial activation marker CD11b in the diabetic retina (Fig 4B). Interestingly,
there was no change in total BM-derived microglial population in these retinas as demon-
strated using a pan-microglial marker Iba-1 (Fig 4A). These data indicate that the BM microen-
vironment in diabetes induces a shift in hematopoiesis with generation of more pro-
inflammatory monocytes released from BM into circulation, leading to accumulation of
inflammatory microglia-like cells in the diabetic retina. Since the numbers of BM-derived acti-
vated microglia-like cells are selectively increased in the diabetic retina with no change in total
microglia numbers, the beneficial role of resting microglia in vascular maintenance and surveil-
lance is likely to be diminished in diabetes.

During embryonic development, resident tissue microglia are known to develop from a yolk
sac and do not have myeloid origin [63]. Several studies demonstrated that in normal tissue,
microglial regeneration occurs from tissue-specific microglial progenitors [64]. However,
microglial origin could be shifted towards BM-derived myeloid cells in ageing, inflammation
or tissue damage [38, 62, 65]. In experimental models of DR, microglial activation is usually
identified by morphological changes involving retraction of their highly ramified processes and
appearance of an amoeboid shape with thicker dendrites and larger cell bodies [42, 65]. We
observed Iba* GFP" cells in control and diabetic retinas, however Iba™ GFP™ cells in control
retinas had branched resting phenotype compared to clearly activated amoeboid phenotype in
diabetic retinas, demonstrating for the first time that diabetes promotes activation of BM-
derived microglia-like cells in the retina (Fig 4C and 4D).

The BM serves as a niche for hematopoietic stem cells which, apart from differentiating into
lymphoid and myeloid progenitors, are also believed to give rise to CACs, a population of cells
that circulates in the bloodstream with the ability to migrate to the site of endothelial injury
and mediate repair of damaged blood vessels. These BM progenitors may migrate to the spleen,
which serves as a reservoir for CACs, inflammatory monocytes and lymphocytes [21-23]. We
and others have previously shown that diabetes affects mobilization of CACs into systemic cir-
culation [7, 28]. Studies by us and others also indicate that CACs isolated from diabetic patients
are not effective in vascular regeneration due to their impaired migration and proliferation
abilities [7, 11, 13]. In this study, we show that release of CACs from BM and spleen into circu-
lation is impaired in a mouse model of diabetes (Fig 8A-8C).

Further, we have demonstrated that 20% of BM-derived cells that infiltrate the retina
express endothelial cell markers such as collagen IV, Tie2, PECAM-1 (Fig 7). A previous study
by Grant et al also demonstrated that adult hematopoietic stem cells are capable of migrating
to the retina and differentiating into endothelial cells [66]. However, in the diabetic retina, we
observed a significant reduction in the percentage of BM-derived cells expressing endothelial
markers, reinforcing the notion that migration and/or differentiation of BM-derived progeni-
tor cells into retinal endothelial cells is deficient in diabetes (Fig 7).

CAGC:s arising from the BM, spleen and other niches normally circulate in the bloodstream
and home to areas of endothelial injury to mediate vascular repair [66]. In a healthy animal,
chemokine gradients such as SDF-1 and up-regulation of CXCR-4 receptors on CACs play cru-
cial roles in regulating release, surveillance and homing of reparative CACs to sites of retinal
vascular injury which is disturbed in diabetes, as we have previously described [7, 17, 18]. In
order to maintain their population, these cells migrate from various tissues back to their niches,
governed by expression of integrins and chemokine gradients [14, 17, 20]. In this study we
demonstrate for the first time, impairment in homing of diabetic CACs from healthy retina
back to their niches, using BM niche as an example of a major reservoir for CACs. To observe
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the effect of diabetes on the in vivo migration and homing capacity of CACs, we injected GFP*
CAG:s isolated from 8-month diabetic and age-matched control mice, into the vitreous of wild
type mice with healthy retinal vasculature. Seven days post injection, the retina and BM were
collected and analyzed for presence of residual GFP* CACs (Fig 9A). As there was no retinal
damage in the recipient mice, normal control CACs did not remain in the vitreo-retinal space
and migrated out into the blood stream as expected (Fig 9B, left panel). In contrast to the con-
trol CACs, a significant number of diabetic GFP* CACs remained in the vitreo-retinal space
(Fig 9B, right panel) unable to migrate.

Next, we examined the BM of the recipient mice for presence of GFP* cells. It is important
to note that only 10,000 GFP™ CACs were injected into the vitreous of WT non-GFP™ mice.
The only source of GFP™ cells in the BM of animals would be these CACs that were injected
into the vitreous. Even if all the injected GFP* cells homed to niches in the bone marrow, we
would expect to see only 70-100 GFP* cells in 500,000 bone marrow cells. However, CACs
have also been shown to migrate to other niches such as spleen, liver and peripheral blood, and
may participate in vascular maintenance in other parts of the body [28]. Thus 7 + 3 cells per
500,000 cells observed per stem cell niche is within the range that can be expected in this exper-
imental set-up (Fig 9C). In contrast, the impairment in migration and homing efficiency of dia-
betic CACs is apparent in the observed absence of diabetic GFP"™ CACs circulating and homing
back to the BM niche (Fig 9C).

Regulation of CAC homing involves chemokine gradients and expression of receptors and
adhesion molecules on CACs. Previously, we and others demonstrated that chemokines regu-
lating CAC release and mobilization such as SDF-1, VEGF and MCP-1 are under stringent cir-
cadian control, which is altered in diabetes [7, 67]. As this study was not designed to address
circadian changes, we did not analyze the potential contribution of chemokine gradients to the
observed changes in the release of BM progenitor cells in diabetes. Adhesion molecules
expressed on the surface of CACs, called integrins are also important determinants of CAC
homing. Intgrins 061 and avp3 regulate homing and adhesion of CACs to vasculature, 2
integrins are major regulators of transendothelial migration and integrin a:4p1 is an important
regulator of CAC retention in the BM by binding to VCAMI1 on endothelial cells [19, 20, 68].
In our study, we demonstrate for the first time that diabetes results in significantly reduced
expression of B2 and B3 integrins, as well as a trend towards decreased expression of 04, 06
and o integrins on CACs (Fig 9D). This may in turn affect integrin-mediated interactions of
CAC:s with the vessel wall, contributing to the observed impairment in migration and homing
efficiency of diabetic CACs.

The reduction in the number and homing efficiency of CACs in diabetes was accompanied
by aberrant activation of splenocytes and BM-derived dendritic cells upon LPS stimulation.
Immature DC can be activated by LPS and secrete cytokines that influence the leukocyte
immune response [24-26]. Lymphocytes, dendritic cells and monocytes stored in the spleen
may also contribute to inflammation in response to injury [23, 24]. Here we show that LPS
stimulation leads to increased secretion of pro-inflammatory cytokines such as IL-1p and
TNE-a by splenocytes and BM-derived dendritic cells enriched from diabetic mice, indicating
that these immune cells may also contribute to inflammation in diabetes (Fig 6).

Our study is in agreement with the main findings of a previous study by Li et al, on the role
of pro-inflammatory marrow-derived cells in DR. However, there are important differences in
the design of the two studies. In the Li et al. study diabetes was induced two weeks before BM
transplantation [33]. As one of the goals of our study was to evaluate migration and homing of
the progenitor cells between different niches, we wanted to separate the effects of irradiation
from the effects of diabetes and allowed for stable bone marrow engraftment (4-5 months)
before induction of diabetes. This study design with BM transplantation before induction of
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diabetes assures that there are no effects of diabetes on homing efficiency of transplanted BM
cells and subsequent re-population of stem cells in the BM niche.

In conclusion, this study identified a significant shift from reparative to pro-inflammatory
BM-derived cells in the retina in diabetes. The reparative BM-derived CACs had decreased
numbers in circulation, as well as deficient migratory and homing capacity in diabetes. In con-
trast, diabetes induced higher numbers in circulation, as well as retinal infiltration of pro-
inflammatory myeloid cells giving rise to activated microglia-like population in diabetic retina.
Control of BM-derived cell populations with normalization of the reparative/pro-inflamma-
tory cells balance could represent a viable cell therapy option to enhance available DR
treatments.
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