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Abstract

Neuroinflammatory signaling pathways in the CNS are of current interest as potential 

pharmacotherapy targets for alcohol dependence. In this study, we examined the ability of 

ibudilast, a non-selective phosphodiesterase inhibitor, to reduce alcohol drinking and relapse in 

alcohol-preferring P rats, high-alcohol drinking HAD1 rats, and in mice made dependent on 

alcohol through cycles of alcohol vapor exposure. When administered twice daily, ibudilast 

reduced alcohol drinking in rats by approximately 50% and reduced drinking by alcohol 

dependent mice at doses which had no effect in non-dependent mice. These findings support the 

viability of ibudilast as a possible treatment for alcohol dependence.
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Pathways engaging neuroinflammatory signaling in the CNS are of current interest as 

potential pharmacotherapy targets for alcohol dependence (Blednov et al. 2012; Litten et al. 

2012). Indeed, neuroimmune modulation via microglial and astroglial cells may contribute 

to stress-induced drug reinstatement (Frank et al., 2011). Inhibitors of type-4 

phosphodiesterase (PDE) are known for their anti-inflammatory effects in a variety of 

inflammatory cells, including glia. For instance, ibudilast (also known as MN-166 or 
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AV-411), a non-selective PDE inhibitor, crosses the blood–brain barrier and suppresses 

TNF-alpha production or release as well as astrocyte and microglial activation (Wakita et 

al., 2003; Ledeboer et al., 2007). It currently is used in Japan for asthma and cerebrovascular 

disorders and is being developed in the United States for progressive multiple sclerosis, 

neuropathic pain, methamphetamine addiction and opiate addiction (Rolan et al., 2009). 

Here we report that ibudilast significantly reduces alcohol consumption in three different 

rodent models of high alcohol consumption.

We examined the ability of ibudilast (from MediciNova, but coded with unknown identity to 

investigators) to decrease voluntary ethanol consumption during a 2h, two-bottle choice 

(15% ethanol vs. water) test session, under blind testing conditions, in selectively-bred 

alcohol-preferring (P) and high-alcohol-drinking (HAD1) rats, and in a mouse model of 

ethanol dependence in which mice received repeated cycles of chronic intermittent ethanol 

(CIE) exposure (see Litten et al., 2012). Each model is characterized by elevated alcohol 

intake believed to result from biological mechanisms relevant to human alcohol dependence 

(Egli, 2005). As such, these models are sensitive to clinically effective drugs such as 

naltrexone and topiramate, whereas clinically ineffective medications such as quetiapine and 

levatiracetam do not reduce ethanol drinking selectively in these models (unpublished data).

Adult male P and HAD1 rats were assigned randomly to receive one of 4 ibudilast doses (0, 

3, 6 or 9 mg/kg; n= 8/dose) with the groups balanced according to average 2h/day ethanol 

(15% v/v) intake. The doses were selected based on prior animal efficacy studies and to 

approximate and bracket human clinical PK parameters in MN-166 clinical development 

(Ledeboer et al., 2007, Rolan et al., 2008 and 2009). Water was concurrently available and 

Mazola® corn oil served as the drug vehicle. In the Maintenance Test phase, rats were 

injected subcutaneously (2 ml/kg; sc.) 60 min before each ethanol test session and again 8h 

later for 4 consecutive days. Following the Maintenance Test, recovery of ethanol drinking 

was evaluated for 2 weeks with no treatments given. Rats then were deprived of ethanol for 

2 weeks and the effects of ibudilast on ethanol drinking were examined under the same 

conditions as the Maintenance Test Phase when ethanol was re-introduced for 5 consecutive 

days (i.e., the Relapse Test phase). Each animal received the same dose during both tests. 

Following this, recovery of ethanol drinking was evaluated for 2 weeks with no treatments 

administered.

In the Maintenance Test, ibudilast reduced ethanol intake by approximately 50% in both P 

and HAD1 rats (Figure 1, left panel). Separate 2-way mixed ANOVAs revealed significant 

main effects of Dose for P [F(3,28) = 12.42, p < 0.001] and HAD1 [F(3,28) = 14.94, p < 

0.001] rats. All doses reduced ethanol drinking over the 4-day test-phase relative to vehicle-

injected controls (p’s ≤ 0.001). Ethanol drinking levels recovered in all groups on the first 

day following the test period (data not shown).

Likewise, ibudilast reduced ethanol drinking in P and HAD1 rats by about 50% during the 

5-day Relapse Test phase (Figure 1, right panel). Separate 2-way mixed ANOVAs revealed 

significant main effects of Dose for P rats [F(3,28) = 8.48, p < 0.001], with the 6 and 9 

mg/kg doses significantly reducing ethanol drinking relative to vehicle controls (p < 0.05), 

and for HAD1 rats [F(3,28) = 25.80, p < 0.001], with all doses significantly reducing ethanol 
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intake compared to controls (p < 0.05). Significant Dose×Day interactions in P [F(12,112) = 

3.25, p < 0.001] and HAD1 [F(12,112) = 2.09, p = 0.023] lines indicated that the greatest 

effect of ibudilast occurred on the first day of administration (Figure S1). When ibudilast 

treatment was discontinued following the Relapse Test, ethanol drinking levels recovered by 

the second day.

In a separate study, adult male C57BL/6J mice were trained to drink ethanol in a 2h/day 

free-choice (15% v/v ethanol vs. water) drinking procedure and separated into dependent 

(EtOH) and nondependent (CTL) groups (N= 37–38/group). EtOH mice were exposed to 

chronic intermittent ethanol (CIE) vapor exposure (16h/day×4 days) using a well-established 

dependence procedure (Becker and Lopez, 2004; Griffin et al., 2009). Following a 72h 

forced abstinence period, mice were given 2h/day ethanol access for a 5-day test period. 

This pattern of weekly CIE exposures followed by 5-day test periods was repeated for 9 

cycles. CTL mice were treated similarly, but were exposed to air in the inhalation chambers. 

All mice received injections (sc.) of the vehicle at 9- and 1-hr prior to the start of daily 

drinking sessions during Test Cycles 4, 5 and 6 to acclimate the animals to handling/

injections. EtOH and CTL groups then were separated further into treatment conditions, 

with animals receiving one of 4 ibudilast doses (0, 3, 6 or 12 mg/kg) during Test Cycles 7 

and 8 (n= 9–10/group). During Test Cycle 9, EtOH and CTL mice received one of 4 doses 

of ibudilast (0, 6, 12, 18 mg/kg) using the same treatment regimen. For Test Cycle 9, mice 

previously treated with the 3 mg/kg dose now were treated with the 18 mg/kg dose. One 

CTL mouse previously treated with 12 mg/kg ibudilast died for unknown reasons during 

Test Cycle 9 and, consequently, its data were removed from analyses.

Ethanol intake escalated over successive CIE exposure cycles whereas ethanol consumption 

in CTL mice remained relatively stable throughout the study. That is, EtOH mice consumed 

significantly more ethanol than CTL mice starting at Test Cycle 6 (main effect of Group 

[F(1,67)=35.84, p<0.001), and this effect persisted during Test Cycle 7 [F(1,67)=21.80, 

p<0.001], Test Cycle 8 [F(1,67)=12.52, p<0.001], and Test Cycle 9 [F(1,66)=32.55, 

p<0.001]. In EtOH mice, ibudilast’s ability to reduce ethanol consumption appeared to 

increase with repeated testing cycles (and drug treatments). During Test Cycle 7 there was a 

trend for the highest dose of ibudilast (12 mg/kg) to reduce drinking in EtOH mice, but this 

effect did not achieve statistical significance. However, during Test Cycle 8, a significant 

main effect of Dose [F(3,67)=3.36, p<0.05] indicated that the 12 mg/kg dose significantly 

reduced ethanol intake in both EtOH and CTL groups relative to their respective vehicle 

conditions (p’s<0.05).

Results from Test Cycle 9 indicated that both the 12 and 18 mg/kg ibudilast doses 

significantly reduced ethanol intake in EtOH, but not CTL, mice (Group×Dose interaction: 

[F(3,66)=4.50, p<0.01]). Pair-wise comparisons indicated that EtOH mice treated with 

vehicle or 6 mg/kg ibudilast consumed significantly more ethanol than the respective CTL-

treated groups (p’s<0.05). In contrast, there were no significant differences in ethanol intake 

between the EtOH and CTL groups treated with 12 or 18 mg/kg ibudilast; i.e., ibudilast 

reduced ethanol drinking in dependent (EtOH) mice to nondependent control levels (Figure 

2). At all doses, ibudilast’s effects were greatest when first administered and then 

diminished over each 5-day test period (Figure S2).
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The present study revealed that ibudilast reduced ethanol intake in three different rodent 

models of alcohol-dependence. Enhanced or selective reduction of alcohol drinking in EtOH 

(dependent) mice to CTL (nondependent) levels as observed in Test Cycle 9 (Figure 2) may 

indicate that the drug is targeting processes underlying the development and/or expression of 

alcohol dependence in particular (Rimondini et al. 2002). Such effects have been observed 

for clinically effective drugs such as acamprosate as well as for CRF1, NK1, and kappa 

opioid receptor antagonists (Heilig et al. 2010). It is unlikely that decreased ethanol intake 

observed in this study resulted from a general suppression of ingestive behavior. For 

example, ibudilast reduced ethanol drinking in EtOH mice at doses that did not affect 

drinking in CTL mice. We did not record water intake in mice because fluid intake during 

the 2h sessions is, for the most part, limited to ethanol, with water intake being negligible 

(unpublished observations). In addition, there were no systematic changes in water intake 

for P or HAD1 rats during the 2h test sessions following ibudilast administration except for 

occasional statistically significant increases (see Tables S1 and S2). Nevertheless, ibudilast, 

especially at the 9 mg/kg dose, produced transitory reductions in 24h food, but not water, 

intake in P and HAD1 rats. This effect diminished over 5 days and did not result in reduced 

body weight. Thus, reduced ethanol drinking following ibudilast administration appears to 

be independent of this effect.

Consistent with our study, other groups have demonstrated that the type-4 PDE inhibitor, 

rolipram, decreased alcohol intake in mice and rats (Hu et al. 2011; Wen et al., 2012). 

Ibudilast’s other known molecular target, aside from PDE’s-3,4,10,11 (Gibson et al., 2006) 

is macrophage migration inhibitory factor (MIF) which has been shown in model systems to 

contribute to neuroinflammatory and neurodegenerative conditions (Cho et al., 2010; 

Kithcart et al., 2010). Given the possible presence of these conditions in many chronic 

alcoholics (see Crews et al. 2011, 2013; Qin and Crews, 2012), future studies should 

examine whether treatment with this compound ameliorates some of the deleterious 

consequences of chronic alcoholism. Additional preclinical studies delineating the precise 

mechanisms through which ibudilast reduces alcohol drinking in these animal models are 

warranted, as are studies in additional animal models. The present results suggest initial 

efficacy studies in alcohol dependent patients are justified to confirm the possible utility of 

PDE inhibitors, such as ibudilast, in treating alcohol dependence.
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Figure 1. 
Mean ethanol intake for P (upper panels) and HAD1 (lower panels) rats during the 

maintenance (left side of panel) and relapse (right side of panel) test-phases. * indicates the 

respective dose differed significantly from vehicle (p< 0.05). Grey bar indicates vehicle 

value.
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Figure 2. 
Mean ethanol intake for Chronic Intermittent Ethanol (EtOH) exposed mice and control 

(CTL) mice during Test Cycles 7, 8, 9. For comparison purposes, the horizontal dashed line 

indicates the mean ethanol intake by vehicle-treated CTL mice during test cycle 7. * 

indicates significantly less ethanol intake compared to vehicle-treated mice (p< 0.05). # 

indicates significantly greater intake than CTL group (p< 0.05).

Bell et al. Page 8

Addict Biol. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


