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Abstract

Background: Genomic disorders resulting from deletion or duplication of genomic segments are known to be an
important cause of cardiovascular malformations (CVMs). In our previous study, we identified a unique individual
with a de novo 17q25.3 deletion from a study of 714 individuals with CVM.

Methods: To understand the contribution of this locus to cardiac malformations, we reviewed the data on 60,000
samples submitted for array comparative genomic hybridization (CGH) studies to Medical Genetics Laboratories at
Baylor College of Medicine, and ascertained seven individuals with segmental aneusomy of 17q25. We validated
our findings by studying another individual with a de novo submicroscopic deletion of this region from Cytogenetics
Laboratory at Cincinnati Children’s Hospital. Using bioinformatic analyses including protein-protein interaction network,
human tissue expression patterns, haploinsufficiency scores, and other annotation systems, including a training set of
251 genes known to be linked to human cardiac disease, we constructed a pathogenicity score for cardiac phenotype
for each of the 57 genes within the terminal 2.0 Mb of 17q25.3.

Results: We found relatively high penetrance of cardiovascular defects (~60 %) with five deletions and three duplications,
observed in eight unrelated individuals. Distinct cardiac phenotypes were present in four of these subjects with
non-recurrent de novo deletions (range 0.08 Mb–1.4 Mb) in the subtelomeric region of 17q25.3. These included
coarctation of the aorta (CoA), total anomalous pulmonary venous return (TAPVR), ventricular septal defect (VSD)
and atrial septal defect (ASD). Amongst the three individuals with variable size duplications of this region, one
had patent ductus arteriosus (PDA) at 8 months of age.

Conclusion: The distinct cardiac lesions observed in the affected patients and the bioinformatics analyses suggest that
multiple genes may be plausible drivers of the cardiac phenotype within this gene-rich critical interval of 17q25.3.
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Background
Several rare recurrent DNA copy number variations
(CNVs) and novel genomic loci have been implicated in
congenital cardiac malformations, categorically establish-
ing the importance of CNVs in clinical evaluation of in-
dividuals with CVM [1–5]. It is estimated that genomic
disorders account for approximately 10 % of all CVM
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cases. While 22q11.2 deletion (MIM 188400) remains the
most common genomic disorder responsible for CVM,
other less frequent, but important, contributors include
1p36 monosomy (MIM 607872), Williams-Beuren syn-
drome (7q11.2 deletion; MIM 194050), 8p23.1 deletion
encompassing GATA4 and SOX7, 9q34 deletion involving
EHMT1 (MIM 610253), and 17q21.31 microdeletion in-
cluding KANSL1 (MIM 610443). These genomic disorders
are known to be associated with relatively high penetrance
of CVM, often affecting dosage sensitive genes within the
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deleted intervals. The recurrent 1q21.1 distal deletion
(Class I deletion; MIM 612474) encompassing GJA5 is
also associated with CVM [6] with incomplete penetrance
(10–25 % of cases). The reciprocal duplication 1q21.1
(MIM 612475), on the other hand is strongly linked to
tetralogy of Fallot (TOF) in several studies [2, 7, 8]. The
recurrent 22q11.2 distal deletion is yet another genomic
disorder linked to cardiac malformations in numerous re-
ports [9, 10]. In our previous study of over 700 individuals
with syndromic CVMs, we identified a de novo submicro-
scopic 17q25.3 loss in an affected individual, which was
not observed in over 2,800 controls [1]. Other than this
unique case, pure subtelomeric deletions confined to
17q25.3 have not been reported. Pure 17q25.3 submicro-
scopic copy number gains are also infrequent, and have
been observed in association with distal arthrogryposis,
craniofacial dysmorphism and atrial septal defect (ASD)
[11]; intellectual disability [12, 13]; and with severe micro-
cephaly with concurrent mutation in WDR62 [14]. While
several reports of unbalanced rearrangements of terminal
17q have been described with concomitant monosomy or
trisomy of other autosomes and X chromosome [15–21],
pure subtelomeric rearrangements of 17q25.3 unarguably
remain inadequately delineated amongst the group of sub-
telomeric disorders. Here we report a case series of eight
individuals, five with pure non-recurrent submicroscopic
17q25.3 deletions and three with 17q25 duplication. We
provide a detailed phenotypic characterization associated
with genomic rearrangement of this region, and show a
penetrance of ~60 % for CVMs in this group. This study
identifies a novel genomic locus responsible for congenital
cardiac malformations and identifies potential critical
genes within the terminal region of 17q25.3 related to car-
diac morphogenesis.

Subjects and methods
Human subjects
Patients were ascertained from screening of 60,000 sam-
ples submitted for clinical chromosomal microarray ana-
lyses completed at the Medical Genetics Laboratories
(MGL) of Baylor College of Medicine (BCM). The study
was performed in accordance with the institutional
guidelines for human research with approval by the
Institutional Review Board of Baylor College of Medicine
and Cincinnati Children’s Hospital Medical Center. The
novel genomic loss of subject 1 was previously reported
in the literature [1]. Photographs were obtained for pub-
lication after appropriate parental consents.

Cytogenetic, molecular cytogenetic and molecular analysis
DNA was extracted from whole blood by the Puregene
DNA Blood Kit (Gentra) according to the manufacturer’s
instructions. The procedures for DNA digestion, labeling,
and hybridization for the oligo arrays were performed
according to the manufacturers’ instructions. Seven of
the eight subjects were studied with custom-designed
genome-wide array with approximately 180,000 oligo-
nucleotides, manufactured by Agilent Technologies,
Inc. (Santa Clara, CA) as previously described [22]. The
clinical array is designed by the MGL at BCM with exon-
by-exon coverage for about 1,700 genes and 700 micro-
RNAs. Confirmatory FISH analyses for 17q25 deletion
were performed using RP11-497H17 and RP11-1182P23.
Subject 3 was studied in the Cytogenetics Laboratory at
Cincinnati Children’s Hospital using both bacterial artifi-
cial chromosome (BAC) and single nucleotide polymorph-
ism (SNP) arrays. The SignatureSelect V2 chip containing
approximately 4671 BAC clones concentrated in areas of
clinical significance, was used for array-CGH. Additional
analysis was performed using the Infinium Assay with the
Illumina HD Human610-quad BeadChip platform con-
taining approximately 620,900 markers.
Gene ontology, gene expression, protein-protein
interaction studies
To identify the cardiac-specific genes within the terminal
region of 17q25, we utilized GeneOntology, Gene Expres-
sion, Protein-Protein Interaction networks, haploinsuffi-
ciency scores, and miRNA targeting information to score
57 genes encoded within the terminal 2 Mb region of
17q25.3 for relevance to the cardiac phenotype. This ap-
proach has successfully been used in our previous studies
in identifying novel genes underlying CVMs and epilepsy
[1, 23].
We analyzed the possibility of CNV loss of each gene

contributing to the cardiac phenotype by developing a
pathogenicity score, trained using a set of 251 cardiac spe-
cific genes that we contextualized via a composite set of
annotation resources (Additional file 1: Table S1). To en-
sure that the constituents of the training set spanned the
breadth of genes in which mutations have been observed
to cause CVM, we filtered procedures on the Clinical Syn-
opsis data available in Online Mendelian Inheritance in
Man (MIM) and manually curated all disorders with any
phenotype under the class Cardiovascular. We further ex-
panded upon the training set by identifying additional
genes both co-enriched (Fisher’s test) with the initial set
for the same subset of descriptive terms in the Human
Phenotype Ontology [24], and highly similar (Resnik
method of calculating semantic similarity) to the ini-
tial set [25]. The annotation content employed comp-
rised protein-protein interaction (PPI) data, human tissue
expression patterns, microRNA (miRNA) targeting,
haploinsufficiency scores [26], known gene-to-disease
relationships in the MIM database [27], and phenotype an-
notations in the Gene Ontology (GO) [28] and Mammalian
Phenotype Ontology (MPO) [29].
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Our scores were determined from the ranked sum of
feature scores for each candidate gene. To help ensure
that contributions of features were proportionate to their
variability and measurement scale, we calculated weight-
ing coefficients from the coefficient of variation of mea-
surements within each feature, most heavily weighing
features with the largest amount variability across genes
relative to their mean. We also computed the rank of
sums of the unweighted candidate feature scores. Two
of these features were binary, indicating Yes/No as to
whether a candidate gene has been observed in a re-
ported variant as causing heart phenotype in mice
(MPO) or in MIM. Another of these features, haploinsuf-
ficiency, is itself a previously developed phenotypically ag-
gregate score of developing deleterious phenotypes in the
presence of only a single copy of a candidate gene [26].
We also calculated as a feature, a T-statistic scoring candi-
date gene expression differences between the 10 tissues
expressing training genes at the highest levels and the 10
tissues expressing training genes at the lowest levels. In
addition, we included as a feature the ontological enrich-
ment of each gene measured against the categories signifi-
cantly enriched in annotations to the training genes
compared to the background using a measure of overlap
of GO annotation categories that was determined for each
candidate gene. Finally, we calculated as another feature
the protein-interaction network communicability of each
candidate gene to the training genes normalized to the typ-
ical communicability of each gene to the background using
the InWeb Protein Interaction Database [30] (Additional
file 2: Table S2).
Results
Subject 1
Subject 1 was diagnosed with perimembranous ventricu-
lar septal defect (VSD) and atrial septal defect (ASD)
around one week of age, after she presented with con-
gestive heart failure. She was treated medically with spir-
onolactone, digoxin, and furosemide and was transitioned
off her cardiac medications by the age of 2 years. Repeat
echocardiogram at 4 years of age revealed closure of the
septal defects. Her additional medical problems included
strabismus, early feeding difficulties, gastroesophageal re-
flux, and recurrent otitis media. She was diagnosed with
mixed receptive-expressive language disorder, articulation
disorder and borderline intellectual functioning at 8 years
of age. Her physical examination was remarkable for nor-
mal growth parameters of weight of 27.9 kg (50th-75th
percentile), height of 122.4 cm (10th-25th percentile), and
head circumference of 54.0 cm (50th-90th percentile), fa-
cial dysmorphism including upslanting palpebral fissures,
midface hypoplasia, downturned corners of the mouth
(Fig. 1a), mild scoliosis, and short tapered digits.
The G-banded karyotype analysis and fragile X studies
were normal. The array CGH revealed a de novo copy
number loss in the subtelomeric region of 17q25.3 of
approximately 1.425 Mb in size, confirmed by FISH
analysis. The proximal breakpoint mapped between
77,173,756 and 77,213,237 (hg18) for this terminal dele-
tion including over 40 RefSeq genes.

Subject 2
Subject 2 was diagnosed with infra-diaphragmatic total
anomalous pulmonary venous return (TAPVR) immedi-
ately after birth. He was born at 36 weeks gestation to a
26-year-old female with a history of two prior spontan-
eous abortions at 6 weeks. The pregnancy was compli-
cated by intrauterine growth restriction. The birth
weight was 1734 g (<3rd percentile), birth length was
43 cm (10th percentile), and head circumference was
30 cm (5–10th percentile). Other notable features in-
cluded left eyelid coloboma, tall sloping forehead, smaller
right ear in comparison to the left, high-arched palate, tri-
angular shaped face, single transverse palmar crease on the
left, rocker bottom feet, and sacral dimple (Fig. 1b). He had
a complicated post-operative course requiring extracorpor-
eal membrane oxygenation (ECMO), and passed away on
day of life 13. Autopsy revealed left atrial and ventricular
hypoplasia, ASD (fenestrated secundum type), VSD, bicus-
pid aortic valve, patent ductus arteriosus (PDA), immature
brain, two accessory spleens, and unilobar left lung.
Karyotype study showed 46,XY,add(17)(q25.3), with

additional satellited material of unknown origin attached
to the long arm of one chromosome 17 at band 17q25.3
(Fig. 2a, b). Array CGH revealed a de novo copy number
loss of terminal subtelomeric region of 17q25.3 of ap-
proximately 1.083 Mb in size, with proximal breakpoint
between 77,546,315 and 77,555,228.

Subject 3
Subject 3 was diagnosed with coarctation of the aorta
(CoA), multiple muscular VSDs, a perimembranous
VSD, and unilateral cleft lip in the newborn period.
Brain MRI was significant for the presence of ectopic
neurohypophysis adjacent to the hypothalamus. He had
additional diagnoses of submucus cleft palate, conduct-
ive hearing loss, subglottic stenosis, laryngomalacia, gas-
troesophageal reflux disease with possible intermittent
aspiration, and recurrent croup and upper respiratory
tract infections. No significant dysmorphic features were
noted on evaluation. At 22 months, he underwent bilat-
eral orchiopexy for undescended testicles and complex
circumcision revision. He was noted to have mild glanular
hypospadias with urethral meatal stenosis. At 29 months,
he underwent right nasolacrimal duct stenting. He had
fine and gross motor delays and received occupational
and physical therapies. He was enrolled in a school for the



Fig. 1 Breakpoint mapping in eight subjects with 17q25 deletions and duplications (based on hg18). The red bars indicate deletion and green
bars represent duplications. The first three photos (a, b, c) represent subjects with deletion. Individuals with duplication are shown in panels,
d, e and f. Note the variability of phenotype related to genomic rearrangements in the group. Notably, when parents were tested, all events
were apparently de novo (DN) in origin
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deaf due to severe speech apraxia. At 4 years, 8 months of
age, his growth parameters showed a height at the 22nd

percentile and weight at the 12th percentile.
Array CGH showed a de novo copy number loss of

approximately 684 kb in size within the 17q25.3 region
(77,125,528-77,809,659), sparing the distal segment.
Fig. 2 FISH and partial karyotype images in subject 2 (a, b) and subject 7 (
origin attached to the long arm of one chromosome 17 at band 17q25.3 in
subtelomeric region of 17q25.3 of approximately 1.083 Mb in size. In subje
copy of 17qter translocated to the distal short arm of chromosome 22 (c),
Subject 4
Subject 4 was born at 32 weeks gestation with birth
weight of 1130 g (<3rd percentile) and length of 38.7 cm
(10th percentile). The neonatal course was complicated
by tracheoesophageal fistula and tethered cord. Echocar-
diogram showed VSD and PDA. Brain imaging was
c, d) are shown. Note the additional satellited material of unknown
subject 2, resulting in de novo copy number loss of the terminal

ct 7, FISH analysis revealed a derivative chromosome 22 with the extra
also observed retrospectively on partial karyotype study
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consistent with agenesis of the corpus callosum. Her de-
velopment was globally delayed when evaluated at
12 years. She had normal growth parameters with weight
of 37.5 kg (34th percentile), length of 148.5 cm (44th
percentile), and head circumference of 54.6 cm (50th
percentile), sparse eyebrows laterally, bulbous nose,
notching of alae nasi bilaterally, long digits, and mild
contractures of distal lower extremities.
Array CGH showed a de novo loss of terminal 17q25.3

of approximately 0.80 Mb, with the proximal breakpoint
mapping between 77,799,839 and 77,842,711.

Subject 5
Subject 5 was referred for a developmental evaluation at
30 months of age due to language delay. His cardiac
exam was normal, and echocardiogram was not per-
formed. Brain MRI was significant for Chiari I malfor-
mation. Formal developmental testing using the Griffith
Mental Developmental Scale revealed global develop-
mental delay. There were no significant facial dysmorph-
isms noted on physical examination (Fig. 1c).
The karyotype analysis and fragile X study were nor-

mal. He was found to have a de novo subtelomeric loss
on 17q25.3, confirmed by FISH analysis, spanning ap-
proximately 0.082 Mb, disrupting only two genes, TBCD
(Beta tubulin cofactor-D) and B3GNTL1, leaving the distal
METRNL gene intact. The proximal breakpoint mapped
between 78,452,326 and 78,454,234, and the distal break-
point mapped between 78,536,478 and 78,553,241.

Subject 6
Subject 6 was born at term via cesarean section for fetal
distress. Bilateral congenital cataracts and hypogonadism
were noted at birth. His echocardiogram was found to be
normal. He was additionally noted to have polysplenia.
Brain MRI was significant for thinning of the corpus callo-
sum and cortical dysplasia. At 3 years of age, he was non-
verbal and non-ambulatory with global developmental
delay. On physical examination, facial dysmorphic features
were noted including long narrow face, small upslanting
palpebral fissures, a narrow nasal bridge, and slightly prom-
inent ears (Fig. 1d). Contractures were observed through-
out, with limited extension of the lower extremities.
Karyotype study was normal. The array CGH revealed

a de novo gain in copy number in the subtelomeric re-
gion of 17q25.3 spanning a minimum of 141 kb involv-
ing the TBCD and B3GNTL1 genes, sparing the distal
METRNL gene. The proximal breakpoints mapped be-
tween 78,457,408 and 78,458,509 and the distal break-
point mapped between 78,599,991 and 78,623,171.

Subject 7
Subject 7 was found to have PDA at eight months of
age. His additional problems included failure to thrive
and dysmorphic facial features. Brain MRI showed mild to
moderate cerebral volume loss and minimal cerebellar
volume loss. Physical examination at the age of 18 months
showed relative macrocephaly, a large anterior fontanel, tri-
angular facies, a prominent forehead, hypertelorism, down-
slanting palpebral fissures, and low-set ears (Fig. 1e).
The karyotype was 46,XY at 500-band resolution. The

array CGH revealed a gain in copy number in the
17q25.1-q25.3 terminal region, spanning approximately
8.068 Mb. The proximal breakpoint mapped between
70,528,836 and 70,570,936. FISH analysis revealed a de-
rivative chromosome 22 with the third copy of the
17q25.1-q25.3 region translocated to the distal short
arm of chromosome 22 (Fig. 2c, d). There was no evi-
dence of a rearrangement in the mother by FISH ana-
lysis. Father’s sample was unavailable for testing.

Subject 8
Subject 8 was evaluated at 8 years of age for intellectual
disability and microcephaly. She was born with multiple
cranial suture synostosis and underwent fronto-orbital
advancement in early childhood. Her medical history
was also significant for adjustment disorder with mixed
anxiety and attention deficit hyperactivity disorder
(ADHD). Her echocardiogram was normal. Brain MRI
showed minimal patchy frontal encephalomalacia bilat-
erally. Her ophthalmological exam was unremarkable.
Physical examination at 8 years was consistent with
microcephaly with head circumference of 48.8 cm (<5th

percentile), normal weight, 31.6 kg (80th percentile), and
height 126.1 cm (25th percentile). She was noted to have
malar hyperplasia, high arched palate, micrognathia,
prominent nasal bridge and columella (Fig. 1f ). Neuro-
logical exam was consistent with mild hypotonia.
The array CGH revealed a gain in copy number in the

17q25.3 terminal region, spanning approximately 1.08 Mb.
The proximal breakpoints mapped between 77,546,315
and 77,555,228. Parents were unavailable for further
testing.

Annotation analysis of the region
Phenotype specific pathogenicity evaluation for annota-
tion features determined relative scores for each gene in
the region, with respect to cardiac phenotype. These
scores provide an algorithmic basis for prioritizing genes
for subsequent functional inquiry. Each feature’s variabil-
ity across genes in the region is a necessary condition
for distinguishing among the genes, and the features
with the largest coefficients of variation (defined as sd/
mean) across all genes in the region were: known associ-
ation with heart phenotype(s) in MPO, known causal as-
sociation(s) between hosted variants and MIM disease
and direct interactions [31]. After combining the scores
to produce an aggregate result for each gene, we found



Table 1 Clinical features of eight subjects with non-recurrent deletions and duplications of 17q25

Subject 1 2 3 4 5 6 7 8

Gender Female Male Male Female Male Male Male Female

Event Deletion Deletion Deletion Deletion Deletion Duplication Duplication Duplication

Origin de novo de novo de novo de novo de novo de novo N/A N/A

Minimum Size 1.42 Mb 1.08 Mb 0.68 Mb 0.796 Mb 0.08 Mb 0.14 Mb 8.06 Mb 1.08 Mb

Echo findings Perimembranous VSD
and ASD

TAPVR, VSD, ASD, PDA,
left atrial and
ventricular hypoplasia,
BAV

CoA, multiple
muscular VSDs,
perimembranous
VSD

VSD, PDA Not done Normal study PDA at 8 months of
age

Normal study

Cytoband 17q25.3 17q25.3 17q25.3 17q25.3 17q25.3 17q25.3 17q25.1-q25.3 17q25.3

Start position
(hg18)

77,173,756-77,213,237 77,546,315-77,555,228 77,125,528 77,799,839-77,842,711 78,452,326- 78,454,234 78,457,408- 78,458,509 70,528,836- 70,570,936 77,546,315-77,555,228

End position
(hg18)

78,638,511-78,774,742 78,638,511-78,774,742 77,809,659 78,638,511-78,774,742 78,536,478-78,553,241 78,599,991- 78,623,171 78,638,511-78,774,742 78,638,511-78,774,742

Age at Last
Examination

8 years 2 weeks 5 years, 1 month 12 years 2 years, 6 months 7 years, 5 months 1 year, 7 months 8 years

Brain Imaging Not done Diffuse and severe
cerebral edema

Ectopic
neurohypophysis,
adjacent to the
hypothalamus

Agenesis of corpus
callosum

Chiari I malformation Thinning of the
corpus callosum and
cortical dysplasia

Mild to moderate
global volume loss

Minimal patchy frontal
encephalomalacia
bilaterally, linear focus
of increased FLAIR
signal in left periatrial
white matter

Eye findings Strabismus Left eyelid coloboma Right nasolacrimal
duct obstruction

Unknown Normal Bilateral congenital
cataracts

Mild hyperopia Normal

Muscular/
skeletal

Normal stature, mild
scoliosis

Rocker-bottom feet
bilaterally

Normal stature Normal stature,
bilateral calcaneon-
avicular coalition

Normal stature Limb contractures Short stature Normal stature

Other
problems

Polysplenia, unilobar
left lung

Unilateral cleft lip,
submucous cleft
palate, speech
apraxia, moderate
conductive hearing
loss left ear,
subglottic stenosis,
laryngomalacia,
GERD, bilateral
undescended testes,
glanular hypospadias

TE fistula, tethered
cord

Polysplenia, nocturnal
hypoventilation

ADHD, psychiatric
disorder
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that ACTG1 and ARHGDIA were the highest scoring
genes while MIR3186, OXLD1, MIR6786, MAFG-AS1,
MIR6787, OGFOD3, and WDR45B all shared the
equally lowest score. Detailed information is provided
in Additional file 2: Table S2.

Discussion
Our study describes eight individuals with deletions and
duplications of 17q25, accentuating the occurrence of
congenital cardiac abnormalities in ~60 % of subjects (5/8).
The craniofacial characteristics and additional congenital
anomalies of the described individuals are not typically dis-
tinguishing, possibly due to the unique structural varia-
tions, occurring in a highly gene-rich region of 17q25.
Neurocognitive deficits were noted in all individuals be-
yond one year of age, with language delay frequently ob-
served. Brain imaging abnormalities such as cerebral
volume loss, white matter changes and corpus callosum
abnormalities were noted in 6/8 individuals. Other highly
variable non-cardiac anomalies included cleft palate, eyelid
coloboma, cataracts, tethered cord, and musculoskeletal
abnormalities (Table 1).
Despite a wide phenotypic spectrum observed in this

group, the moderate penetrance of CVM is very compel-
ling. The penetrance of cardiac defects is particularly
higher in individuals with deletions (4/5) as compared to
those with duplications (1/3). Of the five individuals with
non-recurrent deletions (ranging from 0.08 Mb–1.42 Mb),
all were de novo with four having distinct cardiac lesions
including TAPVR, CoA, and septal defects. The smallest
deletion in association with CVM was seen in subject 3,
with the ~0.68 Mb loss encompassing at least 27 RefSeq
genes. While four out of five individuals in our cohort
with 17q25.3 deletions had CVMs, they did not share a
commonly deleted minimal region (Fig. 1). This may
suggest that multiple genes within the terminal ~2 Mb
of 17q25.3 are drivers of cardiac patterning in humans.
Findings suggestive of abnormal laterality were ob-
Table 2 MIM annotated genes with known phenotype within the te

Gene Annotated MIM entries

ACTG1 Baraitser-Winter syndrome 2; Deafness, autosomal dominant 20/26

FSCN2 Retinitis pigmentosa 30

PDE6G Retinitis pigmentosa 57

ARHGDIA Nephrotic syndrome, type 8

PYCR1 Cutis laxa, autosomal recessive, type IIB; Cutis laxa, autosomal rece

ASPSCR1 Alveolar soft-part sarcoma

DCXR Pentosuria

CSNK1D Advanced sleep-phase syndrome, familial, 2

ZNF750 Seborrhea-like dermatitis with psoriasiform elements

Bold numbers indicate subjects with cardiac malformations
served in two individuals; subject 2 with polyspenia and
unilobar left lung; and subject 6 with polysplenia and
normal echocardiogram.
None of the genes within this interval is currently

implicated in human CVM, but cardiac expression is ob-
served for several of these genes, including ACTG1,
P4HB, ARHGDIA, NPLOC4, MRPL12, DCXR, CSNK1D,
SLC16A3 and STRA13 (Additional file 2: Table S2).
To refine cardiac-specific genes within this locus, we

used a bioinformatics approach using Gene Expression,
GeneOntology, Protein-Protein Interaction networks,
haploinsufficiency data, and MPO, and utilized a set of
over 250 cardiac-specific genes to assign pathogenicity
score to the 57 genes within the terminal 2 Mb of 17q25
region. Based on the complex computation analyses,
high priority candidate genes shared by at least 3 indi-
viduals with CVMs included ARHGDIA, MAFG,
CSNK1D, RAC3, HGS, and SIRT7 (Additional file 2:
Table S2). Other genes such as NPLOC4, SLC16A3, and
UTS2R are also important considerations. It is notable
that within this region, none of the deletions include
ACTG1, which is implicated in Baraitser-Winter syn-
drome 2, an autosomal dominant disorder characterized
by neuronal migration defect, distinctive face, and cardiac
defects including bicuspid valve, VSD and PDA [32, 33]
(Table 2).
ARHGDIA, encoding Rho GDP dissociation inhibitor α

(RhoGDIα) was found to have a high pathogenicity score
in our study. Involved in cardiac specific inhibition of
Rho family protein, this gene is deleted or duplicated in
3/5 individuals with CVMs. While increased expression
of RhoGDIα causes defective heart looping, poor trabe-
culation, impaired chamber demarcation, absence of
endocardial cushion and hypocellularity [34], targeted
inactivation of Arhgdia has been shown to cause severe
proteinuria and nephrotic syndrome in mice [35].
Homozygous mutations in ARHGDIA have now been
shown to cause nephrotic syndrome in several families
rminal 2.0 Mb segment of 17q25.3

MIM IDs Inheritance Heterozygous deletion and
duplication in subjects

604717; 614583 AD 7

607921 AD 7

613582 AR 1, 3, 7

615244 AR 1, 3, 7

ssive, type IIIB 612940; 614438 AR 1, 3, 7

606243 1, 2, 3, 7, 8

260800 AR 1, 2, 3, 7, 8

615224 AD 1, 2, 3, 7, 8

610227 AD 1, 2, 4, 7, 8
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[36, 37], consistent with the animal studies. This sug-
gests that this gene is less likely to explain CVM in
individuals with deletions, but may contribute to CVM
when duplicated. It is interesting to note that the two
subjects with duplications distal to this gene (subjects 6
and 8) had normal echocardiogram studies. SIRT7, a
member of the sirtuin family of genes, is another candi-
date gene with a relatively high pathogenicity score af-
fected in 3/5 subjects with CVMs. Sirt7-deficient mice
develop progressive heart hypertrophy with an increased
number of apoptotic cells in myocardium [38]. Sirt7-
deficient cardiomyocytes show a reduced resistance to
oxidative stress, indicating an important role of Sirt7 in
the regulation of stress responses and cell death in the
heart [38]. HGS, encoding hepatocyte growth factor–reg-
ulated tyrosine kinase substrate, is also a good candidate
gene inferred from our bioinformatics analysis and in-
volved in 3/5 subjects. HGS is known to transduce BMP
signaling for proper embryonic development [39], and its
disruption causes early embryonic lethality after gastrula-
tion [40]. Another important candidate gene from our
study affected in 4/5 subjects is UTS2R, encoding uroten-
sin II and known to have potent vasoconstrictor effects.
UTS2R has been shown to have a potential link to cardiac
remodeling such as hypertrophy [41]. However, its role
in structural heart defects remains to be elucidated.
CSNK1D encodes an isoform of casein kinase I, a serine/
threonine-specific protein kinase with important function
in ciliogenesis [42]. Homozygous mice die within days of
birth [43]. This gene is deleted in 3/5 subjects with
CVMs, duplicated in the fourth, and could be either par-
tially deleted or immediately flanking the deletion ob-
served in subject 4 with VSD and PDA. The gene scores
in the top 12 % in the pathogenicity score from our bio-
informatics analysis and remains an excellent candidate
gene for congenital cardiac defects observed in this
study.
Conclusion
The ubiquitous use of next generation sequencing technol-
ogy in individuals with CVMs may ultimately identify
causative gene(s) within this important CNV. Several of the
genes within the 17q25.3 interval have significant number
of predicted loss of function mutations in the Exome Ag-
gregation Consortium (ExAC) database (Additional file 3:
Table S3). Our study highlights a comprehensive pheno-
typic spectrum associated with rarely described 17q25
telomeric deletions and duplications and underscores
the region as a novel cardiac-susceptibility locus.
Availability of supporting data
The data set supporting the results of this article is
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