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Abstract

Background: Chlamydia infection (CT) is one of the most commonly reported sexually transmitted diseases. It is
often referred to as a “silent” disease with the majority of infected people having no symptoms. Without early
detection, it can progress to serious reproductive and other health problems. Economical identification of
asymptomatically infected is a key public health challenge. Increasing evidence suggests that CT infection risk varies
over the range of adolescence. Hence, age-dependent screening strategies with more frequent testing for certain
age groups of higher risk may be cost-saving in controlling the disease.

Methods: We study the optimization of age-dependent screening strategies for population-based chlamydia
infection screening among young women. We develop an age-structured compartment model for CT natural
progress, screening, and treatment. We apply parameter optimization on the resultant PDE-based system dynamical
models with the objective of minimizing the total care spending, including screening and treatment costs during
the program period and anticipated costs of treating the sequelae afterwards). For ease of practical implementation,
we also search for the best screening initiation age for strategies with a constant screening frequency.

Results: The optimal age-dependent strategies identified outperform the current CDC recommendations both
in terms of total care spending and disease prevalence at the termination of the program. For example, the
age-dependent strategy that allows monthly screening rate changes can save about 5 % of the total spending.
Our results suggest early initiation of CT screening is likely beneficial to the cost saving and prevalence reduction.
Finally, our results imply that the strategy design may not be sensitive to accurate quantification of the age-specific CT
infection risk if screening initiation age and screening rate are the only decisions to make.

Conclusions: Our research demonstrates the potential economic benefit of age-dependent screening strategy design
for population-based screening programs. It also showcases the applicability of age-structured system dynamical
modeling to infectious disease control with increasing evidence on the age differences in infection risk. The research
can be further improved with consideration of the difference between first-time infection and reinfection, as well as
population heterogeneity in sexual partnership.
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Background
Sexually transmitted infections with Chlamydia tracho-
matis (CT) are among the most commonly reported
infectious diseases in the United States [10] and many
other developed countries [38]. The infection is caused
by bacterium C. trachomatis [7]. It is estimated that
about 1 million individuals in the U.S. are infected with
CT. Due to lack of specific symptoms in many CT infec-
tion cases [22], the infection may lead to major long-
term morbidities such as pelvic inflammatory disease,
ectopic pregnancy, and infertility [9, 36]. Together with
other STDs, CT infection inflicts significant human and
economic costs [26].
At present, CT infection can be accurately detected

and easily treated with early detection. Thus, CT
screening has emerged as a key public health interven-
tion [6] and the disease control relies primarily on the
cost and effectiveness of the screening. Several eco-
nomic studies found CT screening to be cost-effective,
and even cost-saving (e.g., [17–19, 21, 35]). For litera-
ture reviews on the economic studies, we refer to Low
et al. [23, 24]; Roberts et al. [28]. However, most of the
existing economic studies assumed a constant CT in-
fection rate over the studied age range, which typically
spans adolescence and early adulthood. Increasing
evidence suggests that the CT infection risk decreases
with age (e.g., [3, 13, 31]), mainly due to more stabi-
lized sexual partnership and possibly also due to
increased immunological response to CT over age.
Hence, one would expect that a screening strategy with
age-dependent screening rate, i.e., treating screening
proportion in the population as a function of age,
would be more cost-saving than the strategies assum-
ing a constant rate. In this paper, we incorporate the
age dependency of the infection risk into an economic
study of CT screening with nucleic acid amplification
testing [33]. We optimize age-dependent screening
strategies for a population-based screening program,
which offers tests systematically to all individuals in
the target group within a framework of agreed policy,
protocols, quality management, monitoring and evalu-
ation [16].
To the best of our knowledge, only few simulation-

based economic studies have taken the age-dependency
into account. For example, Hu et al. [18, 19], basing
their studies on an earlier observational study in the
Netherlands [8, 15], assumed that the probability of ac-
quiring CT is constant for women from early ages and
decreases with a constant annual rate after then. While
the simulation-based analyses have compared tailored
screening strategies that recommend different screen-
ing rates to different population subgroups based on
some risk measure (e.g., [18, 19, 21]), we have not
witnessed any optimization work on identifying age-

dependent CT screening strategies, which are, in some
sense, a subset of risk-based strategies.
In this paper, we model the population dynamics,

related to CT transmission, screening, and treatment,
with a set of partial differential equations (PDE) that in-
corporate age-dependency on the CT infection risk. We
formulate a parameter optimization problem subject to
the PDE model to identify the screening rates at differ-
ent age points over a range (i.e., an age-dependent
parameter profile) such that some per-capita cumulative
cost is minimized. To summarize our contribution, we
are among the first that conduct economic analyses of
population-based CT screening programs through age-
structured systems modeling and optimization.
In this paper, we also reasonably specify the studied

cohort so that we can reduce the PDE model to a set
of ordinary differential equations (ODEs) for simplify-
ing the numerical optimization. We next focus on the
optimization over a set of more implementable strat-
egies. In anticipation that the optimal age-specific
screening strategy may be difficult to implement as
optimal screening rates obtained from the above model
may vary significantly between consecutive age points,
we consider cases where a constant screening rate is
applied to a truncated age range. Specifically, we
consider optimizing the screening start age. Finally, we
make a simplifying assumption on the age-specific
infection risk, with which we remodel the system
dynamics and explore the benefit in the numerical
optimization. Through this simplification, we also check
how robust the optimal strategy with a constant screening
rate is to the estimate of the age-specific CT infection risk
profile. After presenting the research methodology, we
report our numerical studies and discuss their policy im-
plications. At the end of the paper, we draw conclusions
and outline future research.
Differential equation based systems dynamic model-

ing has been widely used in infectious disease control.
For a general introduction, we refer to Keeling and
Rohani [20]. For studies on CT transmission dynamics,
we refer to Martin et al. [25]; Sharomi and Gumel [29].
Meanwhile, ODE-based models have been applied to
economic studies of screening programs. For example,
Althaus et al. [1] applied an SEIRS (susceptible-ex-
posed-infected-recovered-susceptible) model, which is
widely used in the infectious disease modeling litera-
ture (e.g., [2, 15]), to assess the impact of screening
programs on CT prevalence reduction. Regan et al. [27]
extended the SEIRS model to incorporate the additional
state of receiving treatment. Note that the two studies
above did not consider cost or cost-effectiveness of the
screening programs. Our work differs from previous in
that we apply nonlinear optimization to design optimal
strategies.
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Methods
Optimization of age-dependent screening strategies
An age-structured SEIRS model
We adapt a widely used SEIRS compartment model [1]
to illustrate the system dynamics associated with CT
transmission, screening, and treatment. We then capture
the system dynamics with a multi-compartment model
and mathematically formalize the age-structured popula-
tion heterogeneity with a set of PDEs.
Compartment modeling has been widely used in

modeling infectious disease transmission [2, 4, 20, 34].
In recent years, it has been used to model various specific
screening, vaccinating, pharmaceutical, and therapeutic
interventions for dealing with relevant public health prob-
lems (e.g., [12]). To many infectious diseases, age has a
deep influence on the rate of disease spread in a popu-
lation, especially the contact rate [2, 20]. To sexually
transmitted diseases, the contact rate is affected by the
sexual behavior, which is often age dependent.
Figure 1 presents the age-structured compartment

model. In the figure, the solid lines indicate transitions
following the natural history and standard pharmaceut-
ical/therapeutic intervention of the disease. The dashed
lines indicate additional transitions due to screening.
The system dynamics is explained as follows. Let t and τ
be the time and age indices, respectively. At any time t ε
[0, T], each population of age τ ε [0, A] is divided into
five subgroups as follows. Susceptible population sub-
group, denoted by S(t,τ), infected by the entire infected
population with an age-dependent rate β(τ) > 0. They
then experience an incubation period at rate γ > 0,
during which they are denoted by E(t,τ). After the
incubation period, the infection symptom becomes
onset among a fraction of the infected population, de-
noted by Is(t,τ), whereas other infected people, de-
noted by Ia(t,τ), do not show any symptom. We
denote f ε [0, 1] to be the probability that an infected

individual remains asymptomatic. In the absence of
screening, symptomatically infected people clear their
infections at a rate rs > 0, which can be interpreted as
treating the infection by a general practitioner with
symptom onset and subsequently curing the disease.
We assume that the treatment is sought immediately
after the symptom onset. Asymptomatically infected
people may develop acute pelvic inflammatory disease
(PID), then immediately seek inpatient treatment, and
subsequently cure the disease at a rate rPID >0. Alter-
natively, they may recover through natural clearance a
rate ra >0. We denote such people to be R(t,τ) and de-
note μ > 0 to be the rate at which they have temporary
immunity before becoming susceptible to reinfection.
With screening, the entire population is screened at
an age-specific rate λ(τ) (i.e., on average each individ-
ual will be screened within 1/ λ(τ) years from age
point τ). We assume the screening test is 100 % accur-
ate and treatment is sought immediately after an infec-
tion is detected. We further assume that the screening is
independent of the processes of infection clearance among
both asymptomatically and symptomatically infected
people. Hence, with screening, the overall infection clear-
ance rates are rs + λ(τ) and rPID + λ(τ) for symptomatically
and asymptomatically infected, respectively.
The notation used in the model is summarized in

Table 1. The system dynamics is described with the fol-
lowing PDEs. In mathematics, a PDE is a differential equa-
tion that contains unknown multivariate functions and
their partial derivatives. It is in contrast to ordinary differ-
ential equations (ODEs), which deal with functions of a
single variable and their derivatives. PDEs are used to for-
mulate problems involving functions of multiple variables.
PDEs can be used to describe a wide variety of phenom-
ena such as sound, heat, electrostatics, electrodynamics,
fluid flow, elasticity, or quantum mechanics. For a general
introduction on PDE, we refer to [14].

Fig. 1 An age-dependent SIER Model for CT transmission and screening. Each box (compartment) represents a particular state that the total
population is stratified into. For instance, S standards for the susceptible population subgroup. The solid lines indicate transitions due to natural
disease progression and standard therapeutic intervention; and the dashed lines indicate additional transitions due to screening. With the system
dynamics, each subpopulation size may fluctuate over time. Note that this is an age-structured model, which implies that the fluctuation of each
subpopulation size is also age dependent, i.e.,many transition rates are age-dependent such as β
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0
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∂
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þ ∂
∂τ

� �
Ia t; τð Þ ¼ f γE t; τð Þ− ra þ rPID þ λ τð Þð ÞIa t; τð Þ;

∂
∂t

þ ∂
∂τ

� �
Is t; τð Þ ¼ 1−fð ÞγE t; τð Þ− rs þ λ τð Þð ÞIs t; τð Þ;

∂
∂t

þ ∂
∂τ

� �
R t; τð Þ ¼ raIa t; τð Þ−μR t; τð Þ:

Typically, a screening program estimates in advance the
size of the cohort it can deal with based on its capacity
and keeps its size relatively constant by synchronizing
the recruitment and exit processes. Without loss of gen-
erality, we set the cohort size to be 1 at any time point,

i.e.,
ZA

0

S t; τð Þ þ E t; τð Þ þ Ia t; τð Þ þ Is t; τð Þ þ R t; τð Þð Þdτ ¼ 1; ∀t:

Once the screening rate profile, as well as the bound-
ary and initial conditions, are given, the state of the sys-
tem can be determined for any given time point with the
above PDEs. The screening and treatment costs are cu-
mulated accordingly over the program duration. An op-
timal screening rate profile can then be identified to
minimize the per-capita cumulative cost. We next present
a parameter optimization problem subject to the PDE
constraints.

A parameter optimization problem
We present an optimal screening strategy design prob-
lem for the generic screening program. In the objective
function, we denote cs to be the unit-time cost of screen-
ing an individual for CT, ct to be the unit-time cost of
treating an individual for CT with antibiotics, cPID to be
the unit-time cost of treating an individual for acute
PID, and cend to be the expected cost of treating an indi-
vidual for possible future PID sequelae when she leaves
the cohort at age A with undiagnosed asymptomatic CT.
The expectation takes the probability of developing three
major PID sequelae (i.e., chronic pelvic pain, ectopic
pregnancy, and infertility) and their associated treatment
cost. Given a screening rate profile λ(τ), we model four

types of cumulative cost over a screening period of T as
follows.

� CT screening cost: Cs λ τð Þð Þ ¼ csT
ZA

0

λ τð Þ;

� CT Treatment cost: Ct λ τð Þð Þ ¼
ZT

0

ZA

0

ct ½ðrs

þ λ τð ÞÞIs t; τð Þ þ λ τð ÞIa t; τð Þ�

dτdt;

� Acute PID treatment cost:

CPID λ τð Þð Þ ¼
ZT

0

ZA

0

cPIDrPIDIa t; τð Þdτdt;

� PID sequelae treatment cost:

Cend λ τð Þð Þ ¼
ZT

0

cendIa t;Að Þdt:

Note that the screening cost applies to the entire cohort,
which is assumed to be 1. We define the cumulative cost
as Ctotal(λ(τ)) =Cs(λ(τ)) +Ct(λ(τ)) +CPID(λ(τ)) +Cend(λ(τ)).
The optimization problem is then formulated as minλ τð Þ
Ctotal λ τð Þð Þ subject to the PDEs introduced above and the
boundary and initial conditions. While attempting to
minimize the per-capita cumulative cost, we also com-
pare different strategies in terms of the terminal CT

prevalence at time t, defined as
ZA

0

Ia t; τð Þ þ Is t; τð Þð Þdτ.

To solve this parameter optimization problem, we
discretize it to a finite-dimensional nonlinear program-
ming problem. Note that the discretization does not sig-
nificantly affect the solution quality given that 1) many
model parameters have only age-dependent point esti-
mates; and 2) it is not feasible to modify the screening
intensity in a continuous fashion. We divide the time
interval [0, T) into Nt subintervals with equal step size
ht, i.e., Ntht = T. Then the end points of the subintervals

are t0 ¼ 0; t1 ¼ ht;…; tNt ¼ T . We divide the age interval

[0, A) into Nτ subintervals with equal step size hτ. Then

the end points of the subintervals are τ0 ¼ 0; τ1 ¼ hτ;…;

tN τ ¼ A . We use i, j to denote the indices for time and
age, respectively. We use βj and λj to denote the

Table 1 Notation in the age-structured compartment model and corresponding PDEs

S(t,τ) Susceptible f Fraction of asymptomatic infections

E(t,τ) Exposed 1/γ Incubation time

Ia(t,τ) Asymptomatically infected 1/ra Duration of the asymptomatic period

Is(t,τ) Symptomatically infected 1/rs Duration of the symptomatic period

R(t,τ) Recovered 1/μ Duration of the temporary immunity

β(τ) Age-dependent infection rate after natural clearance of asymptomatic infection

λ(τ) Age-dependent screening rate 1/rPID Duration of acute PID onset
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discretized values for β(τ) and λ(τ) with τ = jhA. The PDEs
for each i = 0, …, NT - 1, and j = 0, …, Nτ - 1, are then dis-
cretized as follows.

Siþ1;j−Si;j

ht
þ Si;jþ1−Si;j

hτ
¼ −βjSi;j

XNτ−1

k¼0

Ii;ka þ Ii;ks
� �

þ rPID þ λj
� �

Ii;ja þ rs þ λj
� �

Ii;js þ μRi;j;

Eiþ1;j−Ei;j

ht
þ Ei;jþ1−Ei;j

hτ
¼ βjSi;j

XNτ−1

k¼0

Ii;ka þ Ii;ks
� �

−γEi;j;

Iiþ1;j
a −Ii;ja
ht

þ Ii;jþ1
a −Ii;ja
hτ

¼ f γEi;j− ra þ rPID þ λj
� �

Ii;ja ;

Iiþ1;j
s −Ii;js
ht

þ Ii;jþ1
s −Ii;js
hτ

¼ 1−fð ÞγEi;j− rs þ λj
� �

Ii;js ;

Riþ1;j−Ri;j

ht
þ Ri;jþ1−Ri;j

hτ
¼ raI

i;j
a −μR

i;j:

The objective function is discretized as:

Ctotal λ
0; ; λ1;…; ; λNτ−1

� � ¼ csT
XN τ−1

j¼0

λj þ
XNT−1

i¼0

XN τ−1

j¼0

ct rs þ λi;j
� �

Ii;js þ λi;jI i;ja
� 	þXNT−1

i¼0

XN τ−1

j¼0

cPIDrPIDI
i;j
a þ

XNT−1

i¼0

cendI
i;N τ
a :

Given the two subinterval counts (Nt and Nτ), the
boundary and initial conditions, and the estimated CT
infection risk for j = 1,…, Nτ, we obtain a nonlinear
optimization model with finitely many decision variables,
linear objective function, and quadratic constraints. We
use standard constrained nonlinear optimization solvers
(e.g., active-set and interior point) available in the
MATLAB Optimization Toolbox [4].

A special case for cohorts with uniform age distribution
In this section, we consider a special case of the above
PDE model, which is more suitable to the real practice
of a screening program. In real practice, a screening pro-
gram often only targets those of age 0 (i.e., the smallest
age to be concerned for CT infection) for recruitment
and terminates CT screening for those who reach A (i.e.,
the largest age to be concerned for CT infection). A gen-
eral belief is that the number of infected individuals at
age 0 is negligible. That is, for any t, we have S(t,0) = p,
where p is denoted as the rate with which new partici-
pants enter the cohort, and E(t,0) = Ia(t,0) = Is(t,0) =
R(t,0) = 0. We further assume that the age of the studied
open cohort follows a uniform distribution and term
such a cohort uniformly aged cohort. That is, for any t,
we have S(t,τ) + E(t,τ) + Ia(t,τ) + Is(t,τ) + R(t,τ) = p = 1/A
for τ ∈ (0, A]. Hence, we can align the age domain with
the time domain and thus reduce the age-structured
PDE model to a time-invariant ODE model with age-
specific CT infection risks. We term this model ODE_1.
Since the screening strategy design is only considered up
to age A, β(τ) for τ ≥A can be arbitrarily specified. To
solve the parameter optimization problem for ODE_1,
we again resort to discretization. In the following, we

further study this special case with a smaller set of age-
independent screening strategies, which are more imple-
mentable in practice.

Optimization of age-independent screening policies
Our study in this section was inspired by the current CT
screening recommendations. The CDC guideline recom-
mends annual CT screening for women under age 25
but does not specify the initial screening age [34]. We
consider policies similar to the current CDC recommen-
dations structure-wise. The considered policies recom-
mend to start CT screening for women at some age
between 0 and A, and continue the screening until A
with a constant frequency. Hence, the optimization
problem is intended to determine an optimal screening
initiation age and optimal screening rate. Note that Teng
et al. [12] studied the problem with fixed screening initi-
ation age and only optimized the screening rate over a
fixed age range. Their problem is a parameter optimization
problem with only one decision variable and assumes a
constant infection risk. For each screening initiation
age τ̂ , we have a similar parameter optimization prob-
lem, but with age-dependent infection risk. We use a
standard line search algorithm without derivative infor-
mation in MATLAB to solve the inner problem for
each given screening initiation age. We apply one-
dimensional explicit enumeration to select the optimal
screening initiation age.
We further our study on this set of age-independent

screening policies by considering a simplified case where
the CT infection risk is assumed to be constant within
the interval before screening initiation and within the
interval after the initiation, respectively. With this sim-
plification, the CT dynamical system is approximated
with a two-part age-independent time-invariant coupling
systems. We expect that solving the optimization prob-
lem on the two-part coupling system could decrease the
computational time while only suffering slight reduction
in terms of solution quality. Figure 2 illustrates a 10-
compartment model for the two-part system. Given
screening initiation age τ̂ , we divide the interval [0, A)
into two subintervals [0, τ̂ ) and [ τ̂ , A). We use S0, E0,
Ia0, Is0, and R0 to denote the compartments for age range
[0, τ̂ ), and use S, E, Ia, Is, and R to denote the compart-
ments for age range [τ̂ , A). The disease transmission oc-
curs in both age ranges, while screening is administered
only to [τ̂ , A). With the assumption of two constant CT
infection risks, we use β0 and β to denote the risks in
the two age ranges, respectively. All cost and other tran-
sition parameters remain the same as introduced earlier.
To formulate the optimization problem, we denote M0

and M to be the total populations in the two age ranges.
With an uniformly aged cohort, we have M0/M = τ̂/(A - τ̂ )
and M0 +M = 1 for any given τ̂ . We can thus uniquely

Teng et al. BMC Public Health  (2015) 15:639 Page 5 of 11



determine the values of M0 and M. With the above nota-
tion, we introduce model ODE_2 as follows. For [0, τ̂ ), the
system dynamics is governed by

dS0
dτ

¼ −β0S0
Ia0 þ Is0ð Þ

M0
þ rPIDIa0 þ rsIs0 þ μR0 þ p−

S0
M0

p;

dE0

dτ
¼ β0S0

Ia0 þ Is0ð Þ
M0

−γE0−
E0

M0
p;

dIa0
dτ

¼ f γE0− rPID þ rað ÞIa0− Ia0
M0

p;

dIs0
dτ

¼ 1−fð ÞγE0−rsIs0−
Is0
M0

p;

dR0

dτ
¼ raIa0−μR0−

R0

M0
p:

For age range [τ̂ , A), the system dynamics is governed by

dS
dτ

¼ −βS
Ia þ Isð Þ
M

þ rPID þ λð ÞIa þ rs þ λð ÞIs þ μRþ S0
M0

p−
S
M

p;

dE
dτ

¼ βS
Ia þ Isð Þ
M

−γE þ E0

M0
p−

E
M

p;

dIa
dτ

¼ f γE− rPID þ ra þ λð ÞIa þ Ia0
M0

p−
Ia
M

p;

dIs
dτ

¼ 1−fð ÞγE− rs þ λð ÞIs þ Is0
M0

p−
Is
M

p;

dR
dτ

¼ raIa−μRþ R0

M0
p−

R
M

p:

We present the objective function with respect to the
screening initiation age τ̂ and constant screening rate λ.

� CT screening cost: Cs τ̂ ; λð Þ ¼ csλM A−τ̂ð Þ;
� CT treatment cost:

Ct τ̂ ; λð Þ ¼
ZA

0

ct rs Is0 þ Isð Þ þ λ Is þ Iað Þ½ �dτ;

� Acute PID treatment cost:

CPID τ̂ ; λð Þ ¼
ZA

0

cPIDrPID Ia0 þ Iað Þdτ;
� PID sequelae treatment cost:

Cend τ̂ ; λð Þ ¼
ZA

0

cendp
Ia
M

dτ;

� Per-capita cumulative cost:
Ctotal τ̂ ; λð Þ ¼ Cs τ̂ ; λð Þ þ Ct τ̂ ; λð Þ þ CPID τ̂ ; λð Þ þ Cend τ̂ ; λð Þ:

The optimization problem is thus presented as minτ̂ ;λ
Ctotal τ̂ ; λð Þ subject to ODE_2.
With any given screening initiation age τ̂∈ 0;A½ Þ , β0

and β become known. Hence, we can uniquely set the
initial condition on S(τ̂ ), E(τ̂ ), Ia(τ̂ ), Is(τ̂ ), and R(τ̂ ). We
also determine the cost accumulated from 0 to τ̂ . Then
we can reduce the optimization problem to a parameter
optimization problem based on the 5-compartment
ODE model for τ∈ τ̂ ;A½ Þ , for which we can adapt the
optimization method proposed in Teng et al. [12]. That
is, for any τ̂ , the gradient of the objective function, i.e.,
dCtotal τ̂ ;λð Þ

dλ , can be derived with a cubic interpolation
method. We apply a standard linear search algorithm
with derivatives in MATLAB to solve the inner problem
given each screening initiation age. We then apply one-
dimensional explicit enumeration to select the optimal
screening initiation age.

Results and discussion
We focus on the special case of uniformly aged cohort
for our proof-of-concept numerical studies. We acquired
model parameters from [1, 18] (Table 2). We estimated
age-dependent infection risk β(τ) based on a longitudinal

Fig. 2 An age-independent SIER Model with two constant CT infection rates over the periods before and after screening initiation. This is a
10-compartment model with two portions. The upper portion captures the disease progression without screening from age 0 to the age
determined to start screening. The lower portion captures the disease progression with screening from the age determined to start screening
to age A. The solid lines and dashed lines are used in the same way as in Fig. 1 to indicate the dynamics. The dotted lines indicate the necessary vital
dynamics with population aging
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study of CT infection among recruited inter-city young
women in a Midwest U.S. city [14] (Fig. 3). We set the
screening initiation and termination ages to be 14 and
25, respectively, largely according to the CDC recom-
mendation on the universal screening. Note that some
of the work in the existing literature has conducted eco-
nomic studies on annual and biannual universal screen-
ing beyond age 25. It is clear that we can extend the
upper bound of the integrations (i.e., increase A) to ac-
commodate this change. We will leave it to our future
study.
We study the three parameter optimization problems

presented earlier. In summary, the first problem aims to
identify an optimal age-dependent screening strategy
based on the time-invariant ODE model with an age-
specific CT infection risk profile (i.e., ODE_1). The

second problem aims to identify the screening initiation
age and constant screening rate thereafter, again based
on ODE_1. The third problem aims to make the same
set of decisions as the second problem but the problem
is based on the two-part time-invariant ODE model with
a constant CT infection risk over each of the two age
ranges (i.e., ODE_2). We term the optimal screening
strategies identified in the three optimization problems
S1, S2, and S3 in that order. We compare the three opti-
mal strategies both in per-capita cumulative cost and ter-
minal CT prevalence. We also report a comparative study
with no screening and with the current recommendations.

� For S1, the screening rate profile is represented as a
multi-step function with identical step size depending
on the maximal allowable frequency of strategy
update. We chose to update the screening strategy
either yearly or monthly. We report the optimal
strategies in Fig. 4.

� For S2, we present the optimal screening rate with
all possible screening initiation ages (every month
between 0 and A), as well as the associated per-
capita cumulative cost and terminal prevalence in
Fig. 5. The smallest unit for the screening initiation
age is one month. The strategy with the minimum
cost is the one that starts the screening for every
individual when she reaches the 6th month after the
14th birthday. The screening rate is 1.511 times per
year, which implies that an individual should test for
CT roughly every 8 months.

� For S3, we present the optimal screening rates with
all possible screening initiation ages, as well as the

Fig. 3 Initial condition for model ODE_1

Table 2 Parameters pertaining to costs and disease transition
rates

Parameter value

f 0.625

1/γ 14 days

1/ra 433 days

1/rs 35 days

1/μ 90 days

1/rPID 1000 days

cs $13

ct $36

cPID $1898

cend $192
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Fig. 4 Optimal age-dependent screening strategy (S1)

Fig. 5 Screening rate, per-capita cumulative cost, and terminal prevalence of strategy S2 for each possible screening initiation age
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associated per-capita cumulative cost and terminal
prevalence in Fig. 6. The strategy with the minimum
cost is the one that starts the screening for every
individual when she reaches the 4th month after the
14th birthday. The screening rate is 1.499 times per
year.

� In Table 3, we compare the three strategies. First,
the three studied strategies all outperform the
strategy of no screening and the current CRC

recommendations in both per-capita cumulative cost
and terminal CT prevalence. Second, the comparison
indicates the superiority of age-dependent CT
screening strategy (S1 vs. S2) and quantifies its
potential impact to the screening practice. Finally,
the comparison shows comparable solution
qualities between S2 and S3, suggesting the strategy
design may not be sensitive to the quantification of
age-dependent CT infection risks. In terms of
computation time, on a PC with a 2.33GHz Intel Core
2 Duo Processor and 2GB RAM, the computation
time is about 3.5 s for identifying S3, compared to 13 s
for S2. This is mainly due to the fact that the gradient
is available to the one-dimensional linear search for S3
but not for S2.

Discussion
Overall, our numerical studies suggest that considering
age-dependency in the screening strategy design is more
cost-saving than currently recommended strategies. Our
results further offer insights into various aspects of the

Table 3 Comparison between the screening strategies

Screening strategies Per-capita cumulative
cost

Terminal
prevalence

No screening $874 13.12 %

CDC
Recommendations

$706 8.15 %

S1 w/ yearly update $675.4 6.75 %

S1 w/ monthly update $673.0 6.69 %

S2 $691.1 6.94 %

S3 $691.7 6.92 %

Fig. 6 Screening rate, per-capita cumulative cost, and terminal prevalence of strategy S3 for each possible screening initiation age
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design. With the study on S1, the results suggest that the
age-dependency on the screening rate in an optimal screen-
ing policy roughly coincides with the age-dependency on
the CT infection risk. That is, the screening rate should be
intensified around age 16 – 18, which is the age range
where the infection risk is highest. Compared to the current
recommendations, biannual screening or screening every
8 months is more likely to be optimal from the societal
cost-saving viewpoint. With the study on S2, the results
suggest that it may be beneficial to initiate the screening
earlier at least for the tested intercity cohort, which has
relatively high CT prevalence. This also suggests that it is
important to consider the potential costs incurred by the
PID sequelae. Thus, it is important to provide accurate esti-
mate on the probabilities of developing the sequelae in any
strategy design activities.
Comparing S2 to S1 suggests that constant rate screen-

ing is likely to be acceptable given the small increase in
both outcomes. Comparing S3 to S2 suggests that accurate
quantification of age-specific CT infection risks may not be
essential to the design of strategies with constant screening
rate. Note that almost all the existing work largely relies on
relatively crude estimates due to data scarcity and ethical
concerns [31]. Finally, the fast computations suggest that it
may be appealing to expand our models to incorporate
high-level population heterogeneities.

Conclusions
In this research, we present a series of parameter
optimization models to investigate age-dependent screen-
ing strategies for controlling chlamydia infection among
young women. Through our modeling research, we at-
tempt to inform the design of optimal population-based
CT screening strategies from a societal cost-saving per-
spective while ensuring a sufficient level of practicality.
For the analysis, we extend a widely used SEIRS model to
incorporate age-dependent screening rate profile and
apply a gradient-based line search algorithm for ease of
numerical optimization.
Our future research will mainly be focused on detailed

model development. For example, it is evident that risks
of first-time infection and subsequent reinfection differ
due to partial protective immunity against CT [11, 37].
We will formulate the parameter optimization models
that differentiate individuals with first-time infection and
reinfection. We will also consider different patterns in
ongoing sexual partnership. We plan to adapt the pair
compartment model in Heijne et al. [30], which captures
sexual partnership duration and reinfection. The investi-
gation on sexual partnership and effective management
of sex partners motivates us to explore the use of stochas-
tic network models (e.g., [5, 32]), which provides added
flexibility in modeling sexual partnership networks of
complex structure. We will thereby develop optimization

models based on stochastic network models for CT trans-
mission among heterogeneous sex partners. In addition,
we will model programmatic adherence and testing ac-
curacy to make our strategy design more suitable in
real-world CT infection control. Other future research
directions include design of more efficient parameter
optimization solution methods, systematic literature re-
view for model parameter estimation, and sensitivity
analyses on the model parameters.
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