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ABSTRACT

Glaucoma, a leading cause of blindness worldwide, can be de-
tected using retinal thicknesses from spectral-domain optical
coherence tomography (SD-OCT) scans of the macula. We
calculate the desired thickness maps as the distance between
the inner-limiting membrane (ILM) and retinal pigmented ep-
ithelium (RPE) of the retina. To delineate these two layers, we
use a set of two deformable open surfaces that are driven by
intensity contrast, while preserving their shape and topology
properties, i.e. local surface smoothness and inter-surface dis-
tance smoothness. To evaluate our method, qualified graders
manually segmented 30 random sections from 20 OCT im-
age stacks, in triplicate; we make comparisons with obtained
ground-truth and the clinically tested Heidelberg Spectralis
segmentation. We show the superiority of our method with
respect to accuracy and average execution time (∼7 secs), val-
idating it as a clinical tool.

Index Terms— Retinal thickness, early detection of glau-
coma, interacting deformable surfaces

1. INTRODUCTION

Glaucoma is one of the leading causes of significant vision
loss and blindness throughout the world [6, 13]. The disease
is characteristically defined as a chronic optic neuropathy that
results in the loss of retinal ganglion cells and their axons (i.e.
retinal nerve fiber layer; RNFL), with increased intraocular
pressure being the primary risk factor. It is the cumulative
loss of these retinal ganglion cells that leads to permanent
visual field defects and eventual blindness. Thus, the goal
of clinicians is to detect glaucoma as early as possible in the
disease process in order to preserve visual function.

New advances in technology have resulted in the devel-
opment of quicker, high-definition spectral-domain optical
coherence tomography (SD-OCT) imaging with retinal im-
age resolution of 3.9µm [10]. Glaucoma analysis software
has been developed to examine for glaucomatous retinal de-
fects by identifying loss of macular retinal thickness and
asymmetry between the superior and inferior hemifields [1].
Total retinal thickness is calculated as the distance between
the inner-limiting membrane (ILM), the interface between
the dark vitreous space and the bright RNFL, and the highly
reflective retinal pigmented epithelium (RPE), the last clear
boundary between retina and the choroid vessels (Fig. 1(a)).

(a) (b)
Fig. 1: Retinal images taken from within an SD-OCT image stack.
Note Cartesian axes for future reference. (a) Purple lines denote the
two layers of interest: inner-limiting membrane (ILM) above, retinal
pigmented epithelium (RPE) below. Red arrows indicate potential
challenges for ILM estimation: (i) vitreous artifact at left presents an
area of continuous contrast similar to the ILM; (ii) topological dip at
the foveola is often accompanied by a reduction in absolute contrast,
making a concrete measure of contrast impractical. Green arrows
indicate potential issues for capturing RPE: both the choroid (left)
and inner/outer photoreceptor segment junction (right) provide areas
of contrast similar to that of RPE. (b) Colored grids demonstrate the
result for a 3-dimensional segmentation of the two layers.

Since the advent of SD-OCT, various automatic seg-
mentation algorithms have been employed to determine the
layers of the human retina and the corresponding thick-
nesses between them. A recent review article [2] categorizes
these methods into appearance classification, deformable
models, global optimization using graph cuts, and model-
fitting/registration methods. Supervised classification meth-
ods, specifically support vector machines, are effective in
obtaining desired boundaries [15]. For analysis of image
stacks (3D), however, the computational complexity is be-
yond the maximum allowable segmentation time in clinical
settings; additionally, the non-uniform noise throughout the
volume is a challenge for sufficient sampling during super-
vised learning. Model-fitting and registration methods use
a predetermined shape to fit to the data. These methods are
usually computationally efficient, but lack robustness when
dealing with shape formations beyond the expected (trained)
variations [4]. Lastly global optimization methods mainly
arise from the utilization of the max-flow min-cut algorithm
commonly paired with graph models [7, 5], they can be
computationally efficient and robust to local observation vari-
ations, but they do not incorporate shape and domain-specific
topology information.

The realm of deformable models can be divided into two
classes: the implicit or geometric models, and the parametric
models. Currently, only a few deformable model-based ap-
proaches have been used to segment various aspects of OCT

__________________________________________________________________
This is the author's manuscript of the article published in final edited form as:

Hammes, N., Racette, L., Samuels, B. C., & Tsechpenakis, G. (2015). Retinal thickness estimation from SD-OCT macular scans. In 2015 IEEE 12th 
International Symposium on Biomedical Imaging (ISBI) (pp. 213–217). http://doi.org/10.1109/ISBI.2015.7163852

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IUPUIScholarWorks

https://core.ac.uk/display/46963131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


images, all belonging to the parametric family. In 2005, Cabr-
era et al. [3] illustrated the utility of parametric deformable
models through demonstration of the accurate segmentation
of the fluid-filled regions common in the OCT’s of patients
with age-related macular degeneration. That same year, Mu-
jat et al. [12] investigated a deformable model using splines
for retinal layer segmentation, but limited their analysis of
SD-OCT stacks to sequential 2D analysis of the images, with
total segmentation time for a stack being ∼62 seconds. In
2009, Mishra et al. [11] developed an active contour-based
algorithm to segment multiple layers in time-domain OCT, a
precursor of the significantly higher resolution SD-OCT tech-
nology. Reported segmentation time was considered ‘highly
efficient’, at 5 seconds per 2-dimensional image, also techni-
cally known as a B-scan.

The parametric deformable models can be subdivided into
region-based and edge-based methods. The most recent ex-
ample of region-based deformable model segmentation is that
of Yazdanpanah et al. [16], where standalone murine SD-
OCT B-scans were segmented into 6 retinal layers. As re-
ported in [16], this model can be corrupted by noise and suf-
fers from areas of low contrast, while the segmentation time
was not provided. Such model-based approaches, while ef-
fective with respect to a single image of an OCT stack, ignore
useful spatial information that could be harnessed if an inte-
grated 3D volume analysis was performed.

This article introduces a fast hybrid method designed to
evolve two 2D spline-defined surfaces to the ILM and RPE
for the purpose of retinal thickness calculation. Our frame-
work exploits intrinsic smoothness constraints within and be-
tween the sheet-like models, and is driven by contrast in a
‘traditional’ energy minimization fashion. We aim at using
our method as a clinical tool, replacing the the state-of-the-
art in clinically tested software, namely the native Heidelberg
Spectralis segmentation [10].

2. METHOD
Our model consists of two open surfaces SILM and SRPE

that evolve in the volume domain Ω to capture the two reti-
nal layers, the inner-limiting membrane (ILM) and the retinal
pigmented epithelium (RPE), respectively. The vertical dis-
tance between SILM and SRPE (Fig. 1: distance in Z), the
retinal thickness, is the spatial value map of interest for this
clinical application. The surfaces are initially considered as
‘flat sheets’, i.e., each one is parallel to an XY plane, SILM

moves downwards and SRPE moves upwards along the Z-
axis, and their shapes deform locally according to data con-
trast, lattice-based deformations, and their mutual distance
(Fig. 1(b): colored grids). Note that a typical SD-OCT vol-
ume is 768× 61× 496 (XYZ) voxels.

2.1. Topolgy
The two surfaces, SILM and SRPE, are interconnected through
their signed distance transforms (level set-like implicit shape

(a) αILM = βILM = 1 (b) αRPE = 7, βILM = 1

Fig. 2: Weight maps used to impart deformations to control points
of a lattice by surrounding voxels. The deformation of the blue con-
trol point at the center is derived by weighting the deformation val-
ues of the surrounding voxels (black squares), as shown proportional
to size (voxel distances are normalized). (a) For the surface SILM

evolving towards the ILM, each deformation is more ‘flexible’ with
16 voxels influencing each control point. (b) Lattice spacing for the
surface SRPE evolving towards the RPE allows for more voxels to
contribute to each control point’s deformation. This adds smooth-
ness to the model at the expense of flexibility. We chose the specific
spacing parameters, considering the data ambiguities around RPE,
to make our solution more robust to noise (also see Fig. 1).

representations) ΦILM and ΦRPE, respectively. These trans-
forms are considered to have the following conditional break-
down, ∀x ∈ Ω:

ΦILM(x) =


0, x ∈ SILM

+ min
xILM∈SILM

||x− xILM||, x ∈ S+
ILM

− min
xILM∈SILM

||x− xILM||, x ∈ S−ILM

, (1)

ΦRPE(x) =


0, x ∈ SRPE

+ min
xRPE∈SRPE

||x− xRPE||, x ∈ S+
RPE

− min
xRPE∈SRPE

||x− xRPE||, x ∈ S−RPE

, (2)

where
{
S+

ILM, S−ILM

}
are the volumes above and below SILM

respectively, and
{
S+

RPE, S−RPE

}
are the volumes below and

above SRPE respectively, along the Z-axis. Note that the pos-
itive sign of the distances corresponds to the volume parts
already passed through during the downward (SILM)/upward
(SRPE) evolution, i.e., each surface moves towards negative
distance values. Thus, we encode the relative topology be-
tween the two surfaces as,

Φt(x) = ΦILM(x) + ΦRPE(x), ∀x ∈ Ω (3)

Intuitively, Φt encodes the local (with respect to XY) distance
between SILM and SRPE along the Z-axis; positive values
of Φt indicate that the two surfaces have crossed each other
locally, which violates the layer topology constraint.

2.2. Local deformations
The inner-limiting membrane (ILM) and the retinal pig-
mented epithelium (RPE) surfaces, SILM and SRPE, deform
locally using free-form deformations (FFD) [14, 8]. The
two lattices used for such deformations are parametrized
by {αILM, βILM} and {αRPE, βRPE}, where the α and
β−values are integers determining spacing between control
points along X and Y directions respectively. Thus, a sin-
gle control-point deformation is calculated using a weighted
map derived from cubic B-spline functions (Fig. 2). This
map gives more weight to the voxels in close proximity to



the control point, and varies with the chosen XY-spacing of
the lattice. In our application, we constrain the local defor-
mations of SRPE, due to the increased noise around RPE in
the OCT volumes. In our experiments we used αRPE = 7
and βRPE = 1. On the other hand, we allow for larger local
deformations of SILM, given that there is sufficient contrast
information around ILM. Additionally, ILM displays local
changes in topology due to the presence of blood vessels just
under the surface; therefore, a spacing of αILM = βILM = 1
allows flexibility and more finely grained deformations to
capture such local changes.

2.3. Objective function and evolution
The two surfaces SILM and SRPE evolve simultaneously
along the Z-axis towards the desired ILM and RPE bound-
aries, driven by intensity contrast in the OCT volume, local
shape smoothness dictated by the free-form deformations
within their lattices, and the relative topology (Z-distance)
between them. We formulate the objective energy as,

Etotal = Eshape(ΦILM,ΦRPE) + Etop(ΦILM,ΦRPE) +

+Edata(ΦILM,ΦRPE),(4)

where the shape and topology energy terms, Eshape andEtop,
are considered as the internal energy of a deformable model
consisting of two evolving surfaces, while the data energy
Edata is the external energy, introducing the data intensity
contrast that drives the evolution.
Shape energy. Following a similar formulation as in [8], let
dILM and dRPE be the deformation (distance) parameters of
the lattices defined for ILM and RPE respectively. Note that
for efficiency we decouple XY deformations from the evo-
lution along the Z-direction in the volume, by defining 2D
instead of 3D lattices. We formulate the shape-based energy
term as,

Eshape(ΦILM,ΦRPE) =
1

V(∂SILM)

∫
∂SILM

ΦILM(x)dx +

+
1

V(∂SRPE)

∫
∂SRPE

ΦRPE(x)dx, (5)

where ∂SILM, ∂SRPE denote narrow bands, with respect to
Z, around the evolving surfaces, and V(∂SILM), V(∂SRPE)
are their corresponding volumes. Based on the definitions in
eqs. (1) and (2), minimization of this energy corresponds to
moving SILM downwards and SRPE upwards along the Z-
direction. For notation simplicity, x incorporates the FFD pa-
rameters dILM and dRPE that inherently preserve continuity.
Topology energy. We define this energy term as a functional
of hyperbolic nature, where both the absolute value and the
sign of Φt(x), ∀x ∈ Ω, contribute. Specifically, small val-
ues of |Φt| correspond to close proximity of the two surfaces.
Also, according to the definitions in eqs. (1)-(3), positive
values of Φt indicate that the two surfaces cross each other
or even that RPE is above ILM with respect to the Z-axis,
which violates the inherent topology constraints of the two

retina layers. Therefore, minimization of the topology energy
should force the two surfaces closer along Z, while preserving
negative values of Φt. We formulate this energy as,
Etop(ΦILM,ΦRPE) =

Etop(Φt) =

∫
Ω

Φ2
t (x) · H

[
Φt(x)

]
dx, (6)

H
[
Φt(x)

]
=

{
1, Φt(x) ≤ 0

h� 1, Φt(x) > 0
, ∀x ∈ Ω (7)

where h is a large positive number that controls the energy
increase for positive values of Φt: h → ∞ ⇒ Etop(Φt →
0+)→∞. A reasonable choice is h ≥ 100.
Data energy. A first observation in the OCT volumes is that
the first instance of intensity contrast, traversing from top to
bottom along Z, is the ILM, while the last instance of high
contrast is the RPE (Fig. 1). Let g = |∇zI| denote the mag-
nitude of the intensity gradient of the data volume I along the
Z-axis (note we are interested in capturing high vertical con-
trast instances). We quantify instances of high contrast as a
‘reliability’ map,

G(x) =

{
exp

{
−
(
g(x)− g|x

)2}
, g(x) < g|x

g(x), g(x) ≥ g|x
, (8)

where g|x denotes the average value of gradient g in x’s vicin-
ity. Thus, we formulate the data energy term as,

Edata(ΦILM,ΦRPE) =
1

exp{λG2(x)}
, (9)

∀x ∈ Ω : ΦILM(x) = 0 or ΦRPE(x) = 0,

where λ controls the decrease slope asG2 increases; in all our
experiments we chose λ = 10.
Model evolution. As we mention above, there are two factors
contributing to the model evolution: the local deformations
d = {dILM, dRPE} of the ILM and RPE lattices, and move-
ment along the Z-axis of the OCT volume. Therefore, the
minimization of the energy in eq. (4) that drives the evolution
of the two surfaces is expressed as,

∂Etotal

∂d∂z
=
∂Eshape

∂d∂z
+
∂Etop

∂d∂z
+
∂Edata

∂d∂z
(10)

We solve the minimization problem using a greedy algorithm
locally, i.e., iteratively in narrow (along Z) sub-volumes,
defined by a fixed depth value δz around the evolving
surfaces: (a) first we initialize the deformation parame-
ters for both surfaces as d = 0; (b) we compute the dis-
tance and topology functions in eqs. (1)-(3), and the con-
trast reliability map in eq. (8); (c) locally, we compute〈
Φ̂ILM, Φ̂RPE

〉
z

= arg min
z∈δz

Etotal; (d) at the new depth loca-

tions we compute the lattice configurations and the resulting
distance maps as,

〈
Φ̂ILM, Φ̂RPE

〉
d

= arg min
d
Etotal; (e) at

the new Z-locations with the given deformation parameters,
we repeat (b)-(d) until convergence.

3. RESULTS
Ten healthy study participants were given bilateral macular
SD-OCT scans using the Heidelberg Spectralis SD-OCT,



ILM RPE Thickness
Grader Method (mean, dev.) (mean, dev.) (Mean, dev.)

Both Ours (3.33, 2.64) (4.23,2.77) (6.61,3.90)
Heidelberg (2.74,2.36) (6.71,2.26) (8.57,3.63)

Gr. 1 Ours (2.90,2.58) (3.59,2.63) (5.30,3.71)
Heidelberg (2.48,2.28) (5.94,2.32) (6.98,3.72)

Gr. 2 Ours (4.07,2.94) (5.04,3.20) (8.23,4.36)
Heidelberg (3.38,2.75) (7.49,2.78) (10.23,4.10)

Table 1: Mean errors and standard deviations of our method and
the Heidelberg Spectralis native software, as compared to manual
delineations of two graders. All values are in µm, and for the given
application it is 3.8717µm = 1voxel.

resulting in 20 full image stacks of 768 × 61 × 496 vox-
els. Spectralis segmentation results for the ILM and the
RPE were extracted from native Heidelberg Eye Explorer
(HEYEX) .vol software files using the ImageJ plugin Open
Heyex Raw [9]. Our segmentation results were obtained us-
ing an Intel i7 2.8GHz laptop, and the average segmentation
time for a given image stack was 7 seconds. It should be
noted that although the optic nerve head (ONH) is present at
least partially in all macular images taken by the Spectralis,
such areas were removed from statistical consideration for
this study. Thickness measurements around the optic nerve
head are not used in the clinical testing for which this method
is designed; we did not evaluate the suitability of our method
for estimating thickness near the ONH.

Two qualified graders manually traced the RPE and ILM
in 30 images chosen randomly from the set of 20 macular
image stacks. Segmentation was performed in triplicate for
each of the 30 images to account for intra-grader variability.
To demonstrate segmentation efficacy, we define as segmen-
tation error the voxel difference from the ground-truth along
the Z-axis. We compare our method with (Table 1): (i) the na-
tive Heidelberg Spectralis software, the current state-of-the-
art, (ii) the first and second grader delineations, and (iii) the
average delineations of both graders. The first 2 rows of Table
1 summarize the main points of the results. For the ILM, the
Spectralis software mean error is slightly better compared to
ours. The RPE results show much less error for our method
compared to the Spectralis software. This results in an over-
all better fit of our method over the Spectralis when consider-
ing the retinal thickness calculation, as shown in the last two
columns of the table.

In Fig. 3 we illustrate a qualitative evaluation of our
method, compared to the ground-truth and the Spectralis soft-
ware. In panel (a) we show a section of our converged model
(in magenta color) in a highly degraded scan from a glaucoma
patient. Even in instances of relatively low contrast, usually
resulting from layer thinning, as observed by lower light re-
flection, such as the left-most part of RPE (lower layer), we
are able to capture the correct locations. In panel (b) we
illustrate a B-scan to visually showcase the voxel-wise accu-
racy of our method in the OCT stack; we focus on the region
highlighted in the yellow box. The two experts’ manual de-
lineations (three for each grader) inside this region are shown

(a) (b)

(c) (d) (e) (f)

Fig. 3: Qualitative evaluation of our method. (a) A cross-section
of our converged model (magenta lines) in a degraded OCT B-scan.
(b) A common-case B-scan. (c) Six manual delineations from two
experts, in white, in a magnified instance of the region in the yellow
box in (b). (d) The result of Heidelberg Spectralis native software
in blue, superimposed on the experts traces. (e) Cross-section of
our converged model, in red, superimposed on the experts’ traces.
(f) Results of our method (in red) and Spectralis (in blue), both su-
perimposed on the same region to visually identify deviations from
ground-truth (in white).

with white lines in panel (c); in this case there is significant
overlap/agreement between the manual traces. In panels (d)
and (e) we show the Spectralis (in blue) and our method’s
(in red) results, respectively, superimposed on the graders’
traces. In (f) we summarize the comparison from (d), (e).

We should note that our method could become more ac-
curate and robust to noise at the expense of computational ef-
ficiency, by using machine learning to drive the model. How-
ever our goal here is to provide the best possible trade-off
between accuracy and efficiency.

4. CONCLUSIONS

We presented a model-based method for the segmentation of
the inner and outer layers of the retina, namely the inner-
limiting membrane (ILM) and retinal pigmented epithelium
(RPE), from SD-OCT image stacks. Contrary to previous
studies using 2D deformable models, here we exploit the in-
tensity continuity across the successive B-scans and obtain
directly 3D results (surfaces for the layers of interest), while
preserving computational times low enough for clinical set-
tings. We calculate the vertical distance between the two sur-
faces to provide the retinal thickness used for early detection
of glaucoma. The eventual goal of our clinical study is the
longitudinal evaluation of RNFL thickness changes in a larger
subset of healthy and glaucoma patients. The method pre-
sented here covers significant ground in this direction. Future
work also includes how our method can be adapted in cases
beyond healthy and glaucoma patients, such as macular holes
and dry age-related macular degeneration.
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