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ABSTRACT

Crespo, Jonah Greenfield. M.S.E.C.E., Purdue University, May 2016. Asset Alloca-
tion in Frequency and in 3 Spatial Dimensions for Electronic Warfare Application.
Major Professor: Lauren Ann Christopher.

This paper describes two research areas applied to Particle Swarm Optimization

(PSO) in an electronic warfare asset scenario. First, a three spatial dimension solution

utilizing topographical data is implemented and tested against a two dimensional solu-

tion. A three dimensional (3D) optimization increases solution space for optimization

of asset location. Topography from NASA’s Digital Elevation Model is also added to

the solution to provide a realistic scenario. The optimization is tested for run time,

average distances between receivers, average distance between receivers and paired

transmitters, and transmission power. Due to load times of maps and increased it-

erations, the average run times were increased from 123ms to 178ms, which remains

below the 1 second target for convergence speeds. The spread distance between re-

ceivers was able to increase from 86km to 89km. The distance between receiver and

its paired transmitters as well as the total received power did not change significantly.

In the second research contribution, a user input is created and placed into an un-

constrained 2D active swarm. This “human in the swarm” scenario allows a user to

change keep-away boundaries during optimization. The blended human and swarm

solution successfully implemented human input into a running optimization with a

time delay.

The results of this research show that a electronic warfare solutions with real 3D

topography can be simulated with minimal computational costs over two dimensional

solutions and that electronic warfare solutions can successfully optimize using human

input data.
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1. INTRODUCTION

1.1 Overview and Problem Statement

Robotic machinery is taking a larger role in military operations in direct response

to the need for operational efficiency. Optimization is critical in non-human warfare

because of the reduction of risk to human life and time and cost of deploying and

managing resources. Through successful optimization of assets, resources can be more

operationally efficient and autonomous.

This project continues from the previous work done by Mr. Joshua Reynolds and

the Naval Surface Warfare Center Crane. The program created a particle swarm

optimization (PSO) algorithm of unmanned aerial vehicles (UAV) receivers whose

main objective was to intercept signals transmitted within a military radio spectrum.

These signals come from transmitters with various levels of importance. This algo-

rithm allowed for strategic placement of intercepting military radio frequency (RF)

assets into a two dimensional (2D) space.

The initial project was a prototype limited to a solution in 2D space, therefore

limiting receivers and transmitters to the same elevation. The current project adds

a third spatial dimension to the original algorithm and allowed for solutions that

reflected real changes of topography.

Optimization in 3D space required adding topography search space limits where

the solution is not possible (for example, below ground.) By incorporating real eleva-

tion data, this research more closely matches a real electronic warfare environment.

Although autonomy is a priority of UAV operation, human interaction with the

optimization may be helpful when defining a changing battlefield. The original pro-

gram could not incorporate new boundary changes during optimization. Accurately

relaying boundary information to the optimization algorithm in a timely manner is
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critical when this program becomes a real-time solution. As battlefields change dur-

ing conflicts, so do the areas of safety and engagement. Therefore, a user input was

added to the original work which explored the ability to change boundaries during the

optimization. This thesis summarizes and extends the work done on Particle Swarm

Optimization (PSO) applied to Electronic Warfare (EW) applications published pre-

viously [1].

The work presented continues development towards real-time solutions of asset

allocation in Electronic Warfare.

1.2 Literature Overview

In the last 20 years, computer-aided optimization has grown to be one of the

fastest growing researched topics today. Within this topic, PSO has been one of the

most popular evolutionary computational techniques in social behavior [2], scheduling

and logistics [3], power deployment [4], antenna design [5], mobile connectivity [6],

neural networks [7], emergency planning [8], and defense [9].

Originating from the psychological study of bird flocks and insect patterns [10], a

swarm approach was constructed by Drs. Russell Eberhart and James Kennedy from

Indiana University Purdue University Indianapolis. The algorithm was to be initially

used to study social patterning trends but expanded its use as an overall optimizer.

The algorithm developed biological characteristics such as pheromone tracing and

group swarming and expressed them as a mathematical algorithm. Another example

that utilizes the swarm-mind and pheromone-like traits is a swarm approach using

dynamics of ant patterns [11]. This ant pattern based swarm was applied micro

Unmanned Aerial Vehicle (UAV) for search and rescue missions. Other biological

patterns are presented by Eberhart in [10] and [12].

PSO uses information from several potential solutions, called particles, to scan a

solution space and determine what is called the “best guess.” The best guess within

a neighborhood of particles is considered a “local best” whereas the overall best is
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called the “global best.” These bests are stored into memory and are used to hone the

next iteration of swarm. Unlike Newtonian optimization, PSO doesn’t differentiate

previous solutions to track the rate of change of the algorithm’s variables. Instead, it

is the velocity of the particle within the solution space that is retained as an increment

and used for future calculations. The PSO algorithm is shown in Equations 1.1 and

1.2 where d is the dimension, c1 and c2 are positive constants, rand and Rand are

random functions, and w is the inertia weight. Changing the calculated increments

simplifies the computation and increases speed [13].

vid = wivid + c1rand()(pid − xid) + c2Rand()(pgd − xid) (1.1)

xid = xid + v′id (1.2)

Additionally, PSO can solve multiple objective (MO) problems fairly easily [14].

MO problems are routinely found in engineering applications where several charac-

teristics such as cost, time, and quality, or position, velocity, and acceleration have

to balanced to create a safe, effective product. By implementing these characteristics

as constraints in the algorithm, approaching a single objective, such as cost, can also

consider other constraints, such as time or quality, simultaneously.

The beauty of PSO is it can be tuned for use in many applications and in differ-

ent ways within applications. Route planning for UAV are optimized using a PSO

variation called Θ-PSO [15]. In Θ-PSO the position and velocity vectors are replaced

with vectors of the angular differences of particles. The cost computations presented

in Θ-PSO, especially the height cost, drive incredible efficiency and could be used

when the research in this paper reaches an end-to-end solution.

PSO can also be applied to traditional problems. One defensive strategy is re-

alized, and tested, involving weapon allocation of Rockets, Artillery, and Mortars

(RAM) [9]. In both asset and target based static weapon allocation, PSO can provide

optimal solutions in real-time. The work concludes that where asset and target-based

static weapon allocation is employed, PSO is the preferred method for small search

spaces.
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Combining human and swarm intelligence is a fascinating and blooming research

field. Solutions of puzzles have been shown to be quickly solved when human intel-

ligence is used to guide the swarm [16]. Superior solutions of blended intelligence

can only be achieved if the driving problem incorporates high-level planning human

inputs to the swarm. One example is a firefighter command coordinating autonomous

firefighting systems and firefighters [8]. Swarm intelligence may be able to extract

data from the environment. Certain command and control functions in Electronic

Warfare will be human driven, so there is a clear objective to blend the optimization

with human intelligence.

Swarm controlled assets may be autonomous but take directions from a central

human command [16] [8]. Certain items such as effective friendly communication

strategies must be defined and prioritized both before implementation and during

operation. One such example is forming a fleet of UAV to maintain a data connec-

tion across a large space [6]. By optimizing location and frequency, a robot swarm

successfully creates and maintains mobile ad-hoc networks. However, the network of

swarmed UAV require an objective that is input by a human central command.

1.3 Research Starting Point and Future Path

This paper’s research starts from the previous work completed by Joshua Reynolds

[17]. The previous work developed a new Graphical User Interface (GUI) for the

project and performed a joint optimization of 2D spatial locations for assets with the

Electronic Warfare frequency allocations. The GUI visualized several helpful metrics

for users as well as created a map of RF receivers and transmitters. This map could

handle mouse-over events which visually link engaged assets. A graph of the total

fitness of the simulation is also presented in the GUI. Additionally, a list of critical

metrics was printed at the bottom of the screen. This included the overall priority,

spread, distance, and fitness.
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Four assumptions have been made in the previous work. The project first assumes

the location of all transmitting assets are known and stationary. Second, locations

for the receiver assets are optimized and these assets are assumed to be able to reach

their positions given by the PSO solution. A third assumption is that solutions all

lie on a 2D plane. The fourth assumption is that information is available to the

optimization algorithm; including transmitter locations and corresponding transmit

RF signal strengths.

The goal of this current research is to construct optimizations closer to the true,

active electronic warfare scenarios. The first main objective of the work is to upgrade

the optimization from a two dimensional solution to a three dimensional solution

which utilizes real topography. The second main objective of the work is to superim-

pose a human component to existing asset allocations by providing real-time boundary

intelligence into the optimization. With these additions, the research becomes more

representative of real-world EW scenarios.

The program’s GUI is shown in Figure 1.1. The allocation plot shows the visu-

alization of the EW solution including prioritized transmitters (in blue, green, and

yellow), receivers as black diamonds, and a linear keep away boundary. The Fitness

plot shows the relationship between the strength of the solution, called the fitness,

versus the number of optimization generations. Below these two figures is the visual-

ization of the frequency spectrum, handy run initialization options, and text output

box. This output box contains the print out of the overall priority that is randomly

generated, the power of the solution, the average spread between receivers, the av-

erage distance between the receivers and the center of mass of transmitters, and the

final overall fitness of the solution. Additionally, the 2D location, center frequency,

and transmitter pairings, are printed for each receiver.
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Fig. 1.1. The inherited program of this research [17].

1.4 Individual Contributions

This thesis describes work contributions in two different areas. The first con-

tribution is to extend the optimization framework into 3D and apply topographical

terrain to the solutions. The second contribution is an extension of a 3D solution

with the inclusion of a dynamic human input defining exclusion boundaries. These

contributions are a priority when growing the previous research into a more realistic

and capable electronic warfare solution.
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2. 3D SOLUTION

2.1 3D Solution

The main scope of this project was to take the two dimensional optimization to

three dimensions. A three dimensional representation is a more realistic depiction of

how military assets are dispatched in land, sea, or air scenarios.

Figure 2.1 visualizes the increased the spatial solution space for deployed assets in

a three dimensional versus two dimensional space. The optimization takes advantage

of the increased dimension by allowing a reduction of the Euclidean distance between

receivers and transmitters.

Fig. 2.1. A geometric shape in two dimensions (left) and three dimensions (right).

This project handles the dimensions of the algorithm within a header file named

fitness SpatialReceiver. This header file, and its corresponding C++ file, also contains

much of the algorithm’s functions and checks. At the top of these files contain the

declaration of the dimensions. These were created to solutions in either one or two

dimensions. By increasing the dimensions from two to three enhances utility to more

accurately reflect asset allocation in electronic warfare scenarios.
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Several of the parameters responded as expected to the 3D modification, while

others had unforeseen responses. For example, all distance measurements accurately

shifted from 2D to 3D. The distance was measured by checking receiver position

against a large radius keep away boundary. By measuring the position of the asset

against the origin, the distance was exactly the minimum in order to optimize overall

fitness.

The keep away penalty also responded well to the change in dimension. The Left-

Right keep-away shifted from a linear barrier to a planar barrier. However, the radius

keep-away barrier shifted from a circular barrier to a spherical. A cylindrical barrier

is not tested in this work but could prove useful in future iterations.

The transmitter power of the solution saw an exponential loss when the third

dimension was introduced. This is further discussed within results.

2.2 Topological Input Data

One of the main reasons to pursue a 3D solution for the previous work was to

accurately portray asset solutions in a real world scenario. Accurate depiction of

geographic locations, structures, and aerial assets is essential for both navigation and

signal performance. Although elevation data is available via topographical maps or

various online sources, many of these sources are not sufficient for creating an envi-

ronment to perform accurate, global, and offline position optimization in real world

scenarios. These sources are good for expressing topographical maps or small amounts

of data but would not be practical to include in the optimization. Google’s Earth

Application Programming Interface (API) has a method that was initially consid-

ered but discarded because Google no longer supports it. Fortunately, the National

Aeronautics and Space Administration (NASA) provides methods of obtaining high

quality topographic information.

The option chosen was to use altitude data from NASA’s Shuttle Radar Topo-

graphical Mission (SRTM). The space shuttle Endeavor’s main objective of the STS-
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99 mission was gathering altitude data of Earth. [18] The data collected from the

SRTM is known as the Digital Elevation Model (DEM) and composes of almost ex-

actly 80 percent of the world’s landmass surveyed every three arc-seconds.

Although the SRTM was flown in early 2000, the DEM was released to the pubic

in 2015. Due to the model being made public recently, few resources were available to

extract the data. As of this paper, only one program successfully plots the hgt files

called 3DEM. This program is no longer supported, but copies are available online,

as well as with this project’s resources. 3DEM is used as a reference for this project,

however, a unique solution would be constructed to create a more versatile Comma

Separated Value (CSV) file.

There are a few methods to transform these files into more usable types. For

this work, the data type is converted to CSV. The CSV format was chosen for its

commonality as well as the ability to be a private entity that does not require a active

connection to a server. In the future, a conversion to Isohype Binary File (IBF) could

prove useful in reducing storage size if the project grows large enough. Python was

used to create the program to create CSV files from the HGT files. The program’s

flow is presented in Figure 2.2.

Once that topographical information is formatted in CSV, the data is provided

to the Particle Swarm Optimization. To utilize the topographical data in the op-

timization, three functions are placed inside the existing fitness file to account for

topography in the three dimensional solution. The first function reads in a CSV file

that contains elevation data and stores it as an array of floating point numbers. The

second function receives a given longitude and latitude and searches the array for the

respected elevation. This function then returns that elevation. The Third function

takes the elevation data for each asset and penalizes the asset’s fitness for solutions

going below the ground level. Working in conjunction with each other, the three

functions create a map within the solution space and optimizes to spatially feasible

solutions on the ground or in the air.
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Initialize x

and y arrays

Are

there

hgt

files?

End Script

Load file name

Extract longi-

tude and latitude

Is file

valid

size?

Create Array

Save as CSV

Yes

No

Yes

No

Fig. 2.2. Flow chart of HGT file conversion script.

2.2.1 Creation of the Map

The creation of the topographical map within the program’s memory was essential

when implementing a 3D solution. Therefore, a CSV file is loaded only once on initial

start-up. The file, which is filled with strings, is then parsed line by line. Using
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commas as the break, the lines are broken into individual entries, or “cells.” This

function is run within a nested loop with the line variable being the x component and

each incremented cell the y component.

Initially, the map was planned to create a three array list with each 1201-by-1201

array representing its own dimensions. This three dimensional array was rejected for

several reasons. First, having a 3603x1201 list would be a waste of memory as entire

rows or columns would be repeated as the two arrays would represent latitude and

longitude. Second, parsing through the array of over 4.32 million entries would be

slower than just parsing through an array a third the size. If using a one arc-second

elevation data file, the number of entries would be nine times as large. Third, the list

would drastically decrease the solution space by limiting the continuous dimensions

(longitude and latitude). Therefore, a 1201x1201 elevation map is used.

2.2.2 Referencing the Map

This project works in a continuous solution space. However, the array of dis-

crete elevations is created from a software function: ParseElevationData. Therefore,

a software interface function, LookUpElevationData, was designed to take discrete

elevation data and provide a continuous solution space to the PSO. When a longi-

tude and latitude is relayed to this function, it returns the elevation of the nearest,

rounded down elevation point as shown in Figure 2.3. To create this routine, the pro-

gram uses a 200 kilometer square, which is the default solution space size initialized

in the program, and a 1201x1201 array, which is the number of elevation data points

given in a three arc-second converted HGT file, to create the rounded-down latitude

and longitude. Once this local latitude and longitude is found, these integer x and y

components are paired with an elevation, which is the z component.
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Fig. 2.3. The LookUpElevationData function returns an elevation for
a given longitude and latitude. It rounds down to the nearest terrain
point within the map.

2.2.3 Geographic Penalties

When the 3D solution was first run, the solution space changed from a 200x200 km

plane to a 200 km cube. The transmitters, as with the 2D solution, were populated

randomly within their given parameters. Keep-away boundaries also changed with

this increase in dimension to a plane or sphere. The assets are now optimized in

RF frequency and in unconstrained 3D solution space. The first unconstrained test

was technically correct, but it did not accurately represent a real-world scenario for

electronic warfare without the topographical constraints.

To accurately represent these topographical constraints a function was created to

penalize fitness when candidate solution particles of the PSO venture into solution

space that was either impossible or less than optimum. This function, GetTerrain-

Penalty (Figure 2.4), increments across each receiver asset and pulls their current

three dimensional location. The function then finds the corresponding ground height

using the LookUpElevationData function. This function converts the elevation from

meters to the solution’s preferred unit of kilometers then compares this value against

the asset’s current height. If the asset is below the elevation loaded from the map,

the function halves the fitness of that particular solution. The GetTerrainPenalty

function sets a boundary to which the function respects and subsequently seeks a

healthier locality within the solution space.
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Fig. 2.4. The GetTerrainPenalty halves a given receiver’s fitness when
the receiver seeks a solution below the elevation of the map’s topog-
raphy. The function compensates for the map’s standard of meters to
kilometers

2.3 GUI Example

With the expansion of the optimization into an additional dimension, as well as

the addition of topography through the previously mentioned functions, the program

represents a more realistic solution in electronic warfare. The top down visualization

of the GUI is presented in Figure 2.5. As shown in the text details on the bottom of

the GUI, the receivers now optimize for ground elevation.

2.4 Summary of Research Contributions

For the 3D conversion, the novel additional research was to expand the search

space to a third spatial dimension, to utilize the latest topographical data to create a

terrain, to create a penalty to disallow solutions of receivers going underground, and

to test this solution against a 2D solution.
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Fig. 2.5. This is the GUI of the program as of this paper.

Fig. 2.6. The text output displays each receiver’s coordinates in the
X, Y, and Z plane, priority assignments, center frequencies, priority
of the engaged transmitters, accumulated power, spread distance be-
tween receivers, and average distance between receivers to transmitter
center of mass. Additionally, but not pictured, are total fitness and
generations to convergence.



15

3. HUMAN IN THE SWARM

The paper, Human Fitness Functions [1], discussed the addition of a human input to

incorporate real-time intelligence blended with the two dimensional electronic warfare

optimization. The previous work places assets in a fixed location on the battlefield by

using geometric keep away boundaries. A line or circle keep away boundary is used

to incur penalties to solutions where receivers are too close to transmitters. These

boundaries were static in the first iteration of work and an exploration of human

interaction with these areas during optimization are discussed.

The human interacts with the solution by clicking a mouse within the graph of the

solution. This click event registers in the GUI, and changes the keep away boundary

for the receiver assets. By changing the boundary, any receiver that would enter this

region would infer a penalty to their fitness. Thus, by changing the boundary, the re-

ceiver would converge to a new spatial optimum. To implement these human events,

the interface has to slow the solution down from its normal operating conditions to

one with a delay. The delay was implemented because the solution would normally

optimize under one second. Additionally, running the program under normal condi-

tions does not continuously update the user with information such as asset location

and fitness.

A problem that was encountered by incorporating human input was the solution

would not fully optimize through a minimum of needed iterations, resulting in a sub-

optimum solution based on the new human input boundary. Essentially, the assets

would reach the maximum number of generations to converge and produce the fittest

solution. To rectify this, the maximum number of iterations was reset within the

algorithm with each clicker event. By resetting the maximum generation counter, the

algorithm could produce the fittest solution.
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There are a few drawbacks of implementing a human swarm blended solution. One

of the major drawbacks is that the convergence is slowed in order to accommodate the

human reaction time. By implementing a user input, processing delays are introduced

into the system that include both waiting for the user input as well as delays in

updating relevant information to the user for further execution. As stated previously,

processing delays are implemented to allow the user to interact with the solution

in a meaningful way. Another drawback is the randomization of each solution from

the previous solution. For example, if a human were to change the boundary of the

solution, the solution may consist of an entirely new set of asset locations, rendering

the previous intelligence obsolete and possibly introducing new operational setbacks.

Incorporating more attributes for the solution might account for the drawbacks

in the current model and move the model towards a true real-time solution. The first

attribute would be to direct the solution to stay closer to the current solution. By

adding a penalty to an asset’s mobility, the fitness of the asset would be degraded when

a potential optimum is further away. The user would then be able to better utilize

local intelligence. The second attribute would be to implement flight constraints such

as bearing, air speed, and acceleration. Additional constraints would further optimize

the locality of the solution. The third attribute would create flight paths of future

solution sets. These flight paths would be based on the previous mentioned attributes,

as well as new enemy transmitter information such as movement, radio band, hostility

level, and quantity of threat. The fourth attribute would provide several choices of

human interaction. In this work, only geometric zones were introduced to the solution.

Temporary zones that influence the solution could prove to be very useful in a battle

environment, as with ants whom utilize strategies to tell their peers of trails that

are either bountiful or dangerous. As time progresses, these areas are either updated

or fade, providing the ant colony with accurate information [11]. By implementing

biologically-inspired zones, intelligence can transmit current enemy priority levels and

keep away boundaries. As new intelligence comes in, zones are created and updated

and as old intelligence proves fruitless, the zones would automatically decay.



17

3.1 Blended Human/Swarm Example

The Human in the Swarm program represents an unconstrained 3D solution with

an active human input. The solution is projected down onto a 2D Allocation Plot.

However, through this plot, a user can click a new keep away boundary for the op-

timization. Once clicked, penalties are inflicted to the receivers who impede the

boundary, resulting in an immediate change of boundary as well as a dip of Fitness

quality. To allow ample to converge to a boundary, the optimization’s maximum

number of iterations is reset. Therefore, new information from a human can be ap-

propriately managed during the optimization. The following figures show the starting

point, 3.1, after the first click, 3.2, and after a second click, 3.3.

3.2 Summary of Research Contributions

For the Human in the Swarm approach, the novel additional research was to

include an active human input into a running optimization. By allowing a human

to input real-time boundary data, a new solution can quickly be found. This will be

critical during continuous optimizations.
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Fig. 3.1. Running unconstrained 3D optimization with initial condi-
tions and a left-right keep away boundary.



19

Fig. 3.2. Click event from user triggers a change in Keep Away Bound-
ary. A downward spike in fitness occurs as solution fitness is penalized
for receivers being outside of bounds.
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Fig. 3.3. A second click event occurs. The change of fitness can easily
be seen as the boundary increases in size.
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4. RESULTS

For a comparison between the different stages of the work presented in this paper,

the program was initialized and run 30 times for three different cases. The first case

was performed with the work as it was presented by the project’s previous researcher,

Joshua Reynolds. The second case was with an unconstrained 3D solution space.

This work also comprised of Human in the Swarm functions, however no interactions

or inputs were performed, thus not adding computation. The third iteration was per-

formed with the topographical map implemented into the algorithm as a constraint.

The initial conditions are in Table 4.1.

4.1 Run Time Analysis

The overall run time for each iteration is considered a good gauge of the overall

performance of the program. Not only does a run time factor differences within the

constraints of the algorithm but it can keep some factors constant, such as draw and

print times. Mean run times are presented in Table 4.2. As the data clearly show,

each iteration of the code added complexity to the algorithm and incurred additional

computational time. The iteration from stock to 3D added a whole spatial dimension

to the solution space yet only slowed convergence by an average of 95 ms.
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Table 4.1
Initial Program Testing Parameters for all Iterations

Parameter Value

Priority Weight 6.0

Power Weight 0.2

Spread Weight 50

Distance Weight 1.0

Receivers 3

Transmitters 30

Tx Spread 30

Tx KeepAway 15

Frequency Step 0.10

Receiver Bandwidth 10.00

Receiver RF dB 5.00

Max Generations 1000

Max Run Time 0 (off)

Slope 0.01

Window 50

Seed 0 (off)

Table 4.2
Program Mean Run Times for Normal PSO Operations

Case Mean Run Time Std. Dev. (σ)

2D 123ms 22ms

3D 155ms 48ms

Map 178ms 63ms
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4.2 Fitness, Spread, Power, and Distance Analysis

The optimization iterates its solutions based on global bests and local bests as

previously mentioned in section 1.1. These bests are ranked by each particle’s fitness

within the algorithm. The fitness of this optimization is measured by the the priority,

power, spread, and distance components of transmitter assets. These components are

weighed initially but can also be changed by the user. By changing these components,

the fitness of the optimization can adjust to input conditions. Additionally, the fitness

is also affected by Keep Away and boundary penalties.

Fitness Component = {Priority, Power, Spread, Distance} (4.1)

Overall F itness =
∑

i∈Fitness Components

Fitness Component(i) ∗ Component Weight(i)

(4.2)

A main objective of this project is to ensure receivers are spatially dispersed in

the battlefield. This dispersion, herein referred to as spread, is calculated using the

Euclidean distance between all receivers.

Fitness Spread Component = log10[min(Distance(ij), ij)] (4.3)

The power component is a summation of the received powers of each signal. The

free-space loss of each signal is taken into account. This total does not count twice

any signal that is received by two or more receivers. The following is the free-space

loss in dB, where d is in kilometers and f is megahertz:

Loss = 20 ∗ log10(d) + 20 ∗ log10(f) + 32.45 (4.4)



24

By design, the power and spread components will conflict. In tests done in the

previous work, the optimization would find solutions which send a receiver away

from the mass of transmitters in the pursuit of spread fitness and power fitness. To

counteract this, a constraint was created to limit this distance from the center of mass

of transmitters to individual receivers.

Fitness Distance Component =
1

2

N∑
i=1

MaxDistance−D(i) (4.5)

This research compares the spread, power, and distance components for three

cases: 2D (original code base), unconstrained 3D, and map-constrained 3D. Essen-

tially, the spread constraint insures that assets are not in the spatial proximity of

one another. On the other side of the spectrum, the distance constraint penalizes

solutions that are too far from the transmitter’s center of mass. These constraints

serve to balance the optimization solution.

The spread constraint works by incorporating a minimum distance between assets.

Therefore, in the two dimensional solution, spreads hover around 71 km which is

almost exactly the hypotenuse of two 50 km sides. In the three dimensional solution

the spread is almost exactly the hypotenuse of three 50 km sides, as shown in Table

4.3 . The iteration which incorporated a map is slightly higher than the spread of just

a 3D solution. This is most likely caused by the much lower sampled elevation data

of the topographical map. This calculation of the spread is suitable for safety but

does cause an average loss of fitness when moved into a three dimensional solution

space.

The power component is not yet fully analyzed. The results of the mean asset

power in Table 4.4 shows a large degradation. These results are due to the algorithm

not functioning appropriately in three dimensions.

The distance constraint is calculated by taking averaging the distance between

receiver assets and the center of mass of transmitters. As shown in the results of

Table 4.5, the distance of the solution lessens up when topographical limits are placed

on the assets.



25

Table 4.3
Mean Spread Among Receiver Assets

Case Mean Spread Std. Dev. (σ)

2D 86 km 6.9 km

3D 89 km 4.9 km

Map 89 km 6.6 km

Table 4.4
Mean Received Power from all Transmitters

Case Mean Power Std. Dev. (σ)

2D 19 0.7

3D 20 0.6

Map 19 0.9

Table 4.5
Mean Distance Between Receiver and Transmitter Assets

Case Mean Distance Std. Dev. (σ)

2D 137 km 13.8 km

3D 143 km 16.0 km

Map 135 km 17.6 km

4.3 Fitness Analysis

Introducing a third spatial dimension affected fitness in a negative manner. This

is due to the increased space of randomization of transmitter signals caused by the

inclusion of a third spatial dimension. The results can be seen in Table 4.6.



26

Table 4.6
Mean Fitness of Total Solution

Case Mean Fitness Std. Dev. (σ)

2D 661 10

3D 690 24

Map 686 16
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5. SUMMARY

The overall results of this research confirm that Particle Swarm Optimization (PSO)

is an effective algorithm for asset management. A PSO Electronic Warfare scenario

incorporating topography from NASA’s Digital Elevation Model in a 3D environment

is designed, tested, and analyzed. Although there are additional computations from

increasing solution space and loading maps, the optimization converges to a satisfac-

tory spatial and frequency solution. The time convergence increases from 123ms to

178ms, which is well below the 1 second target.The increase in spatial dimensions

provided an important increase in the spread between transmitter assets from 86km

to 89km. The distance between between receiver and transmitter assets decreased

slightly from from 137km to 135km. These two measurements show the PSO advan-

tageously utilizes the increase in spatial dimension.

Additionally, one method of incorporating a human input within the swarm op-

timization was also realized. The human interface accurately relayed information to

the algorithm and granted the program the ability to manage instantaneous intelli-

gence. Although, the human input requires a slower generational time to function,

this delay was introduced because of quickness of the solution’s convergence. Also

noted is that additional generations are required to converge to a solution when new

data is introduced during optimization. The human input could prove very useful in

transmitting information to the swarm and providing input for command and control.

This research provides a prototype base for further exploration of blended intelligence.

The research showed that the PSO can integrate complex topography into the

optimization and still retain the desired speed below 1 second. In addition, the results

of employing human in the swarm to control the keep-away boundary provides a

prototype for future blended intelligence research, both of these research results have

moved the state of the art of ultra-fast asset allocation in Electronic Warfare forward.
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6. RECOMMENDATIONS

Although this project has made great strides, several improvements can be made to

vastly improve visualization, compatibility, performance, and user experience moving

forward.

The Graphical User Interface (GUI) of this program uses a deprecate package

called Qwt. A newer package which is often included into Qt projects called Qt

Quick, is a supported addition with more advanced visualization capabilities. An

atlas program which utilizes Qt Quick with geography is called Marble.

As this project moves to a much larger solution which may require parallel com-

puting, a move from the non compressed HGT/CSV data type to a compressed data

type would prove useful and possibly necessary. Isohype Binary File (IBF) is a file

type which is used in other mapping software packages such as Open Street Map.

Many of these open-source projects and platforms were created on Linux workspaces.

Even in the previous work, Joshua used a virtual Linux shell to perform file linking

that is not possible within a Windows run-time environment. A move to Linux com-

pilation could prove useful with the expansion of this project.
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