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Abstract

Coronary perivascular adipose tissue (PVAT) is a naturally occurring adipose tissue depot that

normally surrounds the major coronary arteries on the surface of the heart. While originally

thought to promote vascular health and integrity, there is a growing body of evidence to support

that coronary PVAT displays a distinct phenotype relative to other adipose depots and is capable

of producing local factors with the potential to augment coronary vascular tone, inflammation, and

the initiation and progression of coronary artery disease. The purpose of the present review is

outline previous findings regarding the cardiovascular effects of coronary PVAT and the potential

mechanisms by which adipose-derived factors may influence coronary vascular function and the

progression of atherogenesis.

Introduction

Coronary perivascular adipose tissue (PVAT) is a visceral adipose tissue of mesothelial

origin that normally surrounds the major coronary arteries on the surface of the heart1, 2.

Coronary PVAT is functionally distinct from the adipose tissue found on the surface of the

myocardium, which is defined as myocardial (epicardial) adipose tissue (mEAT)3, 4. In

addition to adipocytes and pre-adipocytes, coronary PVAT contains fibroblasts,

macrophages, leukocytes, as well as blood vessels and autonomic nerves. With no fascia

separating PVAT from the coronary circulation and myocardium, these essential

components of the heart share the same microcirculation1. Originally perceived as a

relatively ubiquitous and benign tissue that largely provides structural support and

insulation5, 6, it is becoming clear that factors derived from PVAT (adipokines) are capable

of influencing a variety of key (patho)physiologic parameters. In particular, recent data

support that cardiac adiposity expands with obesity7, that atherosclerotic plaques occur

predominately in coronary arteries that are encased in PVAT7-10, and that coronary PVAT

volume is positively associated with underlying plaque burden11. Patients with high mEAT

volume have also been shown to have a higher incidence of atrial fibrillation, independent of
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left atrium enlargement12-14. As such, cardiac adiposity has been identified as an

independent risk factor for coronary artery disease8, 15, 16 and a predictor of future coronary

events17. While specific adipokines can serve to promote vascular health and

integrity5, 18, 19, evidence is mounting in support of marked up-regulation of pro-atherogenic

mRNA and protein expression profiles in coronary PVAT and mEAT in the setting of

obesity20-25. This aberrant regulation of coronary PVAT also correlates with underlying

vascular dysfunction and disease in obesity23, 26-30. Thus, there is growing evidence to

support the hypothesis that local alterations in PVAT-derived factors contribute to the

initiation, progression and expansion of coronary disease24, independent of changes in

visceral adipose tissue and/or systemic adipokine levels that may occur in the setting of

obesity31. The purpose of the present review is to outline current data regarding the

cardiovascular effects of coronary PVAT and the potential mechanisms by which adipose-

derived factors may influence coronary endothelial and smooth muscle function and the

progression of atherogenesis.

Vascular Effects of Peripheral vs. Coronary PVAT

Initial studies in to the vascular effects of peripheral (non-cardiac) PVAT demonstrated

significant reductions in contractile responses to a variety of agonists in aorta32-35,

mesenteric36-38, and human internal thoracic arteries39, 40. This “anti-contractile” (or

ADRF) vasodilator effect has been attributed to PVAT-derived adiponectin41, hydrogen

sulfide (H2S)37, hydrogen peroxide (H2O2)33, and Ang1-742 mediated vasodilation via the

opening of voltage-dependent KV7 channels37, BKCa channels40, 43 and/or Kir channels33.

In contrast, the presence of peripheral PVAT has also been shown to potentiate contraction

of mesenteric arteries to electrical field stimulation via increased production of angiotensin

II and superoxide44, 45. Recent data from Watts et al. implicate chemerin as a PVAT-derived

constricting factor in aortic and mesenteric vascular beds46. Thus, non-cardiac PVAT is

capable of producing factors that illicit both vasodilation and vasoconstriction.

Experiments to elucidate the vascular effects of coronary PVAT are rather limited and

somewhat conflicting. Studies in isolated coronary arteries from lean or

hypercholesterolemic swine show little to no effect of coronary PVAT on endothelial-

dependent vasodilation or coronary contractile responses to endothelin-1, angiotensin II, or

the thromboxane A2 mimetic U4661947-49. Alternatively, coronary PVAT has been found to

diminish endothelial-dependent dilation in dogs29, 50 and to significantly exacerbate

underlying coronary endothelial dysfunction in obese swine48. Further studies in “clean”

(PVAT free) conduit coronary arteries revealed that the addition of coronary PVAT from

lean swine augments contractile responses to KCl-induced depolarization and to

prostaglandin F2α in proportion to the amount of PVAT added to the bath23. Interestingly,

this effect was also observed in response to mesenteric PVAT, but not subcutaneous PVAT.

Furthermore, the constricting effect of coronary PVAT was markedly exaggerated in

endothelium intact and denuded coronary arteries from obese swine. Additional findings

support that these enhanced effects are associated with substantial alterations in the protein

expression of obese coronary PVAT23, 24 and with inherent differences in the phenotype of

obese smooth muscle cells51, 52. Taken together, these findings indicate that factors derived

from coronary PVAT can act to impair endothelial-dependent dilation and potentiate

Owen et al. Page 2

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



contractions of coronary vascular smooth muscle, especially in the setting of obesity.

Potential mediators and mechanisms of these influences are discussed below.

In summary, the findings to date indicate that the vascular effects of PVAT are highly

dependent upon anatomical location of the artery/adipose tissue depot, the species being

studied, the pharmacologic agonist(s) used, and the underlying phenotype of the

endothelium and smooth muscle in relation to the overall health status of the studied

model23, 53. Generally, PVAT from peripheral beds exerts vasodilator “anti-contractile”

influences whereas coronary PVAT tends to induce vasoconstrictor effects, which includes

attenuation of endothelial-dependent dilation. It is important to recognize that the

experimental evidence thus far derives from in vitro examination of isolated arteries. Thus,

the functional (physiologic) relevance of these vascular influences on the regulation of blood

pressure, organ blood flow, and/or progression of disease remains a critical and

experimentally difficult question to address moving forward. In addition, more careful

examination of the precise cell types and mediators responsible for these effects is also

warranted.

Expression Profiles in Coronary PVAT

Recent evidence supports that there are substantial differences in gene and protein

expression in different adipose tissue depots (e.g. subcutaneous vs. coronary) and that these

profiles are significantly altered in the setting of disease. Examination of PVAT surrounding

the major coronary arteries suggests that this adipose depot is phenotypically consistent with

both white and brown adipose tissue54, 55. Data from the Weintraub laboratory indicate that

adipocytes from human coronary PVAT exhibit a reduced state of adipogenic differentiation

compared to adipocytes from other depots from the same subjects (e.g. subcutaneous or

perirenal-visceral)56 and that expression of pro-inflammatory genes and secretion of

cytokines such as IL-6, IL-8, and monocyte chemoattractant protein (MCP-1) is markedly

elevated in coronary PVAT vs. other adipose tissue depots and/or in the presence of

coronary artery disease20, 56 (see Table). Furthermore, recent findings from our laboratory as

well as others support that this heightened pro-inflammatory environment of coronary

PVAT is markedly exacerbated by obesity and/or with the progression of coronary artery

disease21-23, 26, 31, 48, 57-59. In particular, increased expression of “pro-atherogenic” factors

including leptin, resistin, tumor necrosis factor-α, IL-6, chemerin and calpastatin have been

documented to date9, 23, 26, 46, 48, 57, 60-64. Diminished expression of potentially

“vasculoprotective” proteins such as adiponectin, which has been associated with

improvements in endothelial function65, has also been demonstrated in human coronary

PVAT in the setting of obesity and coronary artery disease26, 31, 58, 66, 67, 68 (see Figure).

Interestingly, augmented expression of the osteogenic factors osteoprotegerin20 and

osteoglycin23 were also recently identified in coronary PVAT. These factors have been

previously linked with atherosclerosis and the severity of coronary artery disease69, 70.

Accordingly, strong and growing evidence supports that coronary PVAT displays a distinct

phenotype relative to other adipose tissue depots and is capable of locally producing factors

with the potential to influence the initiation and progression of coronary vascular

dysfunction and disease.
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Within the context of coronary PVAT expression profiles it is important to consider how

factors produced in the coronary adventitia are able to traverse the arterial wall to influence

the endothelium and/or vascular smooth muscle. The current hypothesis is that the vasa

vasorum, a network of small vessels that supply blood to the walls of large blood vessels, is

interspersed within the PVAT and thus is capable of delivering adventitial-derived factors to

conduit coronary arteries71-73. This hypothesis is supported by prior studies which have

demonstrated that neovascularization of the coronary vasa vasorum precedes the

development of overt endothelial dysfunction in swine fed a high cholesterol diet72 and by

experiments which found increases in blood flow through the vasa vasorum to the intima of

atherosclerotic coronary arteries of monkeys74. Neovascularization originating from the

adventitia has also been associated with the extent of inflammation and coronary disease in

humans75. Although the temporal association between expansion of the coronary vasa

vasorum and the development endothelial dysfunction and atherosclerosis is intriguing,

further studies to directly examine this hypothesis for the transit of PVAT-derived factors

across the coronary wall are needed.

Pathways Influenced by Coronary PVAT

As outlined above, initial studies regarding the vascular effects of coronary PVAT have

shown that factors produced by this depot can impair endothelial-dependent vasodilation and

augment coronary smooth muscle constriction, especially in the setting of obesity23, 24. At

present we are far from understanding the precise factors and signaling pathways

responsible for the vascular effects of coronary PVAT. However, there are recent

investigations which provide insight regarding potential mechanisms of PVAT-induced

coronary vascular dysfunction.

Data from our laboratory support that coronary PVAT significantly attenuates endothelial

dependent dilation of isolated coronary arteries in the setting of obesity48. This endothelial

dysfunction was associated with elevated expression of the adipokine leptin, which we have

demonstrated induces significant reductions in coronary endothelial nitric oxide production

via a PKC-β dependent phosphorylation of eNOS at the Thr495 inhibitory site48, 50, 62. This

hypothesis is supported by additional studies that found that the endothelial effects of obese

coronary PVAT are abrogated by the inhibition of leptin receptors with a recombinant,

pegylated leptin antagonist or by the inhibition of PKC-β with ruboxistaurin48. These

findings are corroborated by data from other laboratories which have documented increased

activation of PKC-β in obesity76-79. Prior studies have also implicated leptin in other key

aspects of atherogenesis, including: 1) monocyte chemattraction80; 2) promotion of

cholesterol ester accumulation in foam cells81; 3) reduction of plasma high density

lipoprotein cholesterol and apolipoprotein A-I concentrations82, 83; 4) activation of acute

phase reactants84, 85; 5) elevation of oxidative stress and modification of plasma

lipoproteins86; 6) augmented DNA-binding activity of proinflammatory transcription

factors87.

Alternatively, reductions in adiponectin expression in obese coronary PVAT could facilitate

inflammation, endothelial dysfunction, and atherogenesis as recent data from Karastergiou

et al. indicate that administration of recombinant adiponectin successfully reversed PVAT-
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mediated increases in endothelial adhesion molecule expression (ICAM-1) and adhesion of

monocytic cells to human coronary artery endothelial cells61. PVAT-derived adiponectin

has also been shown to improve the bioavailability of nitric oxide in gluteal arteries obtained

from healthy, but not obese humans41. Prior studies also demonstrate that adiponectin

administration diminishes oxidative stress, inflammation, and improves endothelial function

via adenosine monophosphate-activated protein kinase (AMPK)-induced phosphorylation of

eNOS at Thr176 65, 88, 89. Taken together, these findings suggest that an imbalance between

pro-atherogenic vs. anti-atherogenic PVAT-derived adipokines could serve to activate a

number of key regulatory pathways to promote obesity-induced coronary artery disease at a

local level. Alterations in these pathways, along with other adipokines such as resistin and

tumor necrosis factor-α that are known to negatively impact endothelial function and

vascular remodeling90-95 should be further explored.

Recently, Owen et al. documented that coronary PVAT is capable of releasing factors that

initiate and/or potentiate coronary contraction via activation of voltage-dependent ion

channels (i.e. CaV1.2 channels)23. This effect of PVAT was substantially augmented in

tissues obtained from obese relative to lean swine, thus suggesting that obesity increases

production of “adipose-derived constricting factors” from coronary PVAT. A global

proteomic assessment of coronary PVAT supernatant from lean and obese swine revealed

substantial alterations in key regulatory pathways, including cellular growth and

proliferation (51 molecules) and cellular movement (39 molecules). Of particular interest

were increases in RhoA (2.9-fold) and calpastatin (1.6-fold) which are directly linked to

smooth muscle contraction, Ca2+ sensitization, and the progression of hypertension96, 97.

Further studies to examine the effects of calpastatin, a known endogenous calpain

inhibitor97, 98 revealed that this protein dose-dependently augments contractions of isolated

coronary arteries similarly to that of coronary PVAT. Interestingly, interrogation of the Rho-

kinase pathway revealed that coronary contractions to lean PVAT are largely mediated via a

Rho-dependent pathway, whereas enhanced coronary contractions to obese coronary PVAT

occurred independent of Rhokinase signaling (was unaffected by the inhibition of Rho-

kinase). These data, along with concurrent evidence that PVAT-derived factors significantly

impair coronary vasodilation of H2O2-sensitive K+ channels23, indicate that the effects of

coronary PVAT are related not only to inherent alterations in coronary PVAT expression

profiles but also to underlying mechanistic differences in obese coronary artery smooth

muscle cells. This hypothesis is supported by earlier studies from our laboratory and others

which have demonstrated that obesity decreases the functional expression of coronary K+

channels99-103 and increases coronary CaV1.2 channel current, expression, and

contraction51, 52, 104.

Implications and Conclusions

Taken together, there is a growing body of evidence to support that changes in the

phenotypic expression patterns in coronary PVAT occur concomitantly with mechanistic

alterations in endothelium and vascular smooth muscle. These changes appear to be

dependent on the unique characteristics of the cell types involved and the underlying

environment/milieu in which they reside. However, the extent to which PVAT-derived

factors “causally” contribute to changes in vascular expression of K+ channels, Ca2+
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channels, Rho-signaling, macrophage/foam cell formation, and/or regional heterogeneity of

smooth muscle differentiation/proliferation and atheroma progression has not been

determined. Future research to delineate the involvement of specific adipose tissue cell

types, how adipose tissue-derived factors are delivered to the vascular wall and possibly

systemic circulation (i.e. vasa vasorum), identity of precise mediators, as well as signaling

pathways and end-effector mechanisms influenced by coronary perivascular and epicardial

adipose tissue beds remain central questions moving forward.
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PVAT perivascular adipose tissue
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Significance

There is a growing body of evidence to support that changes in the phenotypic expression

patterns in coronary perivascular adipose tissue (PVAT) occur concomitantly with

mechanistic alterations in endothelium and vascular smooth muscle in the setting of

cardiovascular disease. These changes appear to be dependent on the unique

characteristics of the cell types involved and the underlying environment/milieu in which

they reside. This review summarizes current findings regarding the cardiovascular effects

of coronary PVAT and outlines potential mechanisms by which adipose-derived factors

may influence coronary disease.
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Figure 1.
Schematic diagram outlining known alterations in coronary PVAT-derived adipokines and

potential downstream effector mechanisms in endothelium and vascular smooth muscle.

Leptin released from coronary PVAT diminishes eNOS activity, preventing nitric oxide

mediated dilation of vascular smooth muscle via activation of K+ channels and contributes

to the recruitment of macrophages and retention of foam cells in the extravascular space.

Calpastatin and an unknown adipose-derived constricting factor(s) (ADCF) increase

vasoconstriction via CaV1.2 channels and may function to increase RhoA activity in healthy

coronary smooth muscle. Other adipokines implicated in other vascular beds may also play a

role in promoting coronary vascular endothelial and smooth muscle dysfunction, including,

but not limited to: increases in resistin, chemerin, osteoglycin, osteoprotegerin, and

decreases in adiponectin production.
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Table

Comparison of coronary perivascular and subcutaneous adipose tissue adipokine expression.

Adipokine Condition Coronary PVAT Expression
Relative to Subcutaneous References

Leptin NCAD ↓ mRNA 60

CAD ↓ mRNA 57

Adiponectin NCAD ↓ mRNA, ↓ protein secretion 60

CAD ↑ protein secretion 26

TNF-α NCAD+CAD ↑ mRNA 64

CAD ↑ mRNA, ↑ protein secretion 63

↓ protein secretion 26

IL-6 NCAD ↑ mRNA 60, 20

NCAD+CAD ↑ mRNA 64

CAD ↓ mRNA 57

↑ protein secretion 63

IL-1β NCAD+CAD ↑ mRNA 64

CAD ↑ mRNA, ↑ protein secretion 63

MCP-1 NCAD ↑ protein secretion 60

NCAD+CAD ↑ mRNA 64

CAD ↑ mRNA, ↑ protein secretion 63

PAI-1 CAD ↓ mRNA 57

NCAD, no coronary artery disease; CAD, coronary artery disease; NCAD+CAD, grouped population of NCAD and CAD; TNF-α, tumor necrosis
factor-alpha; IL-6, interleukin-6; IL-1β, interleukin-1 beta; MCP-1, monocyte chemoattractant protein-1; PAI-1, plasminogen activator inhibitor-1.
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