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Abstract
Circulating microRNAs (miRNA) are emerging as important biomarkers of various diseases, including cancer.

Intriguingly, circulating levels of several miRNAs are lower in patients with cancer compared with healthy
individuals. In this study, we tested the hypothesis that a circulating miRNA might serve as a surrogate of the
effects of cancer on miRNA expression or release in distant organs. Here we report that circulating levels of
the muscle-enriched miR486 is lower in patients with breast cancer compared with healthy individuals and that
this difference is replicated faithfully in MMTV-PyMT and MMTV-Her2 transgenic mouse models of breast
cancer. In tumor-bearing mice, levels of miR486 were relatively reduced in muscle, where there was elevated
expression of the miR486 target genes PTEN and FOXO1A and dampened signaling through the PI3K/AKT
pathway. Skeletal muscle expressed lower levels of the transcription factor MyoD, which controls miR486
expression. Conditioned media (CM) obtained from MMTV-PyMT and MMTV-Her2/Neu tumor cells cultured
in vitro were sufficient to elicit reduced levels of miR486 and increased PTEN and FOXO1A expression in C2C12
murine myoblasts. Cytokine analysis implicated tumor necrosis factor a (TNFa) and four additional cytokines
as mediators of miR486 expression in CM-treated cells. Because miR486 is a potent modulator of PI3K/AKT
signaling and the muscle-enriched transcription factor network in cardiac/skeletal muscle, our findings
implicated TNFa-dependent miRNA circuitry in muscle differentiation and survival pathways in cancer. Cancer
Res; 74(16); 4270–81. �2014 AACR.

Introduction
Extracellular/circulatingmicroRNAs (miRNA) have emerged

as minimally invasive biomarkers of cancer progression and
therapeutic response (1–3). Imbalance in circulating miRNAs
goes beyond cancer, as there is evidence for altered circulating
miRNAs in Atherosclerosis and Alzheimer disease (4, 5).
Because of relative stability of these circulating miRNAs, the
sera miRNA profiling has been suggested to be highly sensitive
screening assay for early detection of various diseases (6).

The source of circulating miRNAs, particularly in cancer,
remains an enigma as levels of several of circulating miRNAs
show opposing pattern in tumor and in circulation (7).

Although tumor itself or circulating tumor cells are potential
sources of miRNAs that are elevated in the sera/plasma of
patients with cancer, consistent observation of lower circulat-
ing levels of specificmiRNAs in patients with cancer compared
with healthy controls suggest that systemic effects of cancer is
causing overall changes in expression/release of miRNAs from
distant organs (8–10). For example, a recent study evaluating
sera miRNA as a potential risk biomarker of breast cancer
using prospectively collected sera from Sister Study Cohort
showed downregulation of 5miRNAs in the sera of womenwho
developed breast cancer (11). Another report using breast
tumors and sera from Asian Chinese patients showed down-
regulation ofmiRNA in the sera of patients with cancer (7). Our
recent study provided a hint to the contribution of secondary
organs in cancer-associated circulating miRNA changes as we
observed elevated U6 small RNA in the sera of patients with
breast cancer who are clinically disease-free compared with
healthy controls (12). We proposed that cancer-induced epi-
genomic changes in distant organs cause elevated expression
and release of U6 from these organs. However, this possibility
has not been experimentally verified and the underlying
mechanisms are unknown.

The goals of this study were to identify miRNAs that are
present at a lower level in circulation in breast cancer models
and then to elucidate mechanisms responsible for reduced
levels of specific circulating miRNAs. We used two transgenic
mammary tumor models—one is an aggressive tumor model
and the other with relatively longer latency—to ensure that the
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results obtained are not unique to a specific model. Our results
reveal specific deregulation in the expression of cardiac/skel-
etal muscle–enriched miRNA miR486 in mammary tumor
models. In vitro studies identified tumor necrosis factor a
(TNFa) as a potential cancer-induced factor responsible for
deregulation of miR486 expression.

Materials and Methods
Human serum sample processing and miRNA extraction
The Indiana University institutional review board approved

the use of human sera samples. Susan G. Komen for the Cure
Normal Breast Tissue Bank at the Indiana University Simon
Cancer Center collected patient sera samples along with
healthy volunteer controls after obtaining informed consent.
All samples were collected in accordance with standard oper-
ating procedure described in the tissue bankwebsite.MiRVana
Kit was used to isolate miRNA from 250 mL of sera (Applied
Biosystems). Sera were spiked with synthetic C. elegans miR39
mimic (Qiagen) before miRNA extraction and miR486 expres-
sion was normalized to spiked miR39 mimic levels. Character-
istics of healthy controls and patients studied have been
described in our previous publication (12).

Transgenic models of breast cancer
National Institutes of Health regulations about the use and

care of experimental animals were followed while conducting
animal studies and the study was approved by the Indiana
University School of Medicine animal use committee. Male
MMTV-PyMT or MMTV-Her2/Neu mice on a FVB/N back-
ground were randomly bred with normal FVB/N females to
obtain female heterozygous for the PyMT and Her2/Neu
oncogene. MMTV-PyMT and MMTV-Her2/Neu mice have
been described previously (13, 14). Neu oncogene used in this
transgenic model is an activated form with 16 amino acids in-
frame deletion of the extracellular domain (14). Blood, heart,
andmuscle were collected for miRNA preparation at the age of
3 and 5 months from MMTV-PyMT and MMTV-Her2/Neu
mice, respectively. As we have reported previously, MMTV-
PyMT mice at this age have extensive tumor burden accom-
panied with metastasis to lungs (15). MMTV-Her2/Neu mice
also develop lung metastasis by 5 months age, although their
tumor burden and metastasis are not as extensive as in PyMT
mice (data not shown, ref. 14). All animals had tumors at the
time of tissue harvest. The age matched normal female mice
were used as controls.

Quantitative reverse transcription PCR
Five microliters of miRNAs (for sera) or 100 ng (for tumor

and normal mammary gland) was reverse transcribed into
cDNAs in a final volume of 30 mL using a Taqman miRNA
Reverse Transcription Kit (Applied Biosystems). Quantitative
PCR (qPCR) was performed using Taqman universal PCR mix
(Applied Biosystems) and specific primers. Primers for U6
(#001973), miR486 (#001278), miR202 (#001195), and miR30d
(#000420) were purchased from Applied Biosystems. Each
amplification reaction was performed in duplicate in a final
volumeof 20mLwith 2mL of cDNA. qPCR reactions of sera from
healthy subjects and patients withmetastatic breast cancer for

a particular probe were in the same plate to limit mechanical
errors. The expression levels of miR486 were normalized to
miR202 (mouse sera and mammary gland), U6 (cardiac and
skeletal muscle), andmiR30d (C2C12 cells) using 2�DDCt meth-
od. In case of C2C12 cells, 1 mg of miRNA preparation was used
for cDNA synthesis. mRNAs from C2C12 cells were prepared
using the RNAeasy Kit from Qiagen and subjected to qRT-PCR
using the primers that amplify both Ank1 and sAnk1 (primer
sequences; forward: 50-GAC GCA TGA CCT ACA GTC TTC-30

and reverse: 50-GCT ATC CTC TCC CTT CTT CTC T-30) and
b-actin (forward: 50-AATGAGGCCGAGGACTTTGATTGC-30

and reverse: 50-AGG ATG GCA AGG GAC TTC CTG TAA-30).

miRNA array
miRNA profiling was performed using the Taqman miRNA

array A that included an assay plate containing 384 probes of
rodent miRNAs (#4398979, Applied Biosystems). PCR was con-
ducted as per instructions from the manufacturer using 9 mL of
preamplified cDNAs. Preamplification reactions were done as
per instructions from Applied Biosystems using the TaqMan
MicroRNA RTKit (part no. 4366596). The sera from four each of
control, MMTV-PyMT, andMMTV-Her2/Neu were used for the
array. Probes that showed undetectable signals were given a CT
value of 40 for calculation. Supplementary Table S1 provides CT
values for each of the probes in all 12 samples. Normalization
using miR202 was done using the 2�DDCt method.

Cell culture and conditioned media
Mouse myoblast C2C12 cells were seeded in 6-well plates

(5 � 105 cells per well) in DMEM plus 10% FBS overnight.
Mammary tumor cells generated from MMTV-Her2/Neu (16)
and MMTV-PyMT mice (15) were cultured overnight in the
same media and changed to serum-free DMEMmedium for 24
hours. C2C12 cells were treated with CM for 24 hours. For
neutralizing antibody assay, conditioned media (CM) was
preincubated with 1 mg/mL of anti-TNFa antibody (R&D
systems) at room temperature for 1 hour before adding to
C2C12 cells. To directly measure the effects of cytokines on
miR486 expression, C2C12 cells were treated with 20 ng/mL of
CCL2, IFNg , IL1a, or TNFa (R&D Systems) overnight. For
promoting differentiation to myotubes, 5,000 C2C12 cells were
plated in 6-well plates and maintained in 2% of horse serum
containing media for 7 days. Serum-free control or MMTV-
PyMT or MMTV-Her2/Neu tumor cell line–derived CM were
added 2 days after plating.

Western blotting
After indicated treatments, cells were washed in PBS and

lysed in RIPA buffer with protease/phosphatase inhibitors
(Sigma). Thirty micrograms of proteins were used for Western
blotting. Antibodies against FOXO1A (Upstate), b-actin (Sig-
ma), pAKT (Cell Signaling Technology), p27 (BD Biosciences),
PTEN, and MyoD (Santa Cruz Biotechnology) were used for
Western blot analyses as per instructions frommanufacturers.

Cytokine array and ELISA
Serum-free CM derived fromMMTV-Her2/Neu andMMTV-

PyMT cultures were subjected to immunoblotting based
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cytokine profiling using the mouse cytokine array panel A
(#ARY006, R&D Systems). ELISA was used to measure TNFa
levels in mouse sera and CM (BioLegand, for mouse).

Statistical analysis
Expression levels of sera miRNAs were compared using

ANOVA. A P value of <0.02 was considered statistically

Table 1. Significantly altered circulating miRNAs in transgenic mice with mammary tumors

MMTV-Her2/Neu vs. control MMTV-PyMT vs. control

miRNA P value Fold change P value Fold change

MMTV-Her2/Neu specific
miR486 0.0001 �6.54 0.72 �1.11
miR7a 0.0025 58.47 0.69 �1.48
miR743a 0.007 2.03 1 �1
miR381 0.0079 2.66 1 �1
miR139-3p 0.015 88.62 0.03 46.2
miR129-3p 0.016 35.61 0.492 2.39
miR191 0.018 �4.45 0.21 2.00
miR34a 0.019 40.757 0.606 2.00

MMTV-PyMT specific
miR136 0.978 1.01 2.19E-06 81.41
miR202-3p 0.537 �1.15 0.00046 3.35
miR574-3p 0.50 1.34 0.00094 7.92
miR146b 0.271 2.15 0.001 21.47
miR134 0.0248 6.4 0.0015 21.7
miR667 0.668 1.18 0.0017 5.28
miR685 0.633 1.43 0.002 21.7
miR24 0.03 4.2 0.003 8.9
miR132 0.019 49.99 0.0038 209.42
miR542-5p 0.45 2.6 0.005 97.17
miR324-3p 0.11 4.05 0.006 17.07
miR223 0.919 �1.06 0.0066 8.17
miR92a 0.718 �1.15 0.007 3.94
miR342-3p 0.08 2.73 0.007 5.83
miR410 0.857 1.31 0.0096 127.559
miR200a 0.038 7.07 0.01 13.62
miR484 0.639 �1.23 0.01 4.05
miR139-5p 0.715 1.255 0.01 6.96
miR429 0.035 53.58 0.01 173.95
miR187 0.94 1.07 0.01 19.58
miR30a 0.141 2.67 0.014 6.37
miR511 0.031 15.93 0.015 25.74
miR423-5p 0.51 �1.52 0.016 6.09
miR335-5p 0.364 5.14 0.016 155.23
miR146a 0.303 1.93 0.016 5.9
miR125a-3p 0.238 13.7 0.019 359.00

Commonly deregulated in both transgenic mice
miR193b 0.009 6.7 0.0001 36.2
miR151-3p 0.0072 5.199 0.0003 13.73
miR27b 0.007 171.86 0.0004 3,013.24
miR671-3p 0.0095 47.41 0.0013 220.48
miR200b 0.014 9.82 0.018 8.7
miR183 0.016 23.44 0.004 56.17
miR210 0.02 6.53 0.00082 27.37
miR132 0.02 49.99 0.0038 209.4

NOTE: No normalization was used in this analysis.
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significant in array experiments and <0.05 in validation experi-
ments. miR486 in human sera was evaluated using ANOVA.

Results
Lower levels of circulating miR486 in transgenic mice
with mammary tumors and in patients with breast
cancer
To better understand the mechanism of lower circulating

levels of specific miRNAs in patients with cancer compared
with healthy controls, we profiled miRNAs in the sera of
controls and transgenic mice with mammary tumors derived
upon Her2/Neu (MMTV-Her2/Neu) or polyoma middle-T-
antigen (MMTV-PyMT) oncogene overexpression (13, 14).
Because of disagreements about normalization controls for
such studies and each study claiming different miRNAs as
better normalization controls (7, 17), data were analyzed
without normalization first. In addition, analysis was con-
ducted by selecting a miRNA, which showed highest stability

value across samples, as a normalization control similar to
the previously published Sister Study cohort report (11).
Principle component analysis (PCA) showed a near perfect
separation of three groups when data were analyzed without
normalization compared with normalization using miR202
(Fig. 1A and B). Reason for the discrepancy in separation of
samples to three groups with and without normalization is
unclear. However, a recent study has shown PCA as a better
method to identify circulating miRNAs (18). Samples utilized
in this study were from inbred mice housed under similar
condition, and collected and analyzed at the same time,
which should limit inter-mice and technical variability.
Therefore, extensive additional studies are required to find
ideal normalization control. Alternatively, when another
miRNA or small RNA is used as a normalization control, it
may be ideal to present results as a ratio between test
miRNA and specific normalization control RNA as we have
presented below. Detailed miRNA profiles with CT values
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Figure 1. The sera of transgenic
mice with mammary tumors
display distinct miRNA profile.
A, PCA of miRNAs in sera of
control, MMTV-Her2/Neu, and
MMTV-PyMT mice without
normalization. B, PCAofmiRNAs in
sera of control, MMTV-Her2/Neu,
and MMTV-PyMT mice after
normalization with miR202.
C, qRT-PCR analysis confirmed
downregulation of miR486 in sera
of transgenic animals with
mammary tumors. D, analysis of
circulatingmiR486 levels in healthy
and metastatic patients using
miRNA preparations after spiking
sera with C. elegans miR39 to
correct for technical variability.
E, miR486 levels in the normal
mammary gland (n, 7–8), MMTV-
Her2/Neu (n ¼ 6), and MMTV-
PyMT–derived mammary tumors
(n ¼ 10).
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and comparison between three groups with and without
normalization are shown in Supplementary Table S1.

With a P value cutoff of <0.02 and no normalization, we
observed 16 miRNAs being present differentially in the sera of
MMTV-Her2/Neu mice compared with control mice, with two
of them being downregulated (Table 1). In contrast, the sera of
MMTV-PyMT mice contained elevated levels of 34 miRNAs
(Table 1). Difference in number of circulatingmiRNAs between
MMTV-PyMT and MMTV-Her2/Neu is statistically significant
(P ¼ 0.01, Fisher exact test, 2-tailed). Despite shorter latency,
tumors and lung metastasis were more advanced in MMTV-
PyMT transgenic mice compared withMMTV-Her2/Neumice,
which may be a reason for significantly higher number of
circulating miRNA changes in MMTV-PyMT mice compared
with MMTV-Her/Neu mice. Expectedly, unique changes were
more common in the MMTV-PyMT mice (26 of 34) compared
with the MMTV-Her2/Neu mice (8 of 16).

When miRNA profiles were normalized using miR202, only
four miRNAs were present differentially in the MMTV-Her2/
Neu sera compared with the sera from nontransgenic mice
with one of them being lower, whereas five miRNAs were
present differentially in the sera of MMTV-PyMT, with four
of them being downregulated (Table 2). However, number of
circulating miRNAs differentially present in the MMTV-PyMT
may be an underestimation in this analysis because of overall
increase in miR202 levels in MMTV-PyMT sera but not in
MMTV-Her2/Neu sera compared with controls (Table 1).
miR146b levels were elevated, whereas miR486 levels were
lower in 1 or both transgenic mice models giving us the
confidence that these two miRNAs are the major differentially
expressed/secreted miRNAs in cancer.

We selected miR486 for further study because its expres-
sion is enriched in cardiac and skeletal muscle, which
represents �40% of body mass (19). In addition, CT values
ranged from 15 to 20, suggesting that its levels can be reliably
measured. We verified the microarray results by qRT-PCR to

confirm cancer-specific downregulation of circulating
miR486 in both MMTV-Her/Neu and MMTV-PyMT mice
using miR202 as a normalization control (Fig. 1C). As with
microarray, in these validation experiments, miR486 levels
were lower in sera of MMTV-Her2/Neu mice (3.78 � 0.44 in
control versus 1.55 � 0.44 in MMTV-Her2/Neu, P ¼ 0.0004)
but not in sera of MMTV-PyMT mice when data were
analyzed without normalization, further confirming repro-
ducibility (data not shown).

To confirm the relevance of data obtained in animal models
to human, wemeasuredmiR486-5P levels (equivalent of mmu-
miR486) levels in the sera of patients with breast cancer with
metastasis (N ¼ 17) and healthy women (N ¼ 16). Circulating
miR486 levels were lower in patients with breast cancer
metastasis compared with healthy (fold change ¼ �3.14;
P ¼ 0.002; ANOVA, metastasis vs. normal; Fig. 1D).

To investigate whether there is any relationship between
miR486 in tumor and in circulation, we measured miR486
levels in normal mammary gland and tumors from both
transgenic mice. Although PyMT tumors and normal mam-
mary gland expressed similar levels of miR486, Her2 tumors
showed elevated miR486 expression compared with normal
(Fig. 1E). Therefore, differential levels of circulating miR486
in three groups are less likely because of altered expression
in tumors compared with normal mammary gland. We do
acknowledge limitations of this analysis because normal
mammary gland and tumors differ in their epithelial con-
tent. Similar analysis of public databases for miR486 in
breast cancer and normal breast gave ambiguous results.
Although The Cancer Genome Atlas (TCGA) dataset (20)
showed lower miR486 in breast tumors compared with
normal breast, three other datasets (GSE32922, GSE44124,
and GSE53179; refs. 21 and 22) failed to demonstrate
reduced miR486 in tumors (Supplementary Fig. S1A). More-
over, in the TCGA dataset, higher miR486 expression was
associated with worst outcome, which is not compatible

Table 2. Significantly altered circulating miRNAs in transgenic mice with mammary tumors

MMTV-Her2/Neu vs. control MMTV-PyMT vs. control

miRNA P value Fold change P value Fold change

MMTV-Her2/Neu specific
miR204 0.009 8.9 0.507 2.66
miR375 0.017 2.82 0.712 �1.31
miR381 0.02 3.2 0.375 �3.63

MMTV-PyMT specific
miR450b-5p 0.43 1.18 0.01 �3.63
miR142-3p 0.119 �2.02 0.01 �12.30
miR150 0.073 �1.89 0.014 �3.41
miR146b 0.397 2.59 0.018 6.16

Common to both
miR486 0.0006 �5.69 0.001 �3.69

NOTE: Data were analyzed using miR202 as a normalization control. Although miR202 was present in all sera samples analyzed and
showed least variability betweensamples, its levelswerehigher in theseraofMMTV-PyMTmicecomparedwith control orMMTV-Her2/
Neu mice.
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with the observation of lower tumor-specific expression
(Supplementary Fig. S1B). Although reduced expression of
miR486 in breast tumors leading to lower circulating miR486
cannot be completely ruled out, based on the results in
murine models and ambiguity of results obtained with
breast tumors and normal breast tissue, we favor the alter-
native possibility of systemic effects of cancer causing lower
circulating miR486 levels.

Cardiac and skeletal muscle of transgenic mice with
mammary tumors express lower miR486 compared with
controls
To determine whether lower circulating miR486 in trans-

genic mice with cancer can be attributed to its lower
expression in muscle and heart, we measured miR486 in
miRNA preparation from these organs. Animals used in
these experiments are different from those used for sera
miRNA analysis. Indeed, miR486 levels were lower in the
heart and muscle of MMTV-Her2/Neu transgenic mice (n ¼
6) and in the heart of MMTV-PyMT mice compared with
control mice (n ¼ 6 for control, n ¼ 5 for muscle, n ¼ 4 for
heart; Fig. 2A). U6 is an appropriate control for heart and
muscle tissue based on a previous study and our finding that
it was not significantly different between PyMT, Her2, and
control mice (19).

Conditioned media from MMTV-Her2/Neu and MMTV-
PyMT mammary tumor cell lines reduce miR486 in
C2C12 cells

To delineate the mechanism involved in cancer-induced
changes in miR486 expression in muscle, we utilized undif-
ferentiated murine myoblast C2C12 cell line as a model
system. The effects of CM from tumor cell lines derived
from MMTV-Her2/Neu and MMTV-PyMT mice on miR486
expression in these cells were measured. The CM from both
MMTV-Her2/Neu and MMTV-PyMT tumor-derived cell
lines reduced miR486 levels in this myoblast cell line (Fig.
2B). The ability to inhibit miR486 expression was reduced
partially when CM was pretreated for 20 minutes at 80�C,
indicating that a protein factor(s) in the CM is repressing
miR486 expression. miR30d expression was used as a nor-
malization control. However, results were similar when data
were analyzed without normalization in majority of experi-
ments (data not shown).

miR486 is transcribed from the intron 40 of the Ankyrin-1
(Ank1) gene, which encodes for an ankyrin repeat protein and
an erythroid-specific enhancer–promoter controls its expres-
sion in erythroid cells (19). However, muscle cells express a
smaller Ank1 (sAnk1) transcript containing exon 39a and
exons 40 to 42 utilizing an alternative promoter immediately
upstream of exon 39a. sAnk1 and miR486 are expressed
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Figure 2. Cancer cell–derived
soluble factors reduce miR486
expression in muscle and increase
miR486 target proteins. A, heart of
both MMTV-Her2/Neu and MMTV-
PyMT and skeletal muscle of
MMTV-Her2/Neu mice with
mammary tumors expressed lower
levels of miR486 compared with
healthy controls (N ¼ 6). B, CM
fromMMTV-Her2/Neu and MMTV-
PyMT tumor-derived cell lines
reduced miR486 expression in
C2C12 cells. CM preheated at
80�C partially lost the ability to
reduce miR486 expression.
Asterisks and dollar sign indicate
statistically significant differences.
C, CM from MMTV-Her2/Neu and
MMTV-PyMT tumor-derived cell
lines reduced Ank1 mRNA. D, CM
fromMMTV-Her2/Neu and MMTV-
PyMT tumor-derived cell lines
upregulated miR486 target
proteins in C2C12 cells.

Circulating miRNA and Muscle Dysfunction in Cancer

www.aacrjournals.org Cancer Res; 74(16) August 15, 2014 4275



coordinately in muscle cells and muscle-enriched transcrip-
tion factorsMyoD andmyocardin-related transcription factor-
A (MRTF-A) control their expression (19). Because CM from
tumor-derived cell lines reduced miR486 in C2C12 cells, we
examined the effects of CM on Ank1 expression. Similar to
miR486, the expression of Ank1 was reduced in CM-treated
cells and preheat-treated CM was less efficient in reducing
Ank1 expression (Fig. 2C). Please note that RNAs for these
experiments were prepared from different batch of cells using
independent methods and b-actin was used as a control for
normalization in Ank1 expression analysis. Thus, two inde-
pendent assays demonstrate an effect of cancer cell–derived
factors on the expression of miR486.

FOXO1A and PTEN are the well-established targets of
miR486. Therefore, by downregulating PTEN,miR486 activates
the PI3K/AKT survival pathway in cardiac and skeletal muscle
(19). In addition, miR486 has been shown to suppress muscle
wasting by targeting FOXO1 (23). Because tumor cell line–
derived CM reduced miR486 levels, we determined the expres-
sion levels of its target proteins in C2C12 cells with andwithout
CM treatment. CM pretreated at 80�C for 20 minutes was used
a control. CM from both MMTV-Her2/Neu and MMTV-PyMT
cell lines increased the levels of FOXO1A and PTEN with
concomitant decline in pAKT levels (Fig. 2D). The levels of
FOXO1A target protein p27 were elevated in cells treated with
CM fromMMTV-Her2/Neu andMMTV-PyMT tumor cell lines
(24). None of these changes were observed when cells were
incubated with heat-treated MMTV-PyMT cell line–derived
CM. For unknown reason, heat-treated MMTV-Her2/Neu
tumor-derived cell line CM was still able to increase PTEN
and p27 but not FOXO1A. Nonetheless, these results provide
evidence for a factor(s) derived from cancer cells in reducing
miR486 levels and as a consequence, increasingmiR486 targets
in the myogenic cell line.

TNFa, secreted by cancer cells, alters miR486 expression
in C2C12 cells

We used cytokine arrays to identify cytokines present in the
CM from both cell lines. This array measures 40 different
cytokines. Although each CM contained unique cytokines
(TIMP1 in case of PyMT and G-CSF, CCL-1, CCL-5, CXCL1,
CXCL2, CXCL10, and IL1ra in case of Her2/Neu), GM-CSF,
TNFa, CCL-2, IFNg , and IL1a were the common cytokines
secreted by both tumor lines (Fig. 3A). The ability of some of
these cytokines to alter miR486 and Ank1 expression was
examined. Although all four cytokines tested reduced miR486
expression, only IL1a and TNFa reduced both miR486 and
Ank1 expression (Fig. 3B and C). These results suggest that
although TNFa and IL1a reduce miR486 by targeting
Ank1 regulatory regions, CCL-2 and IFNg regulate miR486
expression and/or maturation independent of Ank1 gene
transcription.

We focused on TNFa because of its previously described
role in reducing MyoD expression in muscle, an important
transcription factor required for miR486 expression, and in
muscle dysfunction (19, 25). Toward this end, we pretreated
CM with either control IgG or neutralizing antibody against
TNFa and then applied to C2C12 cells. TNFa neutralizing

antibody significantly prevented CM-mediated suppression
of miR486 and Ank1 expression (Fig. 3D and E). Using ELISA
assay, we confirmed the presence of TNFa in CM from
MMTV-Her2/Neu and MMTV-PyMT cell lines and in sera
of transgenic mice with tumors (Fig. 3F and G). Similar
analysis of sera from patients with metastatic breast cancer
and healthy donors showed a trend of elevated circulating
TNFa in patients with cancer compared with healthy (Sup-
plementary Fig. S1C).

CM from tumor cell lines reduce miR486 expression in
myotubes

The above studies were performed in undifferentiated
C2C12 cells. To determine whether CM from tumor cell
lines reduce miR486 in myoblasts undergoing differentiation
to myotubes, we grew C2C12 cells in media containing 2%
horse serum (26). CM from both cell lines reduced the levels
of miR486 in the differentiated cells (Fig. 4). We also noted
lower cell density when cells were treated with tumor cell–
derived CM compared with control CM, possibly indicating
an effect of CM on the miR486-mediated cell survival path-
way (Fig. 4).

Deregulation of the PI3K–PTEN–AKT survival network
in cardiac and skeletal muscle of transgenic mice

Although in vitro studies indicated a clear effect of factors
secreted by cancer cells on miR486 expression and survival
signaling network in myoblasts, we wanted to confirm similar
scenario in intact animals. Toward this end, we measured the
levels of miR486 target proteins in extracts from heart and
muscle. Heart from transgenic animals contained lower levels
of pAKT compared with control animals despite insignificant
difference in PTEN levels between groups (Fig. 5A). PTEN is
highly abundant protein in heart, whichmay be a reason for not
detecting differences in its levels between groups. In contrast,
muscle of transgenic mice contained elevated PTEN and lower
pAKT (Fig. 5B). Because PI3K/pAKT has a cardioprotective
function and prevents muscle atrophy by inhibiting FOXO
transcription factors (27), whereas elevated levels of phosphor-
ylated/activated p38 kinase is associated with apoptosis and is
often increased during ischemic heart disease (28), we next
measured the levels of phospho-p38 (T180/Y182). Indeed,
extracts of heart from transgenic mice contained elevated
phospho-p38 compared with extracts from control mice (Fig.
5A). These results suggest that tumor-induced factors such as
TNFa reduce the expression of miR486 in heart, leading to
impairment in the PI3K/AKT-dependent survival pathway and
the elevated p38 kinase pathway.

Because sera of transgenic animals contained elevated levels
of TNFa, which can affect miR486 expression by targeting
MyoD (19), we next examinedMyoD protein levels in heart and
muscle of control and transgenic animals. MyoD levels were
lower in skeletal muscle of tumor-bearing animals (Fig. 5B).
Similar trend was observed in heart, although differences did
not reach statistical significance. In summation, our results
suggest the effect of cancer on miRNA expression in distant
organs with an impact on the survival-signaling network in
these organs.
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Discussion
A number of recent reports have described circulating

miRNAs as potential biomarkers of cancer (7, 11, 17). However,
this field still suffers from lack of reproducibility, as there is a
minimum overlap in cancer-specific circulating miRNAs iden-
tified in different studies. There are two possible explanations
for this lack of reproducibility; first is the difficulty in finding a

suitable normalization control and second is the recent real-
ization of large scale transcriptome variation among healthy
humans, which makes it difficult to assign "normal" value to
circulating miRNAs (29). Nonetheless, at least few specific
miRNAs have been detected in disease conditions in more
than one study. For example, elevated circulatingmiR181a and
miR222 have been observed in breast cancer in more than one
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study (7, 11, 17). miR151-3p, miR134, and miR671-3p identified
in our animal models have been shown to be elevated in the
sera of patients with cancer (7, 11). Therefore, studies that
combine analysis in transgenic animal models in a similar
genetic background and in human samples, as done in this
study,may identify a set of circulatingmiRNAs that can be used
as biomarkers in a clinical setting.

Several miRNAs that are present at higher levels in the sera
of transgenic mice have previously been shown to have
oncogenic role. For example, miR27b, which is elevated in
the sera of both transgenic mice (Table 1), is a context-
specific oncogene and both Her2 and TNFa increase its
expression in breast cancer cells (30). In fact, miR27b was
not measurable in the sera of control animals but readily
detectable in the sera of transgenic mice (Supplementary
Table S1). Furthermore, combination of two circulating
miRNAs, miR27b, and miR15b, has been shown to discrimi-
nate patients with non–small cell lung cancer from healthy
controls (31). miR210 is a hypoxia-inducible oncogene, which
predicts poor outcome in patients with breast cancer (32).
Consistent with rapid tumor progression, which often leads to
hypoxia, MMTV-PyMT tumor-bearing mice had much higher
circulating miR210 than MMTV-Her2/Neu tumor-bearing
mice (Table 1). Circulating levels of miR210 and miR200b
correlate with the presence of circulating tumor cells in
patients with breast cancer (10). miR146a and miR146b
elevated in the sera of MMTV-PyMT mice have previously
been shown to target BRCA1 and are expressed at a higher

level in basal-like and triple-negative breast cancers (33). In
addition, circulating miR146 may suggest overall inflamma-
tory status as both miR146a and miR146b are NF-kB–induc-
ible miRNAs (34, 35). miR183, which is elevated in the sera of
both transgenic mice, is overexpressed in ductal carcinoma in
situ compared with normal breast (36). Thus, deregulation of
certain miRNAs in breast/mammary tumors is common
across species and independent of specific oncogenic events.

There have been limited attempts to understand why cir-
culating levels of certain miRNAs are lower in cancer despite
consistent observation of such a phenomena. We selected
miR486 as a model miRNA to study this aspect because it is
a unique miRNA with no family members and is expressed
predominantly in heart and muscle, which represent 40% of
body mass (19). Unlike most other miRNAs with family mem-
bers sharing targets and thus compensating for the loss of
expression of a family member, loss of miR486 expression is
likely to have consequences. Consistent with this possibility,
disease phenotypes are associated with reduced miR486
expression as evident in the muscle of patients with Duchene
muscular dystrophy (37). Physical exercise can have a negative
influence on its release into circulation, suggesting a link
between muscle biology and circulating levels of miR486
(38). Our results have demonstrated an effect of mammary
tumors on its expression in skeletal and cardiacmuscle. Similar
scenario may exist in other cancers as lower circulating
miR486-5p in relation to miR21 or miR126 is observed in
patients with lung cancer with poor outcome (39).
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To date, most research on cardiac health of patients with
cancer is focused on cardiac toxicity of cancer therapy (40). Our
study raises the possibility that cardiac dysfunction occurs
during cancer progression. As presented schematically in Fig.
5C, such a cancer-induced collateral damage to heart/muscle
involves a miRNA network. Similarly, cancer-induced skeletal
muscle dysfunction and cachexia is observed in at least 50% of
patients although cachexia is rare in patients with breast
cancer (41). Recently, cachexia has been defined as a syndrome

that progresses through various stages; precachexia to cachex-
ia to refractory cachexia (42). Because tumor-bearing trans-
genicmice did not show severe cachexia at the time of sacrifice
but displayed some of the molecular defects associated with
skeletal muscle dysfunction, including lowerMyoD expression,
drop in circulating miR486 levels may provide an indication to
precachectic stage.

Neutralizing antibody against TNFa is already in clinical use
for other diseases (43). At least in animal models, TNFa
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neutralizing antibody reducedmammary tumor growth (44). It
may be worth considering these treatments not only to inhibit
tumor growth but also to reduce side effects of cancer. The
efficacy of a treatment in patients with metastasis is often
measured by the ability of the drug to shrink metastasis.
However, few of these drugs, including anti-TNFa antibody,
may not be effective in reducing metastasis but effective in
reducing cancer-induced collateral damage. Such treatments
may help to extend and/or improve quality of life. Because
RNA-based therapies are increasingly being developed as
treatment with improved delivery system (45, 46), replenishing
miRNAs that are lower in circulation of patients with cancer
may be an option to restore cardiac and muscle function.
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