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Abstract

Background—A highly significant quantitative trait locus (QTL) on chromosome 4 that
influenced alcohol preference was identified by analyzing crosses between the iP and iNP rats.
Congenic strains in which the iP chromosome 4 QTL interval was transferred to the iNP (NP.P)
exhibited the expected increase in alcohol consumption compared with the iNP background strain.
This study was undertaken to identify genes in the chromosome 4 QTL interval that might
contribute to the differences in alcohol consumption between the alcohol-naive congenic and
background strains.

Methods—RNA from 5 brain regions from each of 6 NP.P and 6 iNP rats was labeled and
analyzed separately on an Affymetrix Rat Genome 230 2.0 microarray to look for both cis-
regulated and trans-regulated genes. Expression levels were normalized using robust multi-chip
average (RMA). Differential gene expression was validated using quantitative real-time
polymerase chain reaction. Five individual brain regions (nucleus accumbens, frontal cortex,
amygdala, hippocampus, and striatum) were analyzed to detect differential expression of genes
within the introgressed QTL interval, as well as genes outside that region. To increase the power
to detect differentially expressed genes, combined analyses (averaging data from the 5 discrete
brain regions of each animal) were also carried out.

Results—Analyses within individual brain regions that focused on genes within the QTL interval
detected differential expression in all 5 brain regions; a total of 35 genes were detected in at least 1
region, ranging from 6 genes in the nucleus accumbens to 22 in the frontal cortex. Analysis of the
whole genome detected very few differentially expressed genes outside the QTL. Combined
analysis across brain regions was more powerful. Analysis focused on the genes within the QTL
interval confirmed 19 of the genes detected in individual regions and detected 15 additional genes.
Whole genome analysis detected 1 differentially expressed gene outside the interval.

Conclusions—Cis-regulated candidate genes for alcohol consumption were identified using
microarray profiling of gene expression differences in congenic animals carrying a QTL for
alcohol preference.
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Genes Contributing to alcoholism are difficult to identify due to both the genetic complexity
of alcoholism and environmental variability among alcoholic subjects. While various
techniques can be utilized to identify possible molecular and physiological patterns
associated with alcoholism, localizing the primary genetic determinants for the risk to
develop alcoholism has proven to be difficult. Nevertheless, several genes have been
associated with a risk for alcoholism in studies that have been replicated, e.g. GABRA2
(Covault et al., 2004; Edenberg et al., 2004; Fehr et al., 2006; Lappalainen et al., 2005),
ADH4 (Edenberg et al., 2006; Guindalini et al., 2005; Luo et al., 2005a), and CHRM2 (Luo
et al., 2005b; Wang et al., 2004). It is evident, however, that there are other genes that also
influence the risk for alcoholism. Selective breeding of rodents for alcohol-related traits,
followed by quantitative trait locus (QTL) analysis has located genomic regions in which
variation affects the phenotype. However, finding the specific genes within such regions is
difficult. A strategy of making congenic animal models carrying a single QTL, and then
using microarray analysis to determine which genes are altered in expression, should
provide a powerful approach toward gene identification (Hitzemann et al., 2004; Hoffman
and Tabakoff, 2005; Spence et al., 2005). Using this combined approach dramatically
decreases the number of genes that are expected to be differentially expressed because the 2
strains are identical except for the QTL sequences, thereby increasing the probability to
identify differentially expressed genes contributing to a specific phenotype such as alcohol
preference.

The alcohol-preferring (P) and alcohol-nonpreferring (NP) rat lines were developed, through
bidirectional selective breeding, from a randomly bred, closed colony of Wistar rats, on the
basis of alcohol preference in a 2-bottle choice paradigm (Li et al., 1991). Alcohol-
preferring rats display the phenotypic characteristics considered necessary for an animal
model of alcoholism (Cicero, 1979; Li et al., 1993). Subsequently, inbred P (iP) and NP
(iNP) strains were established; these inbred strains maintain highly divergent alcohol
consumption scores (Carr et al., 1998). Owing to the physiological and genetic similarity
between humans and rats, iP and iNP rats can be studied to identify important genetic
factors that might influence alcoholic predisposition in humans.

A highly significant QTL that influenced alcohol preference was identified on chromosome
4 (with a maximum lod score of 9.2) in a cross between iP and iNP rats; suggestive QTLs
were identified on chromosomes 3 and 8 (Bice et al., 1998; Carr et al., 1998). The
chromosome 4 QTL acts in an additive fashion and accounts for approximately 11% of the
phenotypic variability. Owing to the strong association between the chromosome 4 QTL
region and alcohol preference, this approximately 25 cM region is likely to harbor at least 1
gene that directly contributes to alcohol preference. Reciprocal congenic strains in which the
iP chromosome 4 QTL interval was transferred to the iNP (NP.P) and the iNP chromosome
4 QTL interval was transferred to the iP (P.NP) exhibited the expected effect on alcohol
consumption of the strain that donated the chromosome 4 QTL interval (Carr et al., 2006).
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This indicates that the chromosome 4 QTL region is, in part, responsible for the disparate
alcohol consumption observed between the iP and iNP rats.

The objective of the present study was to identify genes in the chromosome 4 QTL interval
that might be responsible for the divergent alcohol preference of the iNP and iP strains.
Because the chromosome 4 QTL interval is the only region that differs between the 2
strains, analyzing only the probe sets in this interval focuses on the cis-regulated genes, and
increases power by reducing the number of comparisons. Analysis of all the probe sets
allows detection of both cis-regulated and trans-regulated genes, but at the expense of
testing more probe sets [and therefore a higher false discovery rate (FDR) and lower power].
Discrete brain regions were analyzed for expression differences between the homozygous
NP.P and the iNP background strain, to detect differences that might be localized to 1
region. Expression data from the 5 brain regions of each animal were then combined to
obtain an average expression level for analysis of genes that may differ across multiple
regions; combining the 5 regions in a single animal reduces technical variation and should
increase power to detect differences that are in the same direction but that may fall below
significance in individual regions. These complementary analyses should allow us to better
understand the inherent differences in gene expression between strains that differ in alcohol
preference as a result of genetic differences in a single chromosomal region.

MATERIALS AND METHODS

Animals

Creation of the NP.P congenic strain has been described previously (Carr et al., 2006).
Briefly, the NP.P congenic strain was initiated by crossing 1 male rat from the iP5 strain
with 1 female rat from the iNP1 strain to create iPiNP F1 animals, which were backcrossed
to the iNP1 strain to produce the N2 generation. The presence of the chromosome 4 interval
was confirmed using microsatellite markers. Ten generations of backcrossing to the iNP1
strain were performed, followed by an intercross between N10 animals to produce
homozygous animals (N10F1), which resulted in the finished congenic strain.

All animals were individually housed on a standard 12 hour:12 hour light:dark cycle and
were provided nutritionally balanced rat chow and water ad libitum. Animals were
habituated (by the same experimenter) to handling and to the guillotine daily between 09:00
and 10:00 hours for 10 days before being killed. The animals used in these experiments were
maintained in facilities fully accredited by the Association for the Assessment and
Accreditation of Laboratory Animal Care (AAALAC). All research protocols were approved
by the Institutional Animal Care and Use Committee and are in accordance with the
guidelines of the Institutional Animal Care and Use Committee of the National Institute on
Drug Abuse, NIH, and the Guide for the Care and Use of Laboratory Animals (Institute of
Laboratory Animal Resources, Commission on Life Sciences, National Research Council,
1996).

A total of 12 (6 iNP and 6 NP.P) male rats, 14 to 15 weeks of age, were Killed by
decapitation between 09:00 and 10:00 hours over 2 consecutive days, with equal numbers of
animals from each strain killed each day. This minimized differences in time of killing and
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dissection, and maintained the experimental balance across the 2 strains. The head was
immediately immersed in chilled isopentane (=50 °C) for 15 seconds and then placed in a
cold box maintained at —15 °C, where the brain was rapidly removed and placed on a glass
plate for dissection. All equipment used to obtain tissue was treated with RNaseZap
(Ambion Inc., Austin, TX) to prevent RNA degradation. The nucleus accumbens, caudate
putamen, frontal cortex, hippocampus, and amygdala were dissected as described previously
(Liang et al., 2004).

RNA Isolation

Dissected tissues were immediately homogenized in Trizol reagent (Invitrogen, Carlsbad,
CA) and processed according to the manufacturer’s protocol, but with triple the suggested
ratio of Trizol to tissue (Edenberg et al., 2005). Ethanol-precipitated RNA was further
purified through RNeasy® midi columns (Qiagen, Valencia, CA), according to the
manufacturer’s protocol. To avoid DNA contamination in the real-time polymerase chain
reaction (PCR) assay, the RNA was treated with 1 U of DNase | for 20 minutes at 37 °C.
Total RNA yields in each region did not differ between the congenics and the iNP animals
(p>0.47); the average yields in the different regions ranged from 69 to 97 pg. The quality of
the RNA from all rats and regions was similar, as monitored by absorbance spectra from 210
to 350 nm, by electrophoresis on 1% agarose gels, and using an Agilent Bioanalyzer
(Agilent Technologies, Santa Clara, CA) to confirm the ribosomal bands.

RNA Labeling and Microarray Hybridization

RNA from each individual rat was labeled and hybridized separately on an Affymetrix Rat
Genome 230 2.0 microarray. Starting with 5 pg of total RNA from each animal, first and
second-strand cDNA synthesis was carried out according to the standard protocols from
Affymetrix (Affymetrix: GeneChip® Expression Analysis Technical Manual, Santa Clara,
CA, Affymetrix, 2001). Biotinylated cRNA was synthesized in vitro from the double-
stranded cDNA using the ENZO BioArray High Yield RNA Transcript Labeling Kit (ENZO
Diagnostics, Farmingdale, NY) according to the Affymetrix protocol. Fifteen micrograms of
fragmented, biotinylated cRNA was mixed into 300 uL of hybridization cocktail, of which
200 pL was used for each hybridization. Hybridization was carried out for 17 hours at 42 °C.
Washing, staining, and scanning were carried out according to the standard protocol.

To minimize potential systematic errors, all stages of the experiment were balanced across
phenotypes. That is, equal numbers of NP.P and iNP animals were killed each day, and
equal numbers of RNA preparations from iP and iNP animals were processed through the
labeling, hybridization, washing, and scanning protocols on each day, in different alternating
orders. Whenever possible, common premixes of reagents were used to minimize effects due
to differences in reagent preparation.

Data Analysis and Informatics

Each GeneChip® was scanned using an Affymetrix Model 3000 scanner and underwent
image analysis using Affymetrix GCOS software. Microarray data are available from the
National Center for Biotechnology Information’s Gene Expression Omnibus, http://
www.ncbi.nlm.nih.gov/geo/ (Barrett et al., 2005; Edgar et al., 2002) under series Accession
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No. GSE5849 (GSM136446 ... GSM136505). Raw .cel files were imported into the
statistical programming environment R (R Development Core Team, 2006) for further
analysis with tools available from the Bioconductor Project (Gentleman et al., 2004).
Expression data were normalized and logs transformed using the robust multichip average
(RMA) method (Bolstad et al., 2003; Irizarry et al., 2003) implemented in the Bioconductor
package RMA.

Mapping of probe sets to chromosomal locations was accomplished with data provided by
Affymetrix. The identities of the probe sets were confirmed by comparing the target mMRNA
sequences on the Affymetrix Rat Genome 230 2.0 GeneChip with the NCBI nucleotide
databases. Any probe set that could not be annotated was culled from the list, leaving 28,049
probe sets for further analysis. To increase power and decrease the FDR, probe sets were
subjected to further filtering to remove those probe sets not reliably detected by the arrays
(McClintick and Edenberg, 2006). Using the detection call generated by the Affymetrix
Microarray Analysis Suite 5.0 algorithm, probe sets were retained that had a fraction present
of at least 0.33 in at least 1 group of samples in the comparison (McClintick and Edenberg,
2006). For the analyses by brain region, the probe sets were retained if probe sets had a
fraction present = 0.33 for either the congenic NP.P or iNP animals for that brain region
(20,300-21,800 probe sets for individual regions). For the analyses by average expression
level, probe sets were used that had a fraction present = 0.33 for at least 1 brain region in at
least 1 strain (23,079 probe sets).

Genewise p values were calculated by t-tests performed using the package Limma (Smyth,
2004). False discovery rate was calculated by the method of Benjamini and Hochberg
(1995). Probe sets were considered to be differentially expressed if the FDR was <0.10.
First, each individual brain region was analyzed separately. Then, data from the 5 brain
regions from each animal were averaged and the average value was analyzed to detect
differences that were more general across multiple regions. To focus on cis-regulated genes,
probe sets that mapped to the chromosome 4 QTL region between 29,413,686 and
128,186,835 bhase pairs (4q13-4qg34), locations of the microsatellite markers D4Rat151 and
D4Ratb5 that flanked the introgressed region, were analyzed separately (960 probe sets).

Quantitative Real-Time PCR

Quantitative real-time PCR (qRT-PCR) was carried out using SYBR Green chemistry and
the ABI Prism 7700 sequence detection system (Applied Biosystems, Foster City, CA). The
amplification primers were designed from the sequence in the coding region of the gene
using Vector NTI (Invitrogen); when possible, at least 1 primer spanned an exon/intron
boundary. Total RNA, isolated for the microarray analyses, was used for these analyses.
Following reverse transcription of the RNA [Superscript Il reverse transcription system for
RT-PCR (Invitrogen)], an aliquot of each reverse transcription reaction was amplified in
triplicate. The qRT-PCR was repeated to generate 6 values for each test sample. Two control
reactions were run for each RNA preparation: (1) a reverse transcription and PCR reaction
with no added RNA to control for contamination of the reagents and (2) a PCR reaction
without the reverse transcription reaction to detect DNA contamination of the RNA
preparation. To correct for sample-to-sample variation, an endogenous control (GAPDH)
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was amplified with the target and served as an internal reference to normalize the data. The
average GAPDH C; values for NP.P and iNP were the same in each brain region tested,
making this an appropriate control gene to normalize the expression of the candidate genes
of interest. Relative quantification of data from the ABI Prism 7700 sequence detection
system was performed using the standard curve method (Applied Biosystems, User Bulletin
#2; http://www.appliedbiosystems.com).

Cis-Regulated Genes

Microarray analyses were performed to detect differences between the congenic NP.P and
inbred NP (iNP) rats in gene expression in 5 brain regions (nucleus accumbens, frontal
cortex, amygdala, hippocampus, and striatum). These regions were selected based on their
inclusion in the mesolimbic and mesocortical systems, both of which are critically important
in the initiation and maintenance of goal-directed and reward-mediated behaviors (reviewed
in Bonci et al., 2003 and Maldonado, 2003). Because the only genetic differences between
these 2 strains are in the QTL region on chromosome 4, examining just the set of genes
located in this region allows the most powerful test of cis-regulated candidate genes. More
differences (at FDR <0.10) were detected in the frontal cortex, amygdala, and striatum, and
the fewest differences in the nucleus accumbens (Table 1). Three genes differed in all 5
brain regions; these are not well annotated, but have some homology to known genes.
Ppm1k_predicted [protein phosphatase 1 K (PP2C domain containing) (predicted)] was
lower (about 2-fold) in all 5 regions in NP.P (Table 1). LOC685879 (similar to juxtaposed
with another zinc finger protein 1) was higher (about 1.6-fold) in NP.P. RGD1304879
[similar to zinc finger protein 398 (binding protein p52/p71)] was higher (about 1.3-fold) in
NP.P. Two genes, Snx10 (sorting nexin 10, involved in intracellular trafficking) and Tsgal3
[testis-specific gene A13 (predicted)] differed in 4 of the 5 regions, and were 1.5-fold higher
and about 1.3-fold lower in NP.P, respectively. Two genes (Akrlb10 and Nfe213) each
differed in 3 regions and another 10 differed in 2 of the regions. The direction of the
differences is similar when comparing the NP.P and iNP.

To detect more widespread differences in gene expression, data from the 5 discrete brain
regions of each animal were averaged. This reduces random technical variation from the
individual extractions and labeling, and thereby provides more power to detect differences
that are in the same direction in multiple regions but may fall below significance in
individual regions. In the analysis focused on the chromosome 4 QTL region, 35 genes
within the region differed between the 2 strains; 12 were lower in NP.P and the remaining
23 were higher in NP.P (Table 2). Most of the differences were small. Neuropeptide Y
(Npy) and alpha synuclein (Snca), previously identified candidate genes for alcohol
consumption in the iP and iNP rats (Liang et al., 2003; Spence et al., 2005), differed in
expression in this combined analysis.

Trans-Regulated Genes

To detect trans-regulated genes (genes identical in the 2 strains that are differentially
expressed due to variations in a regulatory gene located within the chromosome 4 region),
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we analyzed all of the probe sets on the array. This reduces the power to detect differences
because the very large amount of additional testing increases the FDR. As would be
expected when comparing the congenic strain with the background strain, nearly all of the
probe sets that exhibited significant differences in expression between the NP.P and iNP
were located in the chromosome 4 QTL interval. Some of the genes that were significant in
the analysis of the chromosome 4 region alone no longer met the criteria of FDR <0.10. At
an FDR <0.10, 6 differences were detected in amygdala, 8 in striatum, and 4 in the frontal
cortex; none were detected in either nucleus accumbens or the hippocampus (Table 1). Only
4 trans-regulated genes were detected, 3 in the amygdala and 1 in the frontal cortex, and all
were expressed at lower levels in the NP.P strain (Table 1).

In the combined analysis of the 5 brain regions using all probe sets, nearly all of the
differences (34/35) were in genes located in the chromosome 4 region (Table 2). Some of
the genes detected in our analysis of chromosome 4 probe sets alone no longer met FDR
<0.10 when the larger number of comparisons was performed. The one trans-regulated gene
that was detected, Sos1 (Son of sevenless homolog 1), is important in signal transduction.

The mapped locations of the transcripts and their direction of expression are shown in Fig. 1.
We noticed that several clusters of adjacent genes were coordinately up-regulated or down-
regulated in the congenic animals. For example, except for RGD1306697, 9 transcripts that
mapped between Plxna4 and RGD130487 were expressed more in the NP.P animals. Seven
of the next 8 transcripts were expressed at lower levels in the NP.P.

Confirmation by gRT-PCR

To confirm genes that differed in expression between the NP.P and iNP, gRT-PCR was
performed. Based on the literature reports of their possible involvement in pathways related
to alcohol-seeking behavior, 9 genes were selected for confirmation. The first gene selected
for confirmation was diacylglycerol kinase, iota (Dgki); all 5 brain regions were tested and
the direction of expression was in the expected direction in all 5 regions. The remaining
genes were tested in the striatum (Table 3). The differential expression of Akrlb4, Grid2,
Baiap1, Dgki, Snca, and Ppm1k was confirmed at p<0.005 (Table 3). The expression of Sosl
and Npy was in the expected direction.

DISCUSSION

The NP.P strain, with the iP Chr 4 QTL interval introgressed onto the iNP background,
exhibits the expected increase in alcohol consumption compared with the iNP littermates
(Carr et al., 2006). By examining gene expression in this congenic strain, we limited the
differences expected to those originating from genetic variation within the QTL region
shown to affect the phenotype of alcohol preference. This allowed us to identify candidate
quantitative trait genes (QTGs) for the alcohol preference phenotype. Because the 2 strains
are identical except for a region on chromosome 4, the a priori expectation is that only cis-
regulated genes located in that region of chromosome 4 or genes trans-regulated by genes
within that region should differ. This is expected to be a small set of genes, the signal from
which could be masked by random variations in the very large set of genes that do not differ.
The genes within the QTL interval that differ in expression are by definition cis-regulated
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and thus QTG candidates. By focusing on the region that differed, and thereby limiting the
number of comparisons and increasing the power of the analysis, we were able to detect
differences in the expression of cis-regulated genes.

Analysis of all of the probe sets allows us to detect trans-regulated genes, but at the expense
of reduced power due to the much larger number of comparisons and therefore higher FDR.
As expected, nearly all of the genes that differed in expression in the analysis of all probe
sets were located in the chromosome 4 region that differed, and are candidates for cis-acting
QTGs.

The number of genes that differed in each individual region was not large. Many of the
genes were differentially expressed (in the same direction) in more than 1 region; 3 (Ppm1k,
LOC685879, and RGD1304879) in all 5 regions, 2 in 4 regions, and 2 in 3 regions. By
combining the regions in a joint analysis, we were able to detect more differences (compare
Tables 1 and 2). Many genes are expected to be expressed under similar regulatory control
in different brain regions. This combined analysis has more power to detect genes that are
changed in the same direction in multiple regions but might not meet the strict FDR within
individual regions, because averaging the 5 individual measurements from each animal that
contribute to the comparison reduces technical variation. When focusing on the genes within
the QTL interval, 19 of the genes detected in individual regions were confirmed in the
combined analysis and 15 additional genes were detected.

Nine genes were tested by gRT-PCR to confirm their differential expression; expression of 8
genes was in the expected direction, with 7 being significant at p<0.005. The exponential
nature of the g-PCR reactions makes them less able to detect small differences in expression.
The primers for these confirmation studies, when possible, were in the coding sequences
spanning an intron. It has been our experience that when primers are designed based on the
coding region, as we did here, the number of confirmed genes is lower than when using
primers designed within the 3’ sequences used on the microarray chips. The overall level of
confirmation is comparable to the FDR we had set (<0.1).

The grouping of transcripts that were expressed higher or lower was evident when observed
in their mapped positions (Fig. 1). One can speculate that these regions of up-regulation and
down-regulation are due to transcriptional control by an epigenetic effect, such as
methylation patterns and histone modification. Covalent modifications of histone proteins,
RNA-associated gene silencing processes, and DNA methylation are components of the
epigenetic mechanism controlling gene expression patterns. These modifications have the
potential to work together to modify the spatial structure of the DNA and the chromatin
associated with it, to establish structural states that are either favorable (open chromatin) or
not favorable (closed chromatin) for gene expression (Callinan and Feinberg, 2006). Future
experiments could examine epigenetic regulation.

Programs to classify genes into overrepresented categories are not powerful when dealing
with small numbers of differentially expressed genes, as in this QTL study. Thus, for the
purpose of the discussion, 5 categories (cell signaling, protein trafficking, synaptic function,
metabolism, and gene expression) were selected based on the ontology of the differentially
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expressed genes in the chromosome 4 QTL region. In these categories, we discussed
potential candidate genes that were detected in multiple brain regions and/or with multiple
probe sets with at least a 15 to 20% difference in expression. We also discuss genes that
have previously been implicated in alcohol preference.

Candidate genes involved in cell signaling include Dgki, BAl-associated protein 1 (Baiapl),
and protein phosphatase type 1 K (Ppm1k). DGKs are a family of enzymes that regulate the
levels of various pools of diacylglycerol (DAG), affecting DAG-mediated signal
transduction. Dgki catalyzes the phosphorylation of DAG, an activator of protein kinase C,
to phosphatidic acid (PA) and thus down-regulates second messenger pathways activated by
protein kinase C (Van Blitterswijk and Houssa, 1999), which play important roles in
regulating behavioral responses to ethanol (Newton and Messing, 2006). The highest
expression of Dgki, when studied in humans, is found in the brain (Ding et al., 1998); we
found that it was expressed at higher levels in the NP.P brain regions compared with the iNP
brain regions. This is similar to findings in the alcohol-accepting (AA) and alcohol-
nonaccepting (ANA) animals selectively bred for alcohol preference from Wistar stock,
where Dgki is expressed at higher levels in discrete brain regions of the AA compared with
the ANA animals (Sommer et al., 2001).

Baiapl is a novel member of the membrane-associated guanylate kinase (MAGUK)
homolog family and an isoform of the neurone-specific synaptic scaffolding molecule (S-
SCAM), which is known to interact with NMDA and delta 2 glutamate receptors (Grid2)
(Dobrosotskaya et al., 1997); Grid2 was expressed at lower levels in the frontal cortex,
amygdala, and combined analysis presented here (Tables 1 and 2). Membrane-associated
guanylate kinase proteins participate in the assembly of multiprotein complexes on the inner
surface of the plasma membrane at regions of cell—-cell contact. Membrane-associated
guanylate kinase proteins share a common modular structure that consists of multiple PDZ
domains and a C-terminal guanylate kinase domain (Fanning and Anderson, 1999). They
appear to have both structural and signaling roles within the cell and aid in localizing and
coupling components of specific signal transduction pathways at specific subcellular
locations. Another PDZ domain protein, multiple PDZ domain protein (Mpdz), has been
identified as a QTG for alcohol and pentobarbital withdrawal seizures in mice (Shirley et al.,
2004).

Ppm1k encodes a serine/threonine protein phosphatase. Together with protein kinases, these
enzymes control the state of phosphorylation of cell proteins and thereby provide an
important mechanism for regulating cellular activity.

Candidate genes involved in protein trafficking include Plexin A4 (PIxna4), sorting nexin 10
(Snx10), and src family-associated phosphoprotein 2 (Scap2). PIxna4 mediates multiple
semaphorin signals, which are important in the development of the nervous system (Suto et
al., 2005), and plays roles in a wide variety of axon guidance events in a highly regulated
manner (Ben-Zvi et al., 2006). The protein Scap2 is an src-kinase associated protein. It plays
a role in regulating the phosphorylation of Snca (Takahashi et al., 2003), a previously
identified candidate gene for alcohol consumption in the iP/iNP animals.
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The candidate gene, glutamate receptor ionotropic delta 2 (Grid2), is involved in signal
transduction and synaptic function. The Grid2 gene encodes the ionotropic glutamate
receptor channel delta-2 subunit, functionally related to the amino-methyl-
isoxazoleproprionate (AMPA) receptor (Landsend et al., 1997). Mutated Grid2 has an
increased permeability to glutamate in Xenopus oocytes (Taverna et al., 2000) and to
calcium in HEK 293 cells (Wollmuth et al., 2000). Grid2 is located within a common fragile
site (CFS), which is a large region of genomic instability found in all individuals (Smith et
al., 2006), making it an especially likely target for mutations involving genetic
rearrangement (Robinson et al., 2005). Many of the large CFS genes, greater than 99%
intronic, are involved in neurological development. Whether there are instability-induced
alterations in the iP/iNP Grid2 gene that influence its expression and in turn play a role in
alcohol preference will require further investigation.

Candidate genes involved in metabolism include aldoketo reductase 1, member B4
(Akrlb4), and Akrlb10. Aldo-keto reductases catalyze the reduction of aliphatic and
aromatic aldehydes to their corresponding alcohols.

Candidate genes involved in gene expression include zinc finger protein 398 and juxtaposed
with another zinc finger protein 1. Many zinc finger proteins bind nucleic acids and regulate
transcription.

Two previously identified candidate genes for alcohol preference, Npy and Snca, differed in
expression when the data from the 5 discrete brain regions of each animal were averaged
(Table 2). Npy expression was lower in the congenics than in the iNP animals; it was
previously shown to be lower in iP than in iNP (Spence et al., 2005). The expression of Snca
was lower in the congenic animals compared with the iNP animals (Table 2), whereas
previous studies of the iP versus iNP showed higher expression in the iP animals (Liang et
al., 2003), suggesting that Snca may be more prominently regulated by trans-regulatory than
cis-regulatory factors.

The changes that were detected were small: only 10 of the 35 genes differed more than 20%
(Table 2). Other comparisons of brain expression have also reported small differences. In a
study that identified differentially expressed genes between the AA and ANA rat lines, the
majority of differences reported were less than 50% (Worst et al., 2005). Likewise, most of
the differences in expression levels in the hippocampi of iP and iNP alcohol-naive rats were
less than 50% (Edenberg et al., 2004). In another study, brain gene expression differences
between the C57BL/6 and DBA/2 mice within QTL were compared; again, most of the
differences were small (Hitzemann et al., 2004).

In summary, very interesting candidate genes and possible pathways have been identified by
expression profiling of the congenic NP.P strain. The alteration in expression of Dgki
(down-regulates PKC), Grid2 (phosphorylated by PKC), Scap2 (inhibits phosphorylation),
and Ppm1k (serine/threonine phosphatase) strongly suggests that signal transduction
pathways, especially the PKC pathway, are involved in the development of alcohol
preference in the iP rats. Thus, the findings from this study provide interesting candidate
genes for future functional and knockout studies, and information to other investigators who

Alcohol Clin Exp Res. Author manuscript; available in PMC 2015 June 04.
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are using these animals to study weight, anxiety (personal communication), bone mass, and
bone strength (Alam et al., 2005).
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gRT-PCR Confirmation of Microarray Data

Gene name

Fold change?

Microarray qRT-PCR

Akrlb4
Baiap
Dgki
Ppm1K
Snca
Grid2
Sosl

Npy
Zfp212

118 qogb
139 qg7b
119 9qgb
-233  _qgsh
-107  _qagb
-117  _qp4b
115 105
-107  -104
116 _qgo

aFold change is the ratio of the expression level of NP.P to iNP; a negative number indicates the ratio of expression of iNP to NP.P.
bFold change for gRT-PCR is significant at p<0.005.

Fold change is significant, but not in the expected direction.
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