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Summary

Although multiphoton fluorescence excitation microscopy has improved the depth at which useful 

fluorescence images can be collected in biological tissues, the reach of multiphoton fluorescence 

excitation microscopy is nonetheless limited by tissue scattering and spherical aberration. 

Scattering can be reduced in fixed samples by mounting in a medium whose refractive index 

closely matches that of the fixed material. Using optical ‘clearing’, the effects of refractive index 

heterogeneity on signal attenuation with depth are investigated. Quantitative measurements show 

that by mounting kidney tissue in a high refractive index medium, less than 50% of signal 

attenuates in 100 µm of depth.
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Introduction

Multiphoton fluorescence excitation microscopy (MPM) enables collection of image 

volumes up to hundreds of micrometres into biological tissue with sub-micrometre 

resolution and temporal resolution on the order of one image frame per second making this 

technique invaluable for intravital imaging (Helmchen & Denk, 2005). MPM utilizes near-

infrared wavelengths of light (700–1000 nm) for two-photon fluorescence excitation. These 

wavelengths are within an ‘optical window’ in the absorption spectrum of water making 

them ideal for imaging aqueous samples (Konig, 2000). Because Rayleigh scattering has a 

wavelength dependence of ~λ−4, these longer excitation wavelengths scatter less than 

shorter wavelengths, improving imaging depth compared to conventional or confocal 

fluorescence microscopy (Centonze & White, 1998). Although MPM improves fluorescence 

signal with depth over these other fluorescence techniques, imaging depth is still limited due 

to spherical aberration, absorption of light and light scattering (Centonze & White, 1998; 
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Gerritsen & de Grauw, 1999; Dunn, 2000; Booth & Wilson, 2001; Oheim et al., 2001; de 

Grauw et al., 2002; Zipfel et al., 2003; Helmchen & Denk, 2005; Lo et al., 2005; Egner, 

2006; Theer & Denk, 2006; Muriello & Dunn, 2008).

We, and others, have shown that spherical aberration is one factor limiting the reach of 

MPM, primarily by degrading the focus (Gerritsen & de Grauw, 1999; Booth & Wilson, 

2001; de Grauw et al., 2002; Lo et al., 2005; Egner & Hell, 2006; Muriello & Dunn, 2008). 

Spherical aberration results from refractive index mismatch between immersion fluid, cover 

slip and sample. Images collected with an oil immersion objective of agarose samples with 

refractive index 1.442 were shown to have 3.5-fold improvement in fluorescence signal at 

40 µm in depth compared to agarose samples with refractive index 1.342 (Young et al., 

2010).

Absorption is likely not a major limit, except in certain kinds of tissues. A few of the main 

compounds in biological tissue that absorb light are water, haemoglobin, lipids, cytochrome 

c oxidase, melanin and myoglobin (Hollis, 2002). However, typical absorption coefficients 

for biological tissue in the visible and near-infrared wavelengths are more than an order of 

magnitude less than typical scattering coefficients (Beek et al., 1997; Tuchin, 1997; Cuccia 

et al., 2003; Ren et al., 2005). In fact, scattering has been shown to typically be 10 to 100 

times more significant than absorption (Doornbos et al., 1998; Cuccia et al., 2003).

Therefore, scattering is the predominant factor that ultimately limits the reach of MPM 

resulting from refractive index heterogeneities in tissue, for example from cell membranes 

or intracellular structures (Hollis, 2002). Biological samples are heterogeneous and do not 

have a uniform refractive index (Beuthan et al., 1996; Pawley, 2002; Tuchin, 2005). Kidney 

tissue, for example is made up of a rich vasculature, renal corpuscles, renal tubules and 

covered in a fibrous capsule. This is unfortunate for biologists interested in using 

microscopy to study the kidney because the light path through kidney tissue has many 

interfaces where light is refracted and reflected, and even light in the ‘optical window’ is 

strongly scattered (Beuthan et al., 1996). Scattering arises due to refractive index mismatch 

at the boundaries between these inhomogeneities, such as at the extracellular fluid–cell 

membrane interface. Calculations have shown that nearly all of the fluorescence stimulated 

100 µm deep in tissue are scattered before exiting the tissue (Oheim et al., 2001; Helmchen 

& Denk, 2005) making large-area detectors necessary for deep tissue imaging.

Because MPM can efficiently collect scattered light, scattering primarily impacts depth by 

reducing power at the focus of illumination. Depth ultimately is limited by the relative 

amount of excitation at the focus versus shallower depths. The decrease in fluorescence 

excitation caused by light scattering and absorption can be addressed by increasing laser 

power with depth into the sample or using a regenerative amplifier, at least up to the 

fundamental depth limit. Scattering has been shown to fundamentally limit imaging depth 

(Theer & Denk, 2006). In brain tissue, the fundamental imaging depth was found to be ~1 

mm deep (Theer et al., 2003). A regenerative amplifier was used as the excitation source to 

lower repetition rates while maintaining the average power, significantly increasing depth 

penetration. However, depth was limited by an increase in out-of-focus fluorescence from 

the surface of the sample. Near-surface fluorescence is caused by scattered excitation light, 
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increasing the background signal such that fluorescence excited at the focus cannot be 

discerned from the background levels. However, by decreasing refractive index 

heterogeneity, the ultimate depth limit can be addressed.

The application of optical clearing methods has been shown to decrease tissue scattering, 

increasing optical transmittance (Xu et al., 2003; Cicchi et al., 2005; Tuchin, 2005; Millon 

et al., 2006; Plotnikov et al., 2006; Oldham et al., 2008). The application of optical clearing 

agents reduces the mismatch between tissue components, reducing scattering and improving 

penetration depth of light. The refractive index of biological tissue can be defined as the sum 

of the background index and the mean index variation (Tuchin, 2005). The background 

index is determined from the refractive indices of the interstitial fluid and the cytoplasm. 

The mean index variation is determined from the refractive indices of the major contributors 

to index variation, for example connective tissue fibres have refractive index 1.47 and 

organelles have refractive index 1.38–1.41. The ratio of the total refractive index of the 

tissue to the background index determines the reduced scattering coefficient. By immersing 

kidney tissue in media with refractive index greater than 1.33, the background index of the 

tissue is raised, reducing refractive index mismatch at interfaces within the tissue and 

lowering the reduced scattering coefficient (Tuchin, 2005).

Here we quantify the effects of scattering on signal attenuation and resolution in MPM of 

fixed kidney tissue. In addition, we demonstrate that optical clearing provides a simple 

method for significantly extending the reach of MPM.

Materials and methods

Sample preparation

Mounting media were prepared as described in Table 1. Media were prepared by weight. 

Refractive index was measured at room temperature 10 times using an Abbe refractometer 

(Sino Science & Technology Co., Ltd., ZhangZhou, FuJian, China).

Rat kidney tissue was labelled and cleared as described (Clendenon et al., 2010). Rat 

kidneys were perfusion fixed using 4% paraformaldehyde in phosphate-buffered saline 

(PBS), pH 7.4. The tissue was then sectioned to 200–300 µm using a vibratome (Technical 

Products International, Inc., St. Louis, MO, U.S.A.). Samples were blocked and 

permeabilized in 0.5% Triton-X 100, 1% bovine serum albumin, 5% foetal bovine serum, 1× 

PBS pH 7.4. Tissue was labelled using Lens culinaris agglutinin-fluorescein (Vector Labs, 

Burlingame, CA, U.S.A.) at a dilution of 1:200, Hoechst 33342 (10 mg/mL) (Invitrogen, 

Carlsbad, CA, U.S.A.), and phalloidin-rhodamine at a dilution of 1:100 (Invitrogen).

For the quantitative studies, a 250 g Munich-Wistar rat was anesthetized with pentobarbital 

(60 mg/kg IP). The femoral vein was then catheterized, and suncoast yellow fluorescent 

microspheres with 0.2 µm diameter (FS02F, Bangs Laboratories, Inc., Fishers, IN, U.S.A.) 

were injected. The animal was then killed, and the kidneys were excised. The kidney tissue 

was fixed by immersion in 4% paraformaldehyde in PBS, pH 7.4, overnight at 4°C. The 

tissue was sectioned to 100 µm using a vibratome and stored in 0.25% paraformaldehyde in 
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PBS, pH 7.4, at 4°C. Animal studies were conducted within the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals standards.

Before image collection, samples were washed overnight in PBS at 4°C. Before mounting, 

the tissue was incubated in a graded series of glycerol in PBS solutions, 17.5%, 35% and 

70%, for at least 30 min at room temperature until samples settled to the bottom of the 

solution. Samples were incubated in mounting solutions for at least 30 min at room 

temperature until samples settled to the bottom of the solution and then transferred to a fresh 

aliquot at least once for at least 30 min or overnight. Samples were mounted in fresh 

solution with #1.5 cover slips (Corning, Lowell, MA, U.S.A.) measured with a micrometer, 

and water immersion objective correction collar was set accordingly using the ring value.

For the quantitative studies, samples were mounted with #1.5 cover slips (Corning). Only 

cover slips with uniform thickness (181 ± 2 µm as measured at several locations) were used. 

The water immersion objective correction collar was set to the average cover slip thickness. 

Before mounting, suncoast yellow fluorescent microspheres with 0.2 µm diameter (FS02F, 

Bangs Laboratories, Inc.) were dried to the surface of the cover slip and surface of the slide.

Two-photon microscopy

Images were collected using an FV1000 confocal microscope system (Olympus, Center 

Valley, PA, U.S.A.) that has been adapted for two-photon microscopy as described (Young 

et al., 2010). The system is equipped with a Mai-Tai titanium–sapphire laser pumped by a 

10 W Argon laser (Spectra-Physics, Santa Clara, CA, U.S.A.), a Pockels cell beam 

attenuator (Conoptics, Inc., Danbury, CT, U.S.A.) and a Keplerian-style collimator/beam 

expander aligned to fill the back aperture of the objective. Images were collected using a 

60× numerical aperture (NA) 1.4 oil immersion objective (Olympus) using immersion oil, n 

= 1.515, (Olympus) or a 60× NA 1.2 water immersion objective (Olympus) using immersion 

water, n = 1.33.

Five to ten XZ cross-sectional images were collected for each immunofluorescent kidney 

tissue sample. The images were collected with lateral pixel dimension of 0.345 µm and axial 

step of 0.35 µm. The pixel dwell time was 4.0 µm. The excitation wavelength was 800 nm. 

Images were collected using descanned detectors with the confocal pinhole maximally open. 

The gain and black level of the photomultiplier tube (PMT) were kept constant for all 

images collected. Because fluorescence intensity varied widely between samples mounted in 

the different media, the laser power was adjusted such that the image at surface of the tissue 

was just below PMT saturation.

The images of the tissue samples containing fluorescent microspheres were 512 × 512 pixels 

with XY pixel dimension of 0.101 µm. The pixel dwell time was 2.0 µs, and lines were 

Kalman averaged ×2. The excitation wavelength was 800 nm. Fluorescence saturation was 

measured, and laser power was maintained constant for all images and below saturating 

levels. Images were collected using descanned detectors with the confocal pinhole 

maximally open. The PMT gain was constant and below PMT saturation, and PMT black 

level was constant for all images collected. A levelling apparatus mounted on the stage was 

used to ensure the cover slip was perpendicular to the light path (Arimoto & Murray, 2004). 
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Seven to 10 image volumes were collected of each sample. The axial step size was 0.10 µm. 

The experiment was repeated three times for each sample.

The image volume of a glomerulus was collected using non-descanned detectors mounted 

on the right side port of an Olympus IX-81 microscope. The blue channel was collected 

using a bialkali PMT (Hamamatsu R1924AHA) and a 380–480 nm bandpass filter (Chroma 

HQ430/100M-2P). The green channel was collected using a multialkali PMT (Hamamatsu 

R6357HA) and a 500–550 nm bandpass filter (Chroma HQ525/50M). And the red channel 

was collected using a multialkali PMT (Hamamatsu R6357HA) with a 560–650 nm 

bandpass filter (Chroma HQ605/90M-2P). The image volume was collected with lateral 

pixel dimension of 0.414 µm and axial step of 0.41 µm. The pixel dwell time was 4.0 µs, and 

lines were Kalman averaged ×3. The excitation wavelength was 800 nm.

Quantitative study of signal attenuation and resolution degradation

Images of the tissue samples containing fluorescent microspheres were analysed using 

IMAGEJ (Abramoff et al., 2004) and a custom plugin written at the Indiana Center for 

Biological Microscopy as described (Young et al., 2010). Briefly, the IMAGEJ plugin 

returns the fluorescence intensity of each microsphere, the image plane number of each 

microsphere and the background intensity of the image volume. The image plane number of 

the microsphere was used to determine the nominal focal position (NFP) of each 

microsphere, measured from the cover slip–sample interface, based on the physical 

movement of the objective. Background signal in each image volume was determined from 

the average intensity of the last 10 image planes collected, below the microspheres mounted 

on the slide at the bottom of the image, and was subtracted from the fluorescence intensity 

of each microsphere. Axial scaling from refractive index mismatch was not measured.

The data from three trials were combined and averaged in intervals such that there were 30 

microspheres per bin for data collected with the water immersion objective and 25 

microspheres per bin for data collected with the oil immersion objective. The intervals 

began at 0.5 µm deep to exclude microspheres that were dried on the cover slip and only 

include microspheres mounted within agarose. Bin widths ranged from 2.34 to 13.42 µm 

wide for data collected with the water immersion objective and 1.30 to 11.29 µm wide for 

data collected with the oil immersion objective.

Axial resolution was measured using the image volumes collected of the tissue containing 

0.2 µm fluorescent microspheres. Although 0.2 µm is close to the lateral resolution of the 

microscope, measured to be 0.3 µm using the Olympus 60× NA 1.4 oil immersion objective, 

it is much less than the axial resolution, measured to be 0.9 µm using 800 nm two-photon 

excitation and collected using a 560–660 nm emission filter, and is therefore a reasonable 

size for axial resolution analysis. Axial resolution was measured as the full width at half 

maximum (FWHM) of the intensity distributed along the axial line that crossed each 

sphere’s centroid. Data were analysed using a custom plugin written for IMAGEJ at the Indiana 

Center for Biological Microscopy and SIGMAPLOT (Systat Software, Inc.) as described (Young 

et al., 2010). Briefly, the IMAGEJ plugin returns pixel values from the line of pixels running 

axially through the centre of each microsphere and the image plane number of the centre of 

the microsphere. The FWHM for the fluorescence intensity distribution from each 

YOUNG et al. Page 5

J Microsc. Author manuscript; available in PMC 2015 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



microsphere was then calculated by curve fitting the data to a four-parameter Gaussian curve 

using SIGMAPLOT. The axial FWHM was calculated from the fitting parameters. The NFP is 

calculated from the image plane number.

The data from three trials were combined and averaged in intervals such that there were 31 

microspheres per bin for data collected with the water immersion objective and 40 

microspheres per bin for data collected with the oil immersion objective. The intervals 

began at 0.5 µm deep to exclude microspheres that were dried on the cover slip and only 

include microspheres mounted within agarose. Bin widths ranged from 2.50 to 19.86 µm 

wide (excluding the deepest bins for each sample the maximum bin width was 8.30 µm 

wide) for data collected with the water immersion objective and 3.38 to 10.94 µm wide for 

data collected with the oil immersion objective.

Results and discussion

In order to evaluate the effect of different refractive index of mounting media on MPM of 

biological tissues, we collected three-dimensional image volumes of kidney tissue labelled 

with Lens culinaris agglutinin-fluorescein and mounted in a set of clearing solutions with 

different refractive indices. Figure 1 shows a series of XZ cross-sectional images collected of 

kidney tissues mounted in different refractive index media, collected with an Olympus 60×, 

NA 1.2 water immersion objective. Interestingly, the greatest imaging depth was achieved in 

the samples mounted in the highest refractive index media, refractive index 1.51 and 1.53. 

This is surprising because these samples should show the greatest amount of spherical 

aberration, resulting from the greatest refractive index mismatch between the immersion 

fluid and sample.

In order to quantify the effect of mounting medium refractive index on the rate of signal 

attenuation with depth, we collected images of 0.2 µm fluorescent microspheres within 

kidney tissue mounted in media with refractive index 1.34, 1.40 or 1.51. Images were 

collected using an Olympus 60× NA 1.2 water immersion objective. The average intensity 

of the microspheres located at the cover slip was calculated and used to normalize the data. 

Data from the individual microspheres at the cover slip are not plotted to improve 

visualization because among the nine trials there are 365 individual microspheres at the 

surface of the samples. The standard error for the data at the cover slip was calculated to be 

1–3% for each of the three samples.

Quantization of microsphere fluorescence intensity showed that, as in Fig. 1, signal levels 

attenuated most rapidly in the sample mounted in a medium of low refractive index (Fig. 2). 

For example, signal attenuated by 90% over an axial distance of 75 µm in kidney tissue with 

refractive index 1.51, but the same degree of attenuation was seen over only one third of this 

distance in a sample with refractive index 1.34. Thus, despite an increase in refractive index 

mismatch, signal improved with depth, in agreement with the images shown in Fig. 1. This 

effect most likely resulted from a reduction in refractive index heterogeneity.

Based upon the magnitude of the refractive index mismatch, we expected that fluorescence 

intensity would attenuate most rapidly in samples mounted in media with higher refractive 

index. We previously found that refractive index mismatch compromised the achievable 
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imaging depth, by increasing the size of the focus (Young et al., 2010). Interestingly, the 

results here are more complex. Although we get better depth penetration with high refractive 

index samples, the axial resolution is lower, as indicated by an increase in the axial FWHM 

of the intensity profile on injected microspheres (Fig. 3). Data from individual microspheres 

at the cover slip are again not plotted to improve visualization, only the average FWHM at 

the surface calculated for each sample with a standard error of 0.006–0.009 µm.

Samples mounted in media with refractive index 1.34 maintained axial resolution on the 

order of 1 µm up to 40 µm deep into tissue, whereas the axial resolution of samples mounted 

in media with refractive index 1.51 was measured to be approximately 1.5 and 2.0 µm at 

depths of 40 and 80 µm, respectively. This is likely because scattering reduces illumination 

density but does not broaden it so much because scattered illumination photons are 

discarded from the illumination spot. So, unlike spherical aberration, scattering affects 

imaging depth by reducing the number of photons reaching the focus, but not really 

affecting the effective volume of excitation.

Based upon previous results, ideally we would eliminate spherical aberration and scattering. 

In order to evaluate the effect of simultaneously reducing both, we collected images of 

kidney tissue labelled with Lens culinaris agglutinin-fluorescein and mounted in various 

media, using an oil immersion objective. To minimize scattering and spherical aberration, 

the kidney tissue was mounted in different clearing solutions, and XZ cross-sectional images 

were collected using an Olympus 60× NA 1.4 oil immersion objective. The deepest imaging 

depth was achieved in the samples mounted in refractive index media 1.51, clearing the 

tissue and matching the refractive index of the immersion oil (Fig. 4).

These qualitative results were supported in quantitative analyses of fluorescent microspheres 

in kidney tissue. Samples were mounted in media with refractive indices of 1.34, 1.40 or 

1.51 and imaged using an Olympus 60× NA 1.4 oil immersion objective (refractive index of 

the immersion oil, 1.515). The average intensity of the microspheres located at the cover slip 

was calculated and used to normalize the data. Data from the individual microspheres at the 

cover slip are not plotted to improve visualization because among the nine trials there are 

456 individual microspheres at the surface of the samples. The standard error for the data at 

the cover slip was calculated to be 1–2% for each of the three samples.

As shown in Fig. 5, the rate of signal attenuation with depth was dramatically decreased in 

samples mounted in a high refractive index medium. Signal attenuated by 90% in less than 

20 µm of depth into kidney tissue mounted in medium with refractive index 1.34, whereas in 

samples mounted in medium with refractive index 1.51 signal only attenuated by 45% in 

100 µm of depth. There results support the notion that scattering of the excitation and 

fluorescent light, and not spherical aberration, is a major contributor to signal degradation 

under our experimental conditions.

Remarkable results were obtained in samples mounted in the highest refractive index media 

(Fig. 6). High-quality images were collected through the entire working distance of the 

objective, 150 µm. Interestingly, even though scattering has been significantly reduced, the 

shortest wavelength emissions still attenuate faster with depth than the longer wavelengths. 
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This is evident from the Fig. 6(C), 125 µm deep into tissue, which has far more red signal 

(emission wavelengths 560–650 nm), than Fig. 6(A), 25 µm deep into tissue, which has far 

more blue signal (emission wavelengths 380–480 nm). This is also evident in Fig. 6(D), XZ 

cross-section, with more blue signal near the surface and red signal at depth.

Our previous studies demonstrate that refractive index mismatch compromises axial 

resolution in images collected at depth by MPM (Young et al., 2010). Consistent with this 

observation, increasing the refractive index of the mounting medium to match that of the 

immersion medium profoundly improved axial resolution of images of microspheres 

collected at depth in kidney tissue (Fig. 7). Data from individual microspheres at the cover 

slip are again not plotted to improve visualization, only the average FWHM at the surface 

calculated for each sample with a standard error of 0.003–0.006 µm.

Quantitative analysis of microsphere point spread functions in these samples demonstrates 

that eliminating refractive index mismatch essentially eliminates depth-induced degradation 

in axial resolution. The axial resolution of samples mounted in media with refractive index 

1.34 was measured to be approximately 1.5 µm at 25 µm depth. Samples mounted in media 

with refractive index 1.51 maintained axial resolution on the order of 0.9 µm up to 100 µm 

deep into tissue.

Conclusions

Here we have shown that refractive index heterogeneity in kidney tissue plays a significant 

role in signal attenuation with depth in MPM. Because refractive index heterogeneity causes 

scattering which has been shown to be a predominant cause of signal attenuation with depth, 

we investigated a simple way to minimize scatter, which profoundly improves image quality 

of deep tissue MPM images. Our clearing method utilizes a benzyl alcohol and glycerol 

solution to raise the background index of kidney tissue, lowering the reduced scattering 

coefficient.

In previous studies, we have shown that refractive index mismatch between the immersion 

fluid and sample causes significant attenuation of signal and degradation of resolution with 

depth. Interestingly, studies with a water immersion objective show that reducing scattering 

increases reach even when it increases refractive index mismatch. Scattering is apparently 

the predominant cause of signal attenuation with depth in fixed kidney tissue.

The largest improvements are obtained when both scattering and refractive index mismatch 

are reduced. Images collected using an oil immersion objective of kidney tissue mounted in 

media with refractive index 1.51 showed very minor signal attenuation with depth.

We also evaluated axial resolution at depth in kidney tissue. Axial resolution was shown to 

depend only on refractive index mismatch between the immersion fluid and the sample, but 

not on refractive index heterogeneity. Our data are consistent with some studies that show 

that imaging deep into scattering samples has no effect on resolution (Centonze & White, 

1998; Dunn et al., 2000; Dong et al., 2003) and contradicts those studies that show 

scattering degrades resolution with depth (Ying et al., 1999; Schilders & Gu, 2000). 

However both contradicting studies were conducted with refractive index mismatch between 
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the objective immersion media (air) and the aqueous sample. Schilders & Gu (2000), point 

out the fact that refractive index mismatch between the objective and sample leads to 

degradation of resolution; although, they state that resolution degradation caused by 

refractive index mismatch is negligible compared to the degradation caused by scattering. 

This may be the case for their samples with extremely short scattering-mean-free-path 

lengths or at greater depths into the sample. However, our data shows that the degree of 

scattering in kidney tissue does not degrade axial resolution within 50 µm of depth. As for 

Ying et al. (1999), their data support the work by Theer et al. (2003), on the fundamental 

imaging depth (Theer & Denk, 2006). Both studies show that when imaging deep into tissue, 

scattering causes out-of-focus fluorescence at the surface of the sample, degrading image 

quality. We suggest that scattering on the order of that occurring in fixed biological tissue 

eliminates photons from the two-photon excitation point-spread function; therefore, within 

the fundamental imaging depth, axial resolution is not degraded. Whereas refractive index 

mismatch causes spherical aberration, broadening the focus and degrading axial resolution.

Therefore, by reducing refractive index heterogeneity and scattering using optical clearing, 

we were able to improve imaging depth. Further, by matching the refractive index of the 

sample with the immersion fluid of the objective, we were able to improve both imaging 

depth and axial resolution at depths spanning the entire working distance (150 µm) of an NA 

1.4 oil immersion objective.
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Fig. 1. 
Two-photon microscopy XZ-cross sectional images of kidney tissue mounted in media with 

refractive index 1.34, 1.40, 1.47, 1.48, 1.51, 1.53 and collected with an Olympus NA 1.2 

water immersion objective. Pixel dimensions are 0.345 × 0.35 µm. Scale bar is 30 µm.
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Fig. 2. 
Two-photon microscopy of 0.2 µm fluorescent microspheres in kidney tissue mounted in 

media with refractive index 1.34, 1.40 or 1.51 and collected with an Olympus 60× NA 1.2 

water immersion objective, refractive index 1.33. Lines represent the average of data from 

30 microspheres per bin. Bin widths varied from 2.34 to 13.42 µm wide.
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Fig. 3. 
Two-photon microscopy of 0.2 µm fluorescent microspheres in kidney tissue mounted in 

media with refractive index 1.34, 1.40 or 1.51 and collected with an Olympus 60× NA 1.2 

water immersion objective, refractive index 1.33. Lines represent the average of data from 

31 microspheres per bin. Bin widths varied from 2.50 to 19.86 µm wide (excluding the 

deepest bin for each sample the maximum bin width was 8.30 µm wide).
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Fig. 4. 
Two-photon microscopy XZ-cross sectional images up to 100 µm into kidney tissue mounted 

in media with refractive index 1.34, 1.40, 1.47, 1.48, 1.51, 1.53 and collected with an 

Olympus 60× NA 1.4 oil immersion objective, refractive index 1.51. Pixel dimensions are 

0.345 × 0.35 µm. Scale bar is 30 µm.
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Fig. 5. 
Two-photon microscopy of 0.2 µm fluorescent microspheres in kidney tissue mounted in 

media with refractive index 1.34, 1.40 or 1.51 and collected with an Olympus 60× NA 1.4 

oil immersion objective, refractive index 1.515. Lines represent the average of data from 25 

microspheres per bin. Bin widths varied from 1.30 to 11.29 µm wide.
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Fig. 6. 
Two-photon microscopy of kidney tissue labelled with Hoechst, Lens culinaris agglutinin-

fluorescein and phalloidin-rhodamine and mounted in media with refractive index 1.51. 

Image volume collected with Olympus 60× NA 1.4 oil immersion objective. Each image is a 

maximum projection of five images collected (A) 25 µm deep, (B) 75 µm deep, (C) 125 µm 

deep and (D) XZ cross-section. Pixel dimensions are 0.414 × 0.414 × 0.41 µm. Scale bar is 

30 µm. Contrast stretching and unsharp mask were the same for all images.

YOUNG et al. Page 17

J Microsc. Author manuscript; available in PMC 2015 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Two-photon microscopy of 0.2 µm fluorescent microspheres in kidney tissue mounted in 

media with refractive index 1.34, 1.40 or 1.51 and collected with an Olympus 60× NA 1.4 

oil immersion objective, refractive index 1.515. Line represents the average of data from 40 

microspheres per bin. Bin widths varied from 3.38 to 10.94 µm wide.
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Table 1

Mounting media refractive indices measured with an Abbe refractometer. DABCO = 1,4-diazabicyclo [2.2.2] 

octane.

Mounting medium Refractive index (22°C) Standard deviation

A 98% PBS, 2% DABCO 1.3386 0.0002

B 49% PBS, 49% glycerol, 2% DABCO 1.4031 0.0005

C 19.6% PBS, 78.4% glycerol, 2% DABCO 1.4744 0.0002

D 13% benzyl alcohol, 85% glycerol, 2% DABCO 1.4836 0.0006

E 53% benzyl alcohol, 45% glycerol, 2% DABCO 1.511 0.001

F 83% benzyl alcohol, 15% glycerol, 2% DABCO 1.5297 0.0004
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