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Abstract

Retinoblastoma is a paediatric ocular tumour that continues to reveal much about the genetic basis
of cancer development. Study of genomic aberrations in retinoblastoma tumours has exposed
important mechanisms of cancer development, and identified oncogenes and tumour suppressors
that offer potential points of therapeutic intervention. The recent development of next-generation
genomic technologies has allowed further refinement of the genomic landscape of retinoblastoma
at high resolution. In a relatively short period of time, a wealth of genetic and epigenetic data has
emerged on a small number of tumour samples. These data highlight the inherent molecular
complexity of this cancer, despite the fact that most retinoblastomas are initiated by the
inactivation of a single tumour suppressor gene. Here, we review the current understanding of the
genomic, genetic and epigenetic changes in retinoblastoma, highlighting recent genome-wide
analyses that have identified exciting candidate genes worthy of further validation as potential
prognostic and therapeutic targets.
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INTRODUCTION

Retinoblastoma — a genetic disease

Retinoblastoma is a paediatric eye tumour arising in the retina, representing the most
common childhood intraocular malignancy.! Retinoblastoma was the first disease
demonstrating a genetic basis for cancer development,? initiated by biallelic inactivation of
the RB1 gene.3 More recently, as discussed later in this review, a second genetic form of
retinoblastoma has been discovered: that initiated by amplification of the MYCN gene.

Retinoblastoma is either heritable or non-heritable. The heritable form can result in tumours
affecting either one (unilateral, 60% of all cases) or both (bilateral) eyes, while the non-
heritable form leads only to unilateral tumours. All bilateral retinoblastoma is heritable and
tends to present at an earlier age, whereas unilateral retinoblastoma is heritable in only a
small percentage (15%) of cases.3~ All heritable retinoblastoma results from biallelic RB1
inactivation; the first RB1 mutation (M1) is constitutional, while the second mutation (M2)
occurs somatically in one or more retinal cells.3 In a small proportion of cases, M1 occurs in
one cell of the multicell embryo, resulting in mosaicism in the proband.> Most non-heritable
retinoblastomas are caused by biallelic RB1 loss where both RB1 mutational events (M1 and
M2) arise in a single somatic retinal cell. A small fraction of non-heritable retinoblastoma
result from MYCN amplification with normal RB1, also arising somatically in a single retinal
cell (see below). A predisposing constitutional RB1 mutation leads to earlier age of
presentation (15 months for bilateral vs. 27 months for unilateral in developed countries).3

With an incidence of 1 in 15,000 to 20,000 live births, translating to approximately 9,000
new cases every year worldwide,3:6 the impact of retinoblastoma on health care systems
continues after initial diagnosis and treatment. Constitutional mutation of the RB1 gene
predisposes individuals to second cancers later in life, such as lung, bladder, bone, skin and
brain cancers.” The heritable nature and second cancer susceptibility associated with
retinoblastoma translates into a need for life-long follow-up, such as genetic testing and
counseling for families and offspring to determine heritable risk, and to monitor for and treat
second cancers.

Discovery of a tumour suppressor and initial genomic profiling

Over 40 years ago, Knudson proposed that retinoblastoma was initiated by inactivation of a
putative tumour suppressor gene.l His mathematical study of the discrepancy in the time to
diagnosis between unilateral and bilateral patients led to the hypothesis that two mutational
events are rate limiting for the development of retinoblastoma. This postulate was further
refined by Comings in 1973 to suggest that mutation of two alleles of a single gene was the
cause.8 These studies informed the discovery of the first tumour suppressor gene, RB1 on
chromosome 13q14.9-11 We later confirmed that both alleles of the RB1 gene are indeed
mutated in retinoblastoma.1? Study of the benign, non-proliferative precursor lesion
retinoma led us to discover that loss of function of the RB1 gene can initiate retinoma, but is
insufficient for the development of retinoblastoma.13

We postulated that additional genetic changes, termed M3-Mn in keeping with Knudson’s
nomenclature, are required for the progression of benign retinoma to malignant
retinoblastoma.1314 Early genomic profiling through karyotype analyses and comparative
genomic hybridization (CGH) studies indeed revealed that retinoblastomas also contained
many genomic changes, including recurrent gains of chromosome 1q, 2p and 6p, and losses
of chromosome 13q and 16q.14 We and others went on to map specific regions of gains/
losses to develop a genomic signature of putative M3-Mn events, subsequently identifying
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oncogenes and tumour suppressors in these regions that could facilitate tumour
progression. 1516

New genomic technologies, new horizons

These initial efforts in the genomic profiling of retinoblastomas led to an explosion in the
study of the molecular pathogenesis of this cancer, but the importance of these findings
translates beyond retinoblastoma, as many similar genomic changes have been identified in
other cancers.1’-20 Recent advances in genomic (single nucleotide polymorphism [SNP]
analysis and next-generation sequencing) and epigenetic (methylation and miRNA) analysis
methodologies now allow us a “high-resolution” view of specific aberrations. These
techniques open the door to enhanced understanding of retinoblastoma development and
progression, moving towards potentially curative therapeutic interventions. However, a
higher-resolution view has also uncovered an even more complex genomic landscape in
individual retinoblastomas that requires careful validation.

This review summarizes our current understanding of the retinoblastoma genome. We
highlight the candidates that have emerged as the most tangible therapeutic targets. We also
examine in detail the emerging genome-wide expression, sequencing and epigenetic data
that will contribute to a greater understanding of initiation and progression of
retinoblastoma, and possibly offer even better targets for prevention and cure in the future
(Figure 1).

RECURRENT GAINS AND LOSSES REVEAL CANDIDATE ONCOGENES
AND TUMOUR SUPPRESSORS IN RETINOBLASTOMA

We have previously reviewed in detaill* the first karyotypic, CGH and array CGH (aCGH)
studies leading to the identification of minimal regions of gain (MRGs) and minimal regions
of loss (MRL) frequent in retinoblastomas, including chromosome gains at 1932, 2p24,
6p22, and losses at 13q and 16922—-24. New technology has subsequently validated these
initial discoveries. Candidate oncogenes in the retinoblastoma genome include MDM4 (also
known as MDMX),16:21 KIF14,18 MYCN,1% and DEK and E2F3,22 plus a candidate tumour
suppressor, CDH11 (Table 1).23 There is mounting evidence implicating these genes as
drivers in retinoblastoma progression.

MDM4 — mouse double minute 4, human homolog (1932.1)

MDMA4 is a nuclear protein that binds through its transcriptional activation domain to inhibit
p53 activity. It also binds and inhibits the activity of the E3 ubiquitin ligase MDM2, which
mediates the degradation of p53.24 Genomic amplification and overexpression of MDM4
have been noted in multiple cancers, including glioblastoma, cutaneous melanoma,
osteosarcoma, breast and colorectal carcinomas; these changes are more frequent in tumours
with wild-type TP53.25 Amplification and overexpression of MDM4 has been observed in
65% of retinoblastomas in comparison to fetal retina,2! and could explain inactivation of the
p53 pathway without any genetic alteration of the TP53 gene in retinoblastoma.

Functional analyses of MDM4 have shown that in mice lacking Rb1 and Rbl1 (p107),
MDM4 could promote tumorigenesis, and that treatment of retinoblastoma cell line
xenografts with the small molecule nutlin-3, which targets the p53-MDM2/4 interaction, can
reduce tumour growth.21 Subconjunctival delivery of nutlin-3 in preclinical models of
retinoblastoma demonstrated some efficacy in mediating p53-dependent cell death in
retinoblastoma.2® However recent evidence has shown that only a small number of
retinoblastomas overexpress MDM4 mRNA and protein vs. normal retinal tissues,2’
suggesting that other mechanisms of p53 pathway inactivation, such as loss of the p14ARF
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tumour suppressor protein expression could be responsible for progression of some
retinoblastomas.28

KIF14 — Kinesin Family Member 14 (1g32.1)

KIF14 is a mitotic kinesin and molecular motor essential for the last stages of
cytokinesis.22:30 KIF14 is overexpressed in over 50% of primary retinoblastomas. In
retinoma lesions, gain of 1932 is the most prevalent karyotypic abnormality following loss
of the RB1 gene. These findings point to KIF14 gain as a possible M3 event.13.18.19 Gene-
specific analysis of retinomas via fluorescence in-situ hybridization (FISH) confirmed that
KIF14 gain was present in all retinomas studied, while gain of MDM4 was present in a
smaller proportion of cases. This highlights the significance of the KIF14 oncogene as a
potential driving event in the progression of retinoblastoma.13 Genomic gain of 1q is seen in
many other cancer types, including breast, lung, liver, papillary renal cell, esophageal,
glioblastoma, ovarian cancers and meningiomas.3! The Kif14 locus was also gained in the
SV40 large T antigen-induced model of retinoblastoma (TAg-RB),32 and KIF14 showed
low-level amplification in a human retinoblastoma.1>

KIF14 mRNA is overexpressed in retinoblastomas,18:33 in TAg-RB, and in many other
cancers,17:19,20.32.34,35 Expression correlates with poor prognosis in breast,1” lung,1? and
ovarian cancers.20 Stable or transient knockdown of KIF14 significantly reduces
proliferation, migration and colony formation in established cancer cell lines in vitro,19:20.36
pointing to a crucial role for KIF14 in tumour formation and progression, perhaps separate
from its role in cytokinesis. KIF14 was recently shown to interact in a specific manner with
Radil, a crucial mediator of Rapla—mediated integrin inside-out signalling.38 KIF14 controls
the amount of Radil-Rapla activity at the cell membrane to promote cell adhesion and
migration, favouring metastatic progression in breast cancer cells. These studies demonstrate
KIF14 as an important oncogene promoting tumorigenesis in multiple cancers, offering
opportunities for therapeutic disruption of specific cancer-causing protein interactions.3’

There is still debate as to which 1q gene is important in retinoblastoma development. MDM4
and KIF14 are located within 4 Mbp of each other at chromosome 1¢g32.1. Via high-
resolution quantitative multiplex PCR of five sequence-tagged sites spanning 1925.3 — 1941,
we identified in retinoblastoma and breast tumours a 3.06 Mbp MRG spanning 1931.3 -
1932.1.18 This region contained KIF14, but excluded MDM4. Via CGH, others have
identified MRGs in retinoblastomas encompassing both candidate genes.16:38:39 Two studies
concluded that MDM4 was the candidate gene within the MRG; although KIF14 was located
within the defined MRG, its genomic expression was not tested.16:40 In any case, the fact
that we and other groups have shown gene-specific gain of both MDM4 and KIF14 in
retinomas and retinoblastomas?3:18:21.41 ynderscores the importance of both genes in this 1q
region of gain in the pathogenesis of retinoblastoma.

MYCN - v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (2p24.3)

MYCN encodes N-Myc, a basic helix-loop-helix protein (bHLH) that binds with other bHLH
proteins, acting as a transcription factor to control the expression of cell cycle genes that
promote proliferation.*2 It is frequently amplified in tumours of neuroectodermal origin,
including neuroblastoma, retinoblastoma, glioblastoma, medulloblastoma,
rhabdomyosarcoma and small cell lung carcinoma,*2-4° and is associated with poor
prognosis in neuroblastoma.?® MYCN is also amplified in the archetypal retinoblastoma cell
line Y79,%1 and has been reported amplified in approximately 3% of primary
retinoblastomas.1415
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Through an international collaboration with four other clinical RB1 testing centres, we have
recently discovered a subset of retinoblastomas that possess a wild type RB1 gene and a full-
length, functional pRb protein (RB1*/*, as evidenced by presence of hypo- and
hyperphosphorylated forms of pRb that bind to E2F1), but demonstrate high-level
amplification of the MYCN gene (28 to 121 copies; MYCNA).52 These RB1*/*, MYCNA
tumours, which represent approximately 1% of all retinoblastomas, have a relatively stable
genome by aCGH, apart from MYCN amplification. The frequency of copy number
alterations was significantly reduced in RB1*/*, MYCNA tumours vs. RB17~ or RB1*/~
tumours. The minimal amplicon was found in two primary tumours to contain only the
MYCN gene, in contrast to previous studies in RB1~/~ retinoblastoma and neuroblastoma
tumours where MYCN co-amplified with genes NAG and DDX1.53-55

Of 15 RB1**MYCNA tumours evaluated, three showed unusual changes at chromosome 17q
(17921.3-qgter or 17g24.3-qter gain), while two tumours showed 11q loss. Both regions are
commonly altered in neuroblastoma, but rare in RB1~/~ retinoblastoma. Other changes
included gains at 14q and 18q, and losses at 11p.>2 These unilateral, MYCNA tumours
possess histologic features similar to neuroblastoma (large prominent nucleoli) and present
with large, invasive tumours at a young age (4 to 5 months) compared to RB1-inactivated,
unilateral, non-familial retinoblastoma (27 months).2 This new subset of retinoblastoma
challenges the dogma that this cancer is always initiated by the loss of both copies of the
RB1 gene. These findings have immediate clinical impact, as patients with RB1+*MYCNA
tumours have MYCN amplification only in the tumour cells. These children have no special
risk for retinoblastoma or second cancers later in life, and may benefit from future MYCN-
directed therapies to save vision.

DEK - oncogene, DNA binding (6p22.3), and E2F3 — E2F transcription factor 3 (6p22.3)

Genes for DEK, a chromatin remodelling factor and histone chaperone protein, and E2F3, a
pRb-regulated transcription factor crucial in cell cycle control, are located within a small
region on chromosome 6p22.3. Genes on 6p are frequently gained (54% by CGH) and
overexpressed in retinoblastomas, manifest as an isochromosome 6p (i(6p)).14 However,
spectral karyotyping and multicolour banding analyses identified novel 6p rearrangements
and recurrent translocations in many retinoblastoma cell lines, pointing to additional
mechanisms of gain for the short arm of chromosome 6p and activation of the DEK and
E2F3 oncogenes.>®

Although frequently gained and overexpressed together,>’ there are instances where gain of
only one gene is present. In some retinomas, gene-specific gain of DEK is present while
E2F3 remains 2-copy,13 while primary retinoblastomas show a higher proportion of tumours
with E2F3 gain (70%) than gain of DEK (40%);1° this ratio is similar in the TAg-RB mouse
model.32 Furthermore some evidence points to transcriptional regulation of DEK by E2F3,
adding a level of complexity to the regulation of expression of these oncogenes in cancer.>8
Both DEK and E2F3 have important oncogenic roles in multiple cancers. DEK was first
discovered in acute myeloid leukemia (AML) as a fusion gene with nucleoporin (NUP214)
in 1% of the leukemic cells,>® and is overexpressed in multiple cancers including melanoma,
hepatocellular carcinomas, brain tumours, and breast cancers.14:69 Furthermore, DEK
overexpression may confer stem cell-like properties on cancer cells that facilitate tumour
progression and chemoresistance,®! demonstrating its importance as a tumour-initiating
oncogene. E2F3 is gained and overexpressed in bladder, prostate, lung and breast
cancers,14:62.63 and siRNA-mediated knockdown of E2F3 in bladder, prostate and breast
cancer cells significantly reduced their proliferative capacity. These results point to
inactivation of E2F3 as an attractive therapeutic target in multiple cancers.62:63
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CDH11 - Cadherin 11 (16g21)

CDH11 (also called osteoblast cadherin) encodes a type Il classical cadherin, an integral
membrane protein that mediates calcium-dependent cell-cell adhesion that is involved in
bone development and maintenance. Loss of CDH11 is common in osteosarcoma, and
correlates with tumour invasion and metastasis.5465 CDH11 has also been identified as a
candidate tumour suppressor gene in invasive ductal and lobular breast carcinomas®® and is
involved in invasive gliomas.6” The CDH11 promoter is methylated and effectively silenced
in many different cancer cell lines, demonstrating its role in tumorigenesis.58 Furthermore,
hypermethylation of the CDH11 promoter was identified in metastatic cell lines derived
from melanomas and head and neck cancers in comparison to their respective primary
tumours, strengthening the postulate that loss of CDH11 expression is important in
metastatic progression.5% We identified a hotspot loss of chromosome 16q, and narrowed the
MRL to the CDH11 gene, lost in 58% of retinoblastomas tested. We also studied expression
of Cdh11 in the TAg-RB murine model, and demonstrated that many TAg-RB tumours
exhibited loss of Cdh11.23:32

Subsequently, Laurie et al. documented that loss of Cdh11 expression correlated with optic
nerve invasion in a murine transgenic model of retinoblastoma with functional, retinal
progenitor-specific inactivation of p107, pRb and p53 proteins.” By crossing the TAg-RB
mouse with a Cdh11-null mouse, we showed that tumour formation was significantly
reduced, and in the tumours that did form, cell proliferation was increased while apoptotic
marker expression greatly decreased.’! These results clearly indicate a tumour suppressive
role for Cdh11 in retinoblastoma development and progression, at least in mice. However, in
addition to loss of 16922, Gratias et al. Identified, by conventional and matrix CGH, loss of
heterozygosity at 16g24, an MRL encompassing the potential tumour suppressor CDH13.72
Loss of this region also associated with intraocular seeding, implicating CDH13, perhaps in
addition to CDH11, as an important tumour suppressor in retinoblastoma.’?

EMERGING TARGETS FROM GENOMIC AND EXPRESSION ARRAY
ANALYSES

Genomic analyses

Since our previous review,* high-resolution aCGH and SNP array analyses of
retinoblastomas have revealed novel regions of genomic imbalance pointing to new target
genes (Table 2; Figure 1). One study profiled tumour from 10 bilateral and 8 unilateral
patients, 2 who had retinoma. In addition to the characteristic genomic changes such as gain
at 1q, 2p, and 6p, and losses at 13g and 16q, there were gains in two small regions of
chromosome 9 (9922.2 and 9933.1) and loss at 11g24.3 in retinoblastomas, along with gains
at 6p, 5p and 5q in retinomas.#! The MRGs defined in this study encompassed larger
chromosomal regions than were previously characterized (1q12 — 25.3, 6p25.3 — 11.1 and
16912.1 — 21), but also excluded previously characterized regions, such as 1g32.1. Thus
additional candidate genes were identified on 1qg such as MUC1, a membrane-bound protein
overexpressed in many epithelial cancers that confers resistance to apoptosis, MCL1, a
member of the Bcl-2 family of anti-apoptotic proteins (previously shown to be
overexpressed in retinoblastoma??), and SHC1, a signalling adapter molecule that mediates
the transforming activity of oncogenic tyrosine kinases, and also identified as a candidate
target gene from a previous study.18

On chromosome 11, the novel candidate ETS1, a well-known transcription factor involved
in proliferation, senescence and tumorigenesis was also identified. On chromosome 13q, a
recently characterized tumour suppressor gene, ARLTS1, was identified as being within the
MRL."3 It encodes a Ras family pro-apoptotic protein, and its loss of function (through
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deletion, SNPs and methylation) has been demonstrated in multiple cancers including breast,
lung and ovarian cancers.*!

In addition to loss of CDH11 on chromosome 16q, the MRL encompassed the tumour
suppressor gene RBL2 encoding the RB family member p130. RBL2 was previously
identified as an important tumour suppressor gene involved in the progression of human13.74
and mouse retinoblastomas.”® One study found high frequency (close to 60%) loss of 16¢22
specifically encompassing the RBL2 gene in 19 primary retinoblastomas, further implicating
this gene as an important player in the progression of retinoblastoma.”® Sampieri and
colleagues evaluated chromosomal gains common between retinoma and retinoblastoma that
included the oncogenes DEK and E2F3, in agreement with previous findings.13 Novel gains
of 5p and 5q were also found in both retinoma and retinoblastoma tissues; potential
candidate genes identified within these regions included the oncogene SKP2 (p45; 5p13)
known to be overexpressed in many cancers and involved in the ubiquitin-mediated
degradation of p27, and BIRC1 (on 5¢913.2), an inhibitor of apoptosis that suppresses
caspase activity.4!

Using a whole genome sampling array (WGSA), Ganguly et al. also identified novel regions
of gain/loss in 25 unilateral retinoblastomas compared to their matched normal tissues.38
Novel regions of gain included chromosomes 1g44, 3p25. 11q14, 11925, 14923, 15921,
16p13, 17p11, 19913 and 20q13, while regions of loss included 6p22, 7p21 and 21g2. On
chromosome 1gq, MDM4 and GACL1, genes involved in the regulation of p53 activity were
identified. SMYD3 was identified as a novel target, located on 1g44. It is a histone
methyltransferase that regulates the transcriptional activity of the RNA polymerase complex.
Another novel gain on chromosome 1423 identified the target gene CEP170, a protein
involved in centriole architecture that gives rise to chromosomal abnormalities during
mitosis. SIX1 and SIX4, homeobox proteins, were also identified as novel target genes
within this region. Along with CEP170, these genes are all associated with bilateral
anophthalmia, further pointing to the potential importance of developmental genes in the
formation and progression of retinoblastoma.38 To our knowledge, further expression and
functional analyses of these genes in retinoblastoma have not yet been reported.

A recent study by Livide et al. identified a number of novel targets in retinoblastomas.’”
Using a methylation specific multiplex ligation probe assay (MS-MLPA), they analysed a
total of 39 genes in 12 tumours with corresponding normal retinal tissues, and found
alterations in 25 genes.”” These included gains in TNXB (6p21), an anti-adhesion
extracellular matrix glycoprotein involved in tumour progression, and deletions in TP53,
CDH11, GATAS5, CHFR, TP73, IGSF4 and BRCAZ2, as well as changes in the methylation
status of a number of additional genes (see below).

Microarray expression studies

Surprisingly few studies have taken a comprehensive look at differential gene expression
patterns in retinoblastomas (Table 2). Chakraborty et al. conducted a comparative
microarray analysis between 10 retinoblastomas and 3 adult retina samples. They identified
deregulated genes in functional classes including the insulin and JAK/STAT signalling
pathways, axon guidance, extracellular matrix—receptor interactions, proteasome, sugar
metabolism, ribosomes, cell adhesion molecules, and tight junction complexes.’®
Confirmatory semi-quantitative RT-PCR analysis validated insulin signalling pathway genes
(PIK3CA, AKT1, FRAP1 and RPS6KB1) as significantly upregulated in tumours vs. normal
tissues, suggesting that the PISBK/AKT/mTOR/S6K1 signalling pathway is dysregulated in
retinoblastoma. Other upregulated genes included CDC25A, a cell cycle progression gene,
and ERBBS3, involved in cancer development and progression.
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LATS2, a serine-threonine kinase and tumour suppressor, and CHFR, a mitotic checkpoint
pathway gene, were found downregulated in retinoblastomas. Regional biases of gene
expression were also found, where gene expression changes mapped to particular
chromosomal regions, including clusters of upregulated genes mapping to chromosomes 16
and 17, and clusters of downregulated genes mapping to chromosome 1. Interestingly, none
of the previously validated retinoblastoma candidate genes on chromosomes 1 and 16
(KIF14, MDM4, CDH11)4 were identified as differentially expressed in this study, perhaps
due to the small sample size or use of adult retina as comparator. Nonetheless, these data
encourage future testing of known pathway inhibitors for retinoblastoma treatment.

A recent study undertook a microarray expression comparison between matched normal
retina and retinoblastoma tissues of 6 patients.”® Increased expression was seen for 1116
genes, and 837 genes showed decreased expression in tumours vs. normal retina. These
genes fell into functional groups including cell cycle regulation, cell death, DNA replication,
recombination and repair, cellular growth and proliferation, and cellular assembly and
organization. Among these groups, the DNA damage response pathway genes were most
differentially expressed and included previously identified players such as breast cancer
associated genes BRCA1 and 2, AHR and ATM signalling genes, and Go/M DNA damage
checkpoint regulation genes, polo-like kinase (PLK1), E2Fs, and checkpoint kinase 1
(CHK1). The identified kinases are of particular interest, as there are drugs targeting these
kinases that could be tested for therapeutic relevance.”® Interestingly, the authors also found
overexpression of cone-cell-specific markers in retinoblastomas, supporting previous reports
of a cone progenitor cell of origin for retinoblastoma,8° or that cone differentiation is a
“default” pathway in failed retinal differentiation.

SINGLE NUCLEOTIDE POLYMORPHISMS ASSOCIATED WITH
DEVELOPMENT OF RETINOBLASTOMAS

Since TP53 is rarely mutated in retinoblastoma,®! other mechanisms of p53 inactivation in
these tumours have been discovered, including the genomic gain and overexpression of key
inhibitors of p53 activity, MDM2 and MDM4 (see above). MDM2 was the first modifier
gene identified in retinoblastoma (Table 3), when Castera et al. identified a T>G
transversion SNP at nucleotide 309 in the MDM2 promoter (rs2279744) to be highly
associated with the incidence of bilateral and unilateral retinoblastoma in RB1 mutation
carrier families.82 This allele confers enhanced transcription of mRNA leading to
overexpression and accumulation of the MDM2 protein, effectively abrogating the function
of the p53 protein.82

The p.Arg72Pro substitution in p53 protein (¢c.215G>C,) decreases the ability of p53 to
induce apoptosis, in essence causing functional inactivation.83 In development of
retinoblastoma, a significant association of the Pro/Pro variant of p.Arg72Pro has been
documented, while only a weak negative association was seen with MDM?2-309.84

MDM4, another key regulator of p53 activity found to be gained and overexpressed in
retinoblastomas (see above) is also a genetic modifier in retinoblastoma. Genotype studies of
104 retinoblastoma patients found that both the MDM2 rs2279744G (vs T) and MDM4
rs4252668C (vs T) SNPs were present at a higher frequency in control patients, while
MDM2 rs2279744TG and GG genotypes, and the MDM4 rs116197192G allele were present
at high frequency in retinoblastoma patients and associated with poor survival.8>

To elucidate the relationship between MDM2/4 SNPs and gene/protein expression, McEvoy
and colleagues performed sequencing and expression analysis for MDM2/4 in 44
retinoblastomas and 3 orthotopic xenografts derived from primary tumours, in comparison
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to normal blood and retina tissues. The MDM2-309 and MDM4-7 (rs1563828C>T) SNPs did
not correlate with elevated gene expression in retinoblastomas.88 However, the orthotopic
xenografts demonstrated high levels of MDM4 protein associated with the MDM4 SNP
34091C>A. This variant was first documented in ovarian cancer to cause high
overexpression of MDM4 due to loss of regulation by miR-191.87 The orthotopic xenografts
had the 34091AA genotype, and this genotype was associated with high levels of expression
of the MDM4 protein while maintaining mRNA levels similar to those in fetal retina. These
results suggest that SNPs may enforce functional changes in tumour suppressive pathways
to promote tumorigenesis in retinoblastoma.

The first whole genome sequencing (WGS) study of retinoblastomas was recently presented
(Table 3). Zhang et al. characterized the genetic and epigenetic alterations of 4 primary
retinoblastomas along with matched normal tissues. They validated 668 somatic sequence
mutations and 40 structural variations, with on average 167 mutations per case, but only 11
genes were found to harbour mutations leading to amino acid changes.®8 Their calculated
mutation rate was 15-fold lower than in other tumour types, except for AML. The only
structural variations that were identified were loss RB1 and gain of MYCN, suggesting very
few genomic changes are present after loss of the RB1 gene.88 These results diverge with
many other reports demonstrating genomic instability and presence of characterized
genomic alterations following loss of RB1 (see above).8% The 11 genes containing somatic
mutations were further sequenced in 46 retinoblastomas. BCOR, a transcriptional
corepressor involved in BCL6 repression, was the only gene that showed recurrent mutation
in 13% (6 out of 46) of cases.88 As BCOR mutations are recurrent in AML patients, and it is
expressed in the developing retina, this gene may be an important player in some
retinoblastomas.8?

EPIGENETIC CHARACTERIZATION OF RETINOBLASTOMAS

Methylation analyses of retinoblastomas

Methylation of the RB1 promoter was first demonstrated in 1989 by Greger et al., who
identified CpG 106, an island overlapping the promoter and exon 1, to be methylated in
some retinoblastomas,?° thus silencing gene expression. Since then, multiple CpG islands
within the RB1 promoter and gene have been identified and characterized in
retinoblastomas, demonstrating an epigenetic component to RB1 inactivation and subsequent
development of retinoblastoma.®! Methylation of the RB1 promoter is the causative M1 in
8% of unilateral non-germline tumours.*

Aberrant methylation of additional genes has also been shown in retinoblastomas (Table 4).
RASSF1A, a tumour suppressor involved in microtubule stability, is inactivated by promoter
hypermethylation in anywhere from 59 to 80% of retinoblastomas in comparison to normal
retinal tissues.92-94 It is inactivated by methylation in multiple cancers.%* MGMT, encoding
an O%-alkylguanine-DNA alkyltransferase, was also found hypermethylated, but in a smaller
proportion of retinoblastomas (58% and 35% in two studies).’7-92.95

p16!NK4A (CDKN2) has long been implicated as a tumour suppressor in retinoblastoma
development. Recently, Indovina and colleagues studied p16'NK4A expression and promoter
methylation in a cohort of retinoblastomas along with peripheral blood from both patients
and their parents.% Fifty-five percent of retinoblastoma patients showed a downregulation
of p16!NK4A expression in blood. In over half of these, one of the parents possessed the
same downregulation of p16!NK4A in their blood cells. Interestingly, methylation analysis of
the CDKN2 promoter in this cohort revealed that patients and parents harbouring the same
alteration showed promoter hypermethylation, suggesting that this alteration could be
heritable, and therefore could become a novel susceptibility marker for these patients.9
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Additionally, these results begin to provide a basis for the investigation of demethylating
agents for therapeutic interventions.2-9

Livide et al. recently identified a novel set of hypermethylated genes in multiple
retinoblastomas, in addition to confirmation of hypermethylation in previously identified
genes MGMT, RB1 and CDKN2.”” Hypermethylation was found in 7 novel genes, including
MSHG6 (50%), a post-replication DNA repair mismatch gene commonly mutated in cancer;
CD44 (43%), a cell surface glycoprotein involved in cell-cell and cell-matrix interactions;
PAXS5 (42%), a member of the paired box family of transcription factors involved in
developmental processes that is deregulated in lymphomas; GATA5 (25%), a transcription
factor involved in cardiac smooth muscle cell diversity; TP53 (8%); VHL (8%), a tumour
suppressor involved in the predisposition to Von Hippel-Lindau syndrome via the ubiquitin-
mediated degradation of HIF1; and GSTP1 (8%), a glutathione S-transferase enzyme playing
arole in susceptibility to many diseases including cancer.”” Although these studies were
done on microdissected tumour and matched normal retina, it remains possible that observed
methylation “changes” reflect the methylation status of the undefined retinoblastoma cell of
origin.

Zhang et al. conducted a chromatin immunoprecipitation-on-chip and methylation analysis
of 4 primary retinoblastomas and one orthotopic xenograft.88 They identified a total of 104
genes that were differentially expressed and which also exhibited correlative histone
modifications in retinoblastomas when compared to normal tissues. Only 15 of these genes
have been identified as known cancer genes.88 Upregulated genes with activating histone
modifications included TFF1, a secreted gastrointestinal mucosa protein overexpressed in
some digestive tumours and breast cancers; SYK, a novel proto-oncogene involved in breast
cancer; and MCMb, important in DNA replication and cell cycle regulation. Downregulated
genes with associated inactivating histone modifications included CTNND1, a catenin
involved in cell-cell adhesion; SOX2, involved in embryonic development and a cause of
syndromic microphthalmia; and ADAMTS18, thought to act as a tumour suppressor. The
authors validated the proto-oncogene SYK, a druggable kinase.88 This kinase has no
documented role in the developing retina, but has importance in several haematological
malignancies.88:91 The SYK promoter showed high activating histone and RNA polymerase
binding activity, and real-time RT-PCR and immunohistochemical analysis of primary
tumours and xenografts demonstrated high SYK expression. Treatment of retinoblastoma
cell lines and animals with established xenografts with anti-SYK shRNA or a small-molecule
SYK inhibitor reduced tumour growth both in vitro and in vivo, suggesting a potential new
therapeutic target for retinoblastoma.

Differential microRNA expression in retinoblastomas

MicroRNAs (miRNAs) are a large class of small non-coding RNASs that regulate gene
expression by targeting mRNAs to either inhibit transcription or destabilize the transcript,
effectively downregulating protein expression. miRNAs have been implicated in many
crucial cellular pathways in normal and cancer cells, and their role in retinoblastomas has
only recently been examined (Table 5 and Table 6).

We were the first to profile miRNA expression in retinoblastoma by microarray,®’ and
showed substantial downregulation of let-7b in three tumours versus normal retina, as well
as decreased let-7c, miR-24, miR-125b, miR-191, miR-181a and miR-423. No miRNA was
uniformly overexpressed in these samples. Downregulation of let-7b was confirmed in a
larger cohort by gPCR, and putative let-7b target genes CDC25A and BCL7A were
upregulated in tumours. Importantly, this overexpression was abrogated by exogenous
let-7b. Mu et al. recently confirmed that the let-7 family was highly expressed in retinal
tissues, with significantly decreased expression in 39% of primary tumours tested.%
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Furthermore, a significant inverse association between let-7 expression and expression of
high mobility group proteins HMGAL and HMGA2 was found, indicating that let-7 may be
acting as a tumour suppressor in retinoblastoma. let-7 has been documented to regulate the
expression of HMGA2.91

Subsequent studies identified additional miRNAs involved in the progression of
retinoblastoma (Table 5). One microarray analysis of human retinoblastoma tissues
identified 13 highly expressed miRNAs compared to normal retina, including miR-373,
previously identified as a putative “oncomiR” in testicular germ cell tumours.1:9% Another
tumour suppressor miRNA, miR-34a, was identified as differentially expressed in
retinoblastomas and cell lines.100 Loss of miR-34a has been shown in various cancers,
including brain, breast, colorectal, lung, pancreatic, and prostate.®! miR-34a demonstrated
variable expression in two primary retinoblastomas and two cell lines, and treatment of Y79
and WERI-Rb1 cells with miR-34a decreased cell growth and increased apoptosis; this
effect was improved with topotecan co-treatment, suggesting that miR-34a acts as a tumour
suppressor in retinoblastoma cells, mediating proliferation and chemotherapeutic
resistance.100

Conkrite and colleagues demonstrated that the miR-17~92 cluster, one of the first
“oncomiR” clusters to be characterized, is a potential therapeutic target in retinoblastoma.101
By studying a murine model of retinoblastoma initiated by mutations in Rb1 and Rbl1, they
identified through aCGH a focal amplification in 14gE (syntenic to human 13g32) which
contains the miR-17~92 cluster. One mouse tumour exhibited a 14 Mbp gain at 5qG2-3,
containing the miR-17~92 paralog, miR106b~25.191 miR-17~92 has been implicated in
tumorigenesis, as it promotes proliferation, inhibits differentiation, and increases
angiogenesis in lymphomas.®? However, out of 32 human retinoblastomas, only one
demonstrated low-level gain of the human miR-17~92 locus, but 4 tumours exhibited low-
level gain of miR106b~25, thus suggesting relevance of this cluster to both murine and
human diseases. Interestingly, microarray analyses and deep sequencing (RNA-Seq) of both
murine and human retinoblastomas revealed high expression of miR-17~92. Overexpression
of miR-17~92 in mice was by itself insufficient for tumour formation, however deletion of
both Rb1 and Rbl1 and overexpression of miR-17~92 accelerated retinoblastoma
development, with presence of frequent brain metastases.19 miR-17~92 increased the
proliferative capacity of pRb/p107-deficient cells by suppressing p21€1P1 expression,
thereby promoting proliferation and development of retinoblastoma.

Nittner et al. extended these findings to human cell lines, investigating whether miR-17~92
could promote survival in human cells with inactivated RB1. In RBL15, WERI-Rb1 and
Y79 retinoblastoma cell lines, inhibition of miR-17~92 suppressed tumour formation in
xenografts. Co-silencing of miR-17/20a and p53 was cooperative in decreasing the viability
of human retinoblastoma cells.192 Together, these studies identify miR-17~92 as an
interesting therapeutic target worthy of further study.

Retinoblastoma cell lines have also been probed to assess the biological implications of
some differentially expressed miRNAs. Jo et al. conducted an expression analysis of two
retinoblastoma cell lines with different growth properties.193 The authors found that the
miRNA expression pattern of SNUOT-Rb1 cells (overexpressing miR-10b, miR-29a, and
let-7¢), which are adherent and demonstrate rapid growth, is completely different from the
miRNA expression pattern of Y79 cells (overexpressing miR-34a, miR-124, and miR-135b),
which are non-adherent and slower growing. Bioinformatics analysis of these differentially
expressed miRNAs showed direct relation to gene expression control of biological processes
such as cell adhesion, proliferation, death and division,103 suggesting targets that could be
validated in clinical samples.
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For example, a target for miR-10b is the tumour suppressor HOXD10. Its transcriptional
inhibition leads to activation of Rho kinase activation and tumour cell invasion.194 Using a
novel functional linkage method of analysing publicly available STRING protein-protein
interaction data, Li et al. identified a set of 53 differentially expressed miRNAs in
retinoblastomas in comparison to normal retinal tissue. This study confirmed previously
identified miRNAs, such as let-7a, let-7¢c, miR-20a, miR-124, and miR-125, but also
identified novel miRNAs such as miR-21, —155 and —301.10°

Expression analysis of 12 retinoblastomas identified several other novel miRNAs that may
play a role in tumorigenesis. Through microarray analysis, Martin et al. identified 41
differentially miRNAs as compared to normal retinal tissues.1%6 They went on to validate
five of these (miRs-129-3p, —129-5p, —382, —504, and —22) as highly downregulated in 12
primary tumours, two cell lines and two mouse retinoblastomas. Many of these identified
miRNAs have demonstrated roles in other cancers. For instance, the most downregulated
miRNA, miR-129, is involved in cell cycle regulation by inhibiting the cell cycle regulatory
genes CDK4 and CDKS, and is silenced in gastric, esophageal and colorectal cancers.106.107
Another interesting target, miR-382, is involved in repressing MYC transcription. In
osteosarcoma, loss of miR-382 leads to upregulation of c-Myc, in turn activating the
miR-17~92 cluster involved in human and mouse retinoblastomas (see above).101.102
However, when miRNA expression levels were associated with clinical variables, no
significant correlations could be found with optic nerve invasion or intraocular
neovascularization, warranting the analysis of a greater patient cohort.

Finally, one recent study performed an in silico analysis of the miRNA expression profile of
14 late-stage retinoblastoma patient serum samples with publicly available miRNA
expression data on retinoblastomas, to identify miRNA and gene targets that could be used
as potential serum biomarkers.108 A total of 33 miRNAs, including 25 upregulated and eight
downregulated miRNAs in both serum and retinoblastoma tumours were identified. Real-
time PCR of an additional 20 retinoblastoma serum samples validated a total of five
miRNAs, three upregulated (miR-17, miR-18a and miR-20a) and two downregulated
(miR-19b, and miR-92a-1). Although the first study of its kind, these results postulate
exciting candidate miRNAs for development into serum biomarkers, and will pave the way
for other studies to help define predictive biomarkers for retinoblastoma patients.

IMPACT OF THE RETINOBLASTOMA GENOMIC LANDSCAPE ON CLINICAL
PRACTICE

As evidenced by the number of studies presented, the genomic landscape of retinoblastoma
is becoming increasingly complex. However, most of the studies reviewed here are based on
a small number of clinical samples, and therefore the data needs to be functionally validated
in cell-based and animal models, as well as clinically validated in larger patient cohorts
before being included in standard of care recommendations. That said, ophthalmologists
should be aware of other genomic changes beyond RB1 mutation with the distinct potential
to affect therapeutic decisions and long-term surveillance and care:

1. MYCN status

Retinoblastoma tumours can now be subdivided into two molecular classes: RB1~/~, and
RB1*/*, MYCNA. This latter subset of retinoblastoma tumours has a wild-type, functional
RB1 gene, but high level amplification of the MYCN gene present only in the tumour cells.
This means that these children have no special risk for retinoblastoma or second cancers
later in life, and may not need life-long surveillance. These tumours are highly aggressive,
are histologically different, and arise earlier with a very young age of presentation compared
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to RB1 ™/~ retinoblastomas. Because these tumours are highly aggressive, enucleation is
likely the optimal therapy. If a MYCN retinoblastoma is confirmed molecularly, any
disseminated disease might be treatable with future therapies that target MYCN. Currently,
this changes genetic counseling for survivors with this type of tumour, as they carry no
additional risk for tumours in the other eye, second cancers, and no risk of affecting the next
generation.

2. Candidate genes as surveillance markers and therapeutic targets

Gene-specific copy number gains or losses, and/or changes in gene expression, such as
KIF14, MDM4, MYCN, DEK, E2F3, CDH11, miR-17~92, and SYK have demonstrated
importance in retinoblastomas via multiple lines of evidence (Table 1). These genes have
demonstrated functional importance in cell lines, animal models and patient tumours, and
may be associated with progression and/or poor outcomes. These genes could be developed
into markers that would facilitate surveillance of tumour recurrence or metastasis (as shown
for RB1199, KIF14 and E2F315), as well as being the target of new therapies to treat
recurring retinoblastomas.

CONCLUSIONS

The study of retinoblastoma has revealed guiding principles of the molecular initiation and
progression of cancer. Similarly, ongoing studies via higher resolution genomic technologies
will continue to facilitate our exploration into the molecular intricacies of this model cancer,
with the hopes of refining causative molecular pathogenic pathways and offering
opportunities for therapy. Next-generation sequencing (NGS) in particular holds the promise
of read depth that could possibly identify mechanisms of convergent evolution of gene
mutations and gene copy number changes. This type of technology has the potential to
reveal the identity of initiating vs. progression changes, facilitating diagnosis and therapeutic
management. While NGS is being used as a tool for mutation discovery, its current
sensitivity and accuracy for identifying RB1 mutations is still not published, let alone
clinically validated. Although NGS technologies promise to be more affordable for clinical
mutation testing for retinoblastoma, detection of all kinds of mutation has yet to be
demonstrated.

Although RB1 loss is the causative genetic alteration underlying most retinoblastoma
development, it is becoming increasingly evident that other genetic, genomic, epigenetic and
gene expression events are also necessary for tumour development (Figure 1).
Complementing and complicating these studies, the discovery of MYCNA RB1*/*
retinoblastoma opens new avenues for comparing the molecular progression of this subtype
with “classic” retinoblastoma.

Integrating the results from different approaches will contribute to a greater understanding
of this cancer. Especially, pan-"omics” approaches incorporating whole-genome sequencing,
epigenetics, expression, proteomics and even metabolomics on large numbers of tumours
will help define crucial molecular events in retinoblastoma (Figure 2). However, some of
these technologies have already begun to open the door to a wealth of genetic, expression,
and epigenetic data, revealing an inherent molecular complexity for this disease. Careful
scrutiny, compilation of multiple data sources, functional validation in animal and cell
culture models, and most important, clinical studies, promise to define clinically relevant
associations that can impact care. Importantly, it is noteworthy that most of the studies
reviewed here focus on small numbers of tumours with very little associated clinical
information. The study of larger cohorts of patient tumours and their clinical data is crucial.
Given the wide distribution of retinoblastoma cases worldwide, multi-centre, international
collaboration is a necessity to enable robust, powerful studies.
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The concept of precision medicine has been applied to clinical retinoblastoma management
for more than 20 years. The discovery of the genetic nature of retinoblastoma decades ago
led to the development of genetic testing of patients and families at risk, ushering in the
concept of individualized medicine to guide patient management, treatments and outcomes,
now often across generations of a family. In many respects, the framework is already in
place to evolve such individualized testing to incorporate new genetic and genomic
technologies into the standard of care, providing refined information on disease severity,
molecular pathophysiology, and prognosis for responses to treatments. Only then will we
gain a clear insight into the important and targetable tumorigenic pathways of
retinoblastoma, many of which will be applicable to other malignhancies, as has already been
repeatedly demonstrated. Most importantly, individualized testing and analysis will also
provide prospective validation of the emerging candidates enabling therapeutic strategies
with improved outcomes for retinoblastoma patients.
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Figure 1.
Towards a broadened genomic landscape of retinoblastoma. miRNAs, microRNAS; SNPs,

single nucleotide polymorphisms. All patients consented to have their clinical images used
for education and research.
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Figure2.
The future of retinoblastoma management in a post-genomic era.
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