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Abstract

Background—A preference for sweet tastes has been repeatedly shown to be associated with

alcohol preference in both animals and humans. In this study, we tested the extent to which recent

drinking is related to blood oxygen dependent (BOLD) activation from an intensely sweet solution

in orbitofrontal areas known to respond to primary rewards.

Methods—Sixteen right-handed, non-treatment seeking, healthy volunteers (mean age 26 years;

75% male) were recruited from the community. All underwent a taste test using a range of sucrose

concentrations, as well as functional magnetic resonance imaging (fMRI) during pseudorandom,

event-driven stimulation with water and a 0.83M concentration of sucrose in water.

Results—[Sucrose > Water] provoked significant BOLD activation in primary gustatory cortex

and amygdala, as well as in the right ventral striatum and in bilateral orbitofrontal cortex. Drinks/

drinking day correlated significantly with the activation as extracted from the left orbital area (r =

0.52, p = 0.04 after correcting for a bilateral comparison). Using stepwise multiple regression, the

addition of rated sucrose-liking accounted for significantly more variance in drinks/drinking day

than did left orbital activation alone (multiple R= 0.79, p = 0.002).

Conclusions—Both the orbitofrontal response to an intensely sweet taste, as well as rated liking

of that taste, accounted for significant variance in drinking behavior. The brain response to sweet

tastes may be an important phenotype of alcoholism risk.
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Introduction

Several human studies have reported a relationship between the preference for highly sweet

tastes and alcohol use disorders (Kampov-Polevoy et al., 1997; Kampov-Polevoy et al.,
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1998; Kampov-Polevoy et al., 2001; Krahn et al., 2006; but for negative findings also see;

Bogucka-Bonikowska et al., 2001; Tremblay et al., 2009). These human data are still more

compelling when considering the extensive animal literature showing that sweet

consumption is related to alcohol intake (Kampov-Polevoy et al., 1990; Sinclair et al., 1992;

Gosnell and Krahn, 1992; Belknap et al., 1993; Overstreet et al., 1993; Dess et al., 1998).

Similarly, others have shown a relationship between sweet preference and alcohol seeking

behaviors (Bell et al., 1994; Woods et al., 2003; Eiler et al., 2005).

Equally compelling is the indication of genetic underpinnings to these findings. Thus, an

elevated sweet preference is characteristic of lines of alcohol-preferring rodents, in both

alcohol-exposed and alcohol-naïve animals (e.g., Sinclair et al., 1992; Belknap et al., 1993;

Kampov-Polevoy et al., 1996; Woods et al., 2003; Badia-Elder et al., 2003; Eiler et al.,

2005; Oberlin et al., 2011). The relationship also applies conversely. Thus, as compared to

animals bred for low-saccharin preference, animals bred for high-saccharin preference drink

more alcohol and have a preference for other drugs (see Carroll et al., 2008 for review).

Although all humans find some degree of sweet taste rewarding, genetically mediated

individual differences remain. In 324 twin pairs, Keskitalo, et al. (2007b) found that 49–53%

of variance in sweet liking and sweet consumption was accounted for by genetic factors;

pleasantness ratings for high intensity sucrose solutions show the strongest genetic influence

(Keskitalo et al., 2007a). In that regard, several human studies have also reported an

association between a family history of alcoholism and sweet-liking in both those with and

without alcohol use disorders (Kampov-Polevoy et al., 2001; Kampov-Polevoy et al., 2003;

Wronski et al., 2007; Lange et al., 2010). Some studies have not, however, found this

relationship between familial alcoholism and sweet preference (Scinska et al., 2001;

Kranzler et al., 2001; Tremblay et al., 2009).

Despite the many reports of subjective sweet preference in humans, we know of no studies

that relate drinking behavior to the brain reward circuit response to sweet tastes. What is

known about the brain mechanisms of sweet taste responses makes it clear that this taste

modality shares common neural pathways with the rewarding properties of alcohol and other

drugs of abuse (e.g., Pecina and Berridge, 2005; Wassum et al., 2009; Bassareo and Di

Chiara, 1999a; Bassareo and Di Chiara, 1999b; Rada et al., 2005).

In this preliminary study, we therefore sought to determine if recent drinking in healthy

human subjects is related to both the brain response to an intensely sweet stimulus (a 0.83M

solution that is more than 2.5 times the sucrose concentration of Coca Cola Classic®) in

orbitofrontal regions that encode primary rewards (Kringelbach and Rolls, 2004), as well as

to subjectively rated liking of the sweet solution used to provoke that cortical response.

Methods

Subjects

Sixteen right-handed healthy volunteers (Table 1) with a range of recent drinking were

recruited from the community. All denied any history of current neurological problems of

cerebral origin, as well as any psychiatric symptoms consistent with a DSM-IV Axis I
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diagnosis (other than that related to an alcohol use disorder). All were non-smokers,

although four were former smokers (range of 3 – 15 years abstinence) whose drinks/drinking

day (mean= 2.9, range 1.7 – 3.2) and drinks/week (mean = 7.3, range 1.9 – 20.9) was similar

to the same parameters in the never-smokers (drinks/drinking day = 2.5, range = 1.4 – 4.4;

drinks/week= 6.8, range = 0.9 – 12.8). None of the subjects expressed any interest in

treatment for their alcohol use, and none reported any disorders of smell or taste. All passed

a brief screen of olfactory sensory ability (Smell Identification Test; Doty, 1995). Subjects

consented to a urine screen for common drugs of abuse, and were excluded for results

indicating the presence of cocaine, amphetamine, methamphetamine, methadone, opiates,

PCP, barbiturates, or benzodiazepines (for which none tested positive). Given its long half-

life and high comorbid use with alcohol, however, we did not exclude subjects who tested

positive for marijuana use (one of the 16 subjects did test positive for marijuana, but without

obvious evidence of acute intoxication).

Procedure

Subjects arrived at the imaging facility approximately two hours prior to their scheduled

scan, when height and weight were recorded, and the urine screen for illicit drug use was

performed. All participants were asked to eat their normal breakfast one hour prior to

arriving, and during a standardized range between 7:30 am and 8:30 am. Subjects were

asked to refrain from eating or drinking after breakfast. Imaging began between 9:30 am and

10:30 am.

Taste Test—Prior to imaging, all subjects had a brief taste test to determine perceived

liking and perceived intensity of a range of sweetened water solutions. To replicate the

concentrations most used in similar studies (e.g., Kampov-Polevoy et al., 1997; Kampov-

Polevoy et al., 2003; Tremblay et al., 2009), a range of molar (M) concentrations (0.05M,

0.10M, 0.21M, 0.42M, 0.83M) were prepared by dissolving table sugar in 50 ml of

deionized water. The taste test was administered in three blocks, with each of the five

solutions presented once per block in a randomized fashion (total of three tastings per

solution)1. Subjects sampled 10 ml of each solution, “swished” it for 5 seconds in the

mouth, and then spit the solution into a waste cup without swallowing. Using a 100 mm

visual analog scale (VAS), subjects then rated the solution’s perceived intensity of

sweetness (“intensity”), anchored with the labels “Barely Detectable” (0) to “Strongest

Imaginable” (100), as well as their subjective “liking,” anchored by the labels “Disliked

Very Much” (0) and “Liked Very Much” (100). After rating each sample, subjects used 10

ml of deionized water to rinse and spit to cleanse their palate before tasting and rating the

next sample.

Gustatory stimulus paradigm—All gustatory stimuli were delivered using a computer

controlled, five-channel gustometer modeled closely after a design proposed by Marciani et

al. (2006), in which gear pumps rapidly infused the water and sucrose solution through a

spray nozzle that efficiently covered the tongue with small amounts of solution. During

imaging, the highest concentration of sucrose (0.83M) was delivered through the spray

1One subject completed only two blocks given time constraints.
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nozzle, as was a control stimulus of water with a tasteless thickening agent (ThickenUp

Clear®, Nestlē Health Sciences, Veyvey, Switzerland) to approximate the viscosity of the

sucrose solution. Each stimulus presentation trial (either sucrose or water) comprised 1.5 ml

of liquid sprayed onto a subject’s tongue, followed by 0.5 ml of water (which in the case of

sucrose trials served to purge the nozzle volume of residual sucrose solution).

Subjects were alerted to the impending delivery of a spray by text displayed on a screen

through the rear of the scanner bore, and asked to hold the solution in their mouth until

prompted to swallow by a visual command (variable 1–3 seconds after the spray; Figure 1).

In each of the four functional imaging scans, the sucrose solution was presented 8 times and

the water control presented 16 times in a pseudorandom mixed event design in which two

sucrose events were never presented consecutively. This resulted in a total of 32 sucrose

events and 64 water events. However, to maximize the taste contrast between the sucrose

and the control, only water controls that followed an immediately preceding water event

were used when analyzing the [Sucrose > water] contrast of interest. Thus, the resulting

contrast of interest was comprised of 32 water events matched to 32 sucrose trials. Four

distinct sequences of stimulus events were generated with an11 – 17 sec inter-trial (onset-to-

onset) interval, each run once per MRI session in a randomized order.

Intra-MRI Assessment—Following each functional scan, and while remaining in the

scanner, subjects rated their hunger and thirst, as well as their craving for both sweet and

salty tastes. After each scan, subjects were also asked to rate their liking of the 0.83M

sucrose solution as administered during the immediately preceding BOLD scan, the

perceived sweet intensity of that solution, and their desire to increase or decrease its level

sweetness. All questions were asked using a 100 mm horizontally oriented VASs.

Image Acquisition—Subjects were imaged on a Siemens (Siemens Healthcare, Erlangen,

Germany) 3T Magnetom Trio-Tim scanner using a 12-channel head coil array. Four

consecutive 5:53 min long echo-planar imaging (EPI) scans evaluated responses to the

gustatory stimuli (165 BOLD contrast-sensitive volumes, gradient echo, repetition time

2,100 ms, echo time 29 ms, flip angle 77°, 37 contiguous 3 mm thick axial slices,

acquisition matrix 88×88, 2.5×2.5×3.0 mm3 voxels, GRAPPA acceleration factor 2, 3D

prospective acquisition correction algorithm). The total duration of BOLD imaging was 32–

37 min, including post-scan water spray delivery time and subjective ratings during imaging.

In addition, high resolution (1×1×1.2 mm3 voxels) anatomical images acquired with an MP-

RAGE sequence were obtained for each subject to facilitate transformation to a common

stereotactic system.

Image Analysis—SPM8 (Wellcome Department of Imaging Neuroscience, University

College, London, UK) was utilized for slice-timing correction, rigid-body realignment of

each subject’s BOLD volumes, and co-registration of the BOLD volumes to each subject’s

own high resolution anatomical image. SPM8’s tissue segmentation routine of the

MPRAGE images was used to derive normalization parameters that were then applied to

nonlinearly transform the BOLD volumes into Montreal Neurological Institute (MNI) space.
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BOLD fMRI data are influenced by artifact sources that are typically subject-specific and

include effects of head motion, eye movements, respiration, and pulsatile blood flow. A

variety of denoising algorithms have been developed to improve signal detection and allow

artifact-corrupted data retention. While we largely accounted for the effects of gross head

motion by using prospective motion correction during acquisition and SPM’s realignment

algorithm, the presence of more localized jaw and related motion during swallowing was

best addressed by an independent component analysis (ICA) technique as implemented by

McKeown et al, (1998). Specifically, we performed probabilistic ICA (pICA) from

FMRIB’s Software Library (FSL, MELODIC tool) on each subject’s motion-corrected

BOLD volumes. Each session/scan data were filtered to remove low frequency drifts

(<1/128 Hz) and spatially smoothed with a 5 mm full width at half maximum (FWHM)

Gaussian kernel. The imaging artifact components for each scan/session were removed

using MELODIC’s fsl_regfilt command-line program. These filtered, denoised, and

normalized BOLD volumes with isotropic (2 mm/side) voxels were presented to the GLM-

based analysis in SPM8. Within-subject, fixed-effects of the BOLD response to sucrose and

water trials (as specified above) were then estimated using SPM’s canonical hemodynamic

response function, with an autoregressive AR(1) model accounting for serial correlations.

To limit the number of comparisons, a group random effects analysis of the [Sucrose >

Water] contrast was constrained to a 472,880 mm3 (59110 voxels, 1741.9 resels) volume

that comprised cortical gustatory (frontal, parietal, and insular regions), as well as cortical

(orbitofrontal, insular) and subcortical (striatal, amygdala) reward regions (see online

supplementary table for other responses falling outside this mask). We used small volume

corrections to test for responses in: (a) the gustatory regions of “area G” (insula/parietal

junction) and the peri-Rolandic parietal areas identified by Ogawa et al. (2005), (b) the gray

matter volumes of the amygdala as identified by the MarsBar utility, (c) posterior

orbitofrontal areas identified by coordinates from the meta-analysis of Kringelbach & Rolls

(2004) as responding to primary reinforcers, and (d) the anatomic region of the ventral

striatum as described previously (Kareken et al., 2010).

Results

Pre-Imaging Taste Ratings

Sweet Intensity—As analyzed in a Concentration(5) × Block(3) mixed linear model, there

was a significant effect for Concentration on perceived sweet intensity (p < 0.001), but no

main effect for Block (p = 0.14) or Block × Concentration interaction (p = 0.25). As is clear

from Figure 2, sweet intensity ratings increased with higher sucrose concentrations, with the

0.83M solution rated as being the most intense when compared to the remaining

concentrations (p≤ 0.001).

Sweet Liking—Analyzed in a Concentration(5) × Block(3) mixed linear model, there was

a significant effect of Concentration on sucrose liking (p < 0.001), as well as an effect of

Block (p = 0.009). The liking gradient generally mirrored that of perceived sweet intensity

(Figure 2), with perceived liking for the 0.83M concentration being significantly different

than all other concentrations (p ≤ 0.014), except for the adjacent 0.42M solution (p= 0.51).
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There was no Block × Concentration interaction (p = 0.553). The liking gradient generally

mirrored perceived sweet intensity (Figure 2), although as a whole, the group’s perceived

liking for the 0.83M concentration was insignificantly different than liking for the 0.42M

concentration (p= 0.51).

Applying the classification scheme proposed by Kampov-Polevoy and colleagues (1998), 8

subjects could be labeled as “sweet likers,” as their liking ratings peaked at the 0.83M

solution. Six subjects had liking ratings that peaked at the 0.42M solution, while the

remaining two subjects had liking ratings that peaked at the 0.10M solution.

Intra-MRI Subjective Ratings

Over the course of imaging, perceived intensity of the 0.83M sucrose solution (average

across all scans = 62.0, SD= 8.8) was lower than the average perceived intensity as rated

during the pre-imaging taste test (77.0, SD= 16.7, p = 0.002), suggestive of some habituation

by the time of imaging. Average perceived liking during fMRI (59.6, SD= 18.5) was,

however, insignificantly different from liking as rated during the pre-imaging taste test

(64.5, SD= 24.1; paired t-test, p = 0.23).

Within subject mixed linear models tested for any effects of Time on the subjects’ four

ratings after each of the four BOLD scans (sucrose intensity and liking, hunger, thirst, sweet

craving, salt craving, and desire to change the intensity of the sucrose solution; Table 2). Of

these dependent measures, the only statistically significant main effects for Time were those

that reflected increasing hunger (p = 0.007) and desire to change (weaken; p = 0.025) the

sucrose concentration. In the case of Hunger, the main effect of Time was due to a

significant difference between ratings after scans 1 and 2 (p = 0.008) only. In the case of the

desire to change sucrose intensity, pairwise contrasts showed that scan 1 differed from scans

3 and 4 (ps = 0.021 and 0.014, respectively). Although the effect of Time was not

statistically significant for Liking (p = 0.102), post hoc paired comparisons did suggest that,

as compared to scan 1’s mean rating (68.4, SE= 4.4), sweet solution liking declined slightly

by the time of scans 3 (52.4, SE= 6.5; p = 0.022) and 4 (52.3, SE= 7.5; p = 0.042),

suggesting some possible habituation.

BOLD Responses

The [Sucrose > Water] contrast showed significant BOLD responses in gustatory cortex

(area G, peri-Rolandic operculum; Figure 3a; Table 2). Foci in the peri-Rolandic operculum

were significant after correcting for family-wise error (FWE) based on spherical (8 mm

radius) regions surrounding left ([−36, −6, 12], pFWE< 0.001) and right area G, as well as

left ([−62, −18, 22], pFWE= 0.001) and right ([64, −16, 22], pFWE= 0.048;[58, −16, 18],

pFWE= 0.038) Rolandic areas, and as identified by Ogawa, et al. (2005) in their study of

cortical gustatory regions.

In limbic and reward areas, there was [Sucrose > Water] activation in the dorsal anterior

cingulate, bilateral ventral insula, the right ventral striatum (pFWE = 0.006 when corrected

for an anatomically defined ventral striatal ROI; see Kareken et al., 2010), and the bilateral

orbitofrontal cortex, which was significant when correcting for volumes (8 mm radius
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spheres) centered on orbital coordinates identified by Kringelbach & Rolls (2004) as

responding to primary reinforcers (left: [−22, 30, −22], pFWE= 0.013; right:[22, 26, −18],

pFWE= 0.020; Figure 3b,c, blue circles). Activation was present in the bilateral dorsal

amygdala, which was also significant when accounting for the gray matter volume of the

amygdalae (left: [−24, −6, −14], pFWE= 0.011; right: [22, −2, −14], pFWE= 0.004; Figure

3a,c, blue box).

Given the previously identified role of posterior orbital cortex in coding for primary

reinforcers, we extracted the [Sucrose > Water] orbital activation clusters at a voxel-wise

threshold of p < 0.01 (uncorrected) using the MarsBar utility. We then determined if these

orbital clusters correlated with drinking, defined as either drinks/drinking day or drinks/

week. Right orbital activation did not correlate with either drinking measure, and left orbital

activation did not correlate with drinks/week. Left orbital activation did, however, correlate

significantly with drinks/drinking day (r = 0.52, p= 0.02, p= 0.04 when correcting for the

bilateral comparison; Figure 4).

Liking of the sucrose solution (VAS rating at the pre-imaging taste test) was marginally

correlated with drinks/drinking day (r = 0.40, p = 0.06), but not with [Sucrose > Water]

activation in the responding left orbital cluster (r = −0.32, p = 0.11). When entered into a

stepwise multiple regression, however, rated liking of the sucrose solution incrementally

accounted for significantly more variance in drinks/drinking day (R2 change= 0.36; p <

0.004), above and beyond that accounted for by the orbital activation alone (multiple R=

0.79, p = 0.002). Thus, the combination of both sweet taste-induced orbital activation and

liking of the sweet solution accounted for significant variance in drinks/drinking day.

The recent drinking measures did not correlate with extracted activation from either the right

ventral striatum or from either the left or right ventral insula.

Discussion

In this study, intraoral stimulation with an intensely sweet stimulus (0.83M sucrose solution)

strongly activated areas known to be involved in human and primate gustation, such as the

insular/opercular junction representing “area G” and peri-Rolandic opercular cortex (Ogawa

et al., 2005). The bilateral dorsal amygdala was also activated, and likely reflects the

solution’s marked intensity (Small et al., 2003; Anderson et al., 2003). These findings

provide confidence that the stimulation paradigm was effective in eliciting human gustatory

system activity.

More directly relevant for alcoholism, the sucrose solution (compared to the water baseline)

activated regions of the reward circuit, including the bilateral ventral insula (which also

receives indirect gustatory projections; see Ogawa, 1994), the right ventral striatum, and the

bilateral orbitofrontal cortex, where the peaks corresponded to orbital areas that are

principally responsive to primary (e.g., ingested) reinforcers (Kringelbach & Rolls, 2004).

Moreover, the left orbitofrontal response was significantly and positively correlated with

drinks/drinking day. Thus, the stronger the response in this region, the greater the density of

subjects’ reported daily drinking. In addition to this correlation, subjective liking of the
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intensely sweet stimulus accounted for additional variance in drinks/drinking day, above and

beyond that accounted for by the left orbital response itself. Thus, both the reward system’s

response to a highly sweet taste, as well as subjective liking of the same taste, helped to

significantly account for self-reported drinking.

The findings here extend a sizable body of literature that shows a relationship between sweet

liking and a preference for both alcohol and other drugs (see Carroll et al., 2008, for review).

The question then arises as to why there might be an association between sweet liking and

alcohol use. Sweet tastes are intrinsic, primary reinforcers that can provoke responses within

the reward system. And as with drugs of abuse, sweet tastes and sugar consumption can

provoke ventral striatal dopamine transmission (e.g., Bassareo et al., 2003; Rada et al.,

2005), with dopaminergic responses to gustatory sucrose stimulation (isolated from their

metabolic value by sham feeding) being highly concentration dependent (Hajnal et al.,

2004). The capacity of both palatable food (sucrose) and alcohol to provoke dopaminergic

responses appears partly mediated by μ-opioid mechanisms (Tanda and Di Chiara, 1998).

Sucrose palatability is also linked to endogenous opioid transmission in the nucleus

accumbens (Pecina & Berridge, 2005; Wassum et al., 2009), consistent with the finding that

the opioid antagonist naltrexone (used in the treatment of alcoholism) reduces sugar’s

rewarding properties (Langleben et al., 2012).

One theoretical framework in which to understand the findings of this investigation is that of

a “reward deficiency” syndrome that, in its broadest form, refers to an abnormal basal state

of tonically low endogenous reward (Blum et al., 1995). As a result, a greater degree of

stimulation (as from drugs) is then needed to elicit a normal level of reinforcement arousal.

However, a preference for an intensely sweet taste could be also consistent with an intrinsic

need for a greater than average degree of hedonic stimulation. In the current context, our

employed 0.83M sucrose solution compares to the much lower 0.32M sucrose solution of

Coca-Cola Classic®, which is already considered by many to be a highly sweet beverage.

With that said, not all results from human studies are consistent with the reward deficiency

hypothesis of alcoholism itself, or of the genetic predisposition to alcoholism in those yet to

manifest the disease. Thus, using the “normal” reward of small amounts of money, some

studies do report less ventral striatal activation to monetary reward receipt in alcoholic

patients than in controls (Wrase et al., 2007; Beck et al., 2009), although Bjork et al. (2008a)

did not find such a group difference. In groups at risk for alcoholism, Andrews et al. (2011)

found lower ventral striatal responses to the anticipation of monetary reward in those with a

family history of alcoholism, while Bjork, et al. (2008b) reported no difference between the

adolescent children of alcoholics and adolescent controls.

In the end, our study does not unambiguously address the idea of a hypo-responsiveness to

normal reward, as we did not, as described above, employ a “normally” sweet concentration

(the response to which should correlate inversely with recent drinking, assuming a reward

deficiency hypothesis). On the other hand, the variable outcome in studies of monetary

reward may stem from inter-individual differences in the subjective scaling of the money’s

value, as the same amount may imply different values to those of different cultural

backgrounds or financial means. On a broader scale, Odum & Baumann (2007) showed that
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food was more steeply discounted than money in a delay discounting paradigm, suggesting a

potentially different valuation of ingestible primary rewards as compared to secondary

reinforcers. Thus, the more natural, primary reinforcer of a sweet taste may be an alternative

stimulus with which to pursue the reward deficiency hypothesis (or even of reward

sensitivity).

There are some limitations to this study. First, the sample appears to be one that is largely

“sweet liking,” with only two subjects preferring the weakest solutions. The majority of the

subjects preferred either the strongest (0.83M) or the next strongest (0.42M) sucrose

solutions, and a sample with a larger range of sweet preferences might produce different

results. The sample was also not a particularly heavy-drinking group (average drinks/

drinking day= 2.8), and the nature of the findings might not extend to significantly more

hazardous drinkers. Similarly, and although the results are significant, the sample size is

limited in size and may not be entirely representative of the larger population. Finally,

although the orbitofrontal response to sucrose stimulation was bilateral, the correlation

between the orbital response and recent drinking was apparent only on the left.

In summary, we believe this to be the first report of a human association between the brain

response to an intensely sweet stimulus and drinking behavior. Despite the sample size

limitation, the outcomes reported here extend the association between human sweet-liking

and alcohol preference. We thus believe that these data constitute preliminary and promising

evidence that the orbitofrontal response to an intensely sweet taste may be a phenotypic

marker of alcohol preference in humans, and potentially of alcohol use disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Diagram of events (not to temporal scale), with text prompts in quotation marks indicating

visual cues shown to subjects. A 3 sec visually displayed “Ready” text prompt alerted

subjects to the impending 1 sec liquid spray, which was also accompanied by a text prompt

(“Spray”). A subsequent 1 sec water purge followed immediately and contiguously to purge

the volume of the spray nozzle. A variable 1–3 sec blank interval ensued (hatched area),

followed by a 1 sec “Swallow” prompt. A variable 4–8 sec interval (during which a fixation

cross appeared) separated the trials. Total trial length was 11 – 17 sec.
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Figure 2.
Perceived intensity and liking of the sweet solutions as a function of sucrose molar

concentration. Error bars = standard errors.
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Figure 3.
BOLD activation from the [Sucrose > Water] contrast. (1) Coronal slice (y=−4 mm)

showing activation in the bilateral insula/“area G” (green circles), dorsal amygdala (blue

box), and peri-Rolandic cortex (green ovals, in this slice corresponding to the prefrontal

gyrus). (b) Bilateral orbitofrontal (y = 30 mm) activation (blue circles). (c) Axial view (z=

−20 mm) of activation in the orbital and amygdala areas. Display, p < 0.005, k > 10. Color

bar indicates t-statistic.
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Figure 4.
(Top) Brain image shows responding cluster, as extracted from each subject, at a voxel-wise

threshold of p < 0.01, uncorrected. (Bottom) Scatter plot of the correlation between [Sucrose

> Water] BOLD contrast in the extracted left orbital area (as depicted in top image) and

drinks/drinking day from the Timeline Followback interview (r = 0.52, p= 0.02; p = 0.04

corrected for the bilateral comparison).
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Table 1

Subject characteristics

Mean SD Range %

Age 26.1 4.4 21 – 35

Education (yrs) 15.5 1.8 12 – 20

% Male 75.0

% of European ancestry 87.5

% with any FHA 43.8

% with a 1st degree relative with alcoholism 12.5

BMI 25.9 3.2 20.7 – 31.5

AUDIT 6.6 3.8 3 – 19

 % with elevated AUDIT* 50.0

Average drinks/drinking day 2.8 1.0 1.4 – 4.4

 % exceeding average 4 per occasion 18.8

Average drinks/week 7.1 4.9 0.9 – 20.1

 % exceeding average weekly limits† 18.8

Average heavy drinking days/week 0.3 0.4 0 – 1.5

BMI= Body Mass Index; AUDIT= Alcohol Use Disorder Identification Test; Drinking data from 90-day Timeline Follow-back Interview;

*
Elevated AUDIT cutoffs for men= 6, women= 4 (Johnson, et al 2013);

†
Men= 14/week, women= 7/week.
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