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Abstract

Aldehyde dehydrogenases (ALDH) catalyze the irreversible oxidation of aldehydes to their 

corresponding carboxylic acid. Alterations in ALDH1A1 activity are associated with such diverse 

diseases as cancer, Parkinson’s disease, obesity, and cataracts. Inhibitors of ALDH1A1 could aid 

in illuminating the role of this enzyme in disease processes. However, there are no commercially 

available selective inhibitors for ALDH1A1. Here we characterize two distinct chemical classes of 

inhibitors that are selective for human ALDH1A1 compared to eight other ALDH isoenzymes. 

The prototypical members of each structural class, CM026 and CM037, exhibit sub-micromolar 

inhibition constants, but have different mechanisms of inhibition. The crystal structures of these 

compounds bound to ALDH1A1 demonstrate that they bind within the aldehyde binding pocket of 

ALDH1A1 and exploit the presence of a unique Glycine residue to achieve their selectivity. These 

two novel and selective ALDH1A1 inhibitors may serve as chemical tools to better understand the 

contributions of ALDH1A1 to normal biology and to disease states.

INTRODUCTION

Aldehydes are highly reactive compounds that can lead to cellular toxicity through their 

ability to form adducts with a variety of cellular nucleophiles found in proteins, nucleic 

acids, as well as small molecule metabolites. In humans, aldehyde detoxication occurs via 

three main enzyme systems: aldehyde oxidases, aldo-keto reductases, and aldehyde 

dehydrogenases. The human genome contains at least 19 functional genes for aldehyde 

dehydrogenases (ALDH) that catalyze the NAD(P)+-dependent oxidation of endogenous and 

exogenous aldehydes to their corresponding carboxylic acids or CoA esters. ALDHs differ 

in their tissue distribution, subcellular location, structure, as well as preferred substrates and 

are critical enzymes that contribute to numerous biological functions as well as to the 

cellular defense against aldehyde toxicity1. They are involved in the synthesis of critical 

carboxylic acids including retinoic acid, a key regulator of cell growth and development2, 

and the neurotransmitter, γ-aminobutyric acid3. A major role of the ALDH superfamily is 

protection from aldehyde-induced cytotoxicity1. Oxidative stress often results in lipid 

peroxidation, generating over 200 aldehydes, including 4-hydroxyhexenal, 4-

hydroxynonenal, and malondialdehyde4. These endogenously generated compounds can 

carbonylate proteins and have been associated with neurodegenerative disorders5 and 
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aging6. A variety of drugs, including ethanol and the anticancer drug cyclophosphamide, are 

metabolized via ALDH-dependent pathways7. In the environment, although some aldehydes 

have non-anthropogenic sources, motor vehicle exhaust, industrial applications, cigarette 

smoke and other human activities are the primary sources for exogenous aldehydes, 

including formaldehyde, acetaldehyde, and acrolein8.

As a consequence of their critical contributions to aldehyde metabolism, loss of function 

mutations in ALDH genes are linked to a number of diseases. ALDH2 is the primary 

enzyme involved in the oxidation of acetaldehyde during ethanol metabolism9 and a single 

nucleotide polymorphism (SNP) results in an enzymatically crippled protein (ALDH2*2), in 

which acetaldehyde, derived from ethanol oxidation, accumulates and induces alcohol 

toxicity10,11. Alterations in ALDH1A1 and ALDH2 expression or activity may play a role in 

Parkinson’s Disease through the metabolism of the neurotransmitter dopamine, leading to 

increased levels of neurotoxic aldehydes, including 3,4-dihydroxyphenylacetaldehyde12. 

Modulation of ALDH2’s role in dopamine metabolism has been shown to affect cocaine 

seeking behavior13. Mutations in ALDH3A2 lead to Sjögren-Larsson Syndrome, which is 

characterized by mental retardation, icthyosis, and spastic tetraplegia due to impaired 

metabolic clearance of sphingosine and plasmalogen metabolites14,15. Mutations in other 

ALDH genes have been linked to pyridoxine-dependent epilepsy (ALDH7A1)16, type II 

hyperprolinemia resulting in mental retardation and seizures (ALDH4A1 and 

ALDH18A1)17,18, and may possibly contribute to paranoid schizophrenia (ALDH3B1)19. A 

number of ALDHs have been associated with cancer and/or cancer stem cells, including 

ALDH1A1, ALDH1A2, ALDH1A3, ALDH1L1, ALDH2, ALDH3A1, ALDH4A1, and 

ALDH7A17,20. Both ALDH1A1 and ALDH3A1 detoxify some oxazaphosphorine 

anticancer drugs and decrease the drug’s effectiveness21,22. ALDH4A1 is p53- inducible and 

may minimize cellular damage due to oxidative stress23. ALDH1A2 is a possible tumor 

suppressor gene in prostate cancer, likely via the enzyme’s role in retinoid metabolism24. 

The ALDH2*2 mutation has also been associated with a variety of cancers, possibly due to 

increased aldehyde-induced DNA damage25,26. Up-regulation of ALDH activity is also 

common in both normal and cancer stem cells20. Therefore, ALDH is considered a stem cell 

biomarker and the ALDEFLUOR assay (Stemcell Technologies, Vancouver, Canada) uses 

this ALDH activity as a means to identify cancer stem cells27.

ALDH1A1 (retinaldehyde dehydrogenase 1, RALDH1) is a highly conserved, cytosolic 

homo-tetramer (~55 kDa monomers) that is widely expressed and found in numerous 

tissues, including brain, liver, kidneys, adipose, eye lens and retina. A key role of 

ALDH1A1 is the oxidation of retinaldehyde to retinoic acid (RA), forming transcriptional 

regulators critical for normal cell growth and differentiation28. Both the substrate 

(retinaldehyde) and product (RA) are important for normal biological processes, including 

vision, cellular differentiation, and immune function7. ALDH1A1 shares greater than 70% 

sequence identity to both ALDH1A2 and ALDH1A3 (RALDH2 and RALDH3, respectfully) 

and both also convert retinaldehyde to RA, but their roles may be more confined to 

embryogenesis and stem cell development29,30. ALDH1A1 knockout mice are viable, but 

ALDH1A2 and ALDH1A3 knockout mice are lethal early in development or shortly after 

birth30. In addition to its similarity with other retinaldehyde dehydrogenases, ALDH1A1 

also shares nearly 70% sequence identity to the mitochondrial ALDH2 and ALDH1B1 
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enzymes, but shares less than 50% sequence identity with members of other ALDH families, 

including ALDH3A1, ALDH4A1 and ALDH5A1.

The structure of mammalian ALDHs are similar, functioning as homomultimers, and each 

monomer contains three structural domains: a catalytic domain, a cofactor binding domain, 

and an oligomerization domain31. The global structural similarities support identical active 

site residues whose contributions to aldehyde oxidation are well established. In addition to 

aldehyde oxidation activity, some ALDHs, including ALDH1A1, also possess an NAD+-

independent esterase activity32 and this esterase activity uses the same active site residues as 

does the dehydrogenase activity33. Despite similarities in structure and function, as well as 

some overlap in substrate preferences, the isoenzymes of the ALDH family of proteins have 

evolved different aldehyde binding sites due to substitutions of the residues lining their 

respective substrate binding tunnels31,34. These differences have allowed for the 

development of activators and inhibitors of various isoenzymes as therapeutics. For 

example, disulfiram (commercial: Antabuse) is an inhibitor of both ALDH1A1 and ALDH2, 

and this drug can be used to treat alcoholism31 and potentially for cocaine addiction13. 

Alda-1 is a selective activator of ALDH2 and may offer cardiac protection following 

ischemic events by decreasing cytotoxic aldehyde levels35. Since multiple cancers have 

increased ALDH1A1 and/or ALDH3A1 activity leading to increased resistance to 

chemotherapeutic agents, selective inhibitors of these two isoenzymes are also of 

interest36,37.

Available inhibitors of ALDHs have been recently reviewed31. At this time, there are no 

commercially available inhibitors capable of distinguishing between ALDH1A1 and the 

other highly similar ALDH isoenzymes, ALDH1A2, ALDH1A3, ALDH1B1, and ALDH2. 

For instance, the control inhibitor used in the ALDEFLUOR assay, 

diethylaminobenzaldehyde (DEAB), is an effective inhibitor of at least three of these 

isoenzymes38,39. From a high-throughput screen (HTS)40, we have identified two classes of 

ALDH1A1 inhibitors and have determined the structural and kinetic basis for their 

selectivity toward ALDH1A1.

RESULTS

Since the esterase and dehydrogenase activity of ALDH1A1 utilize similar active site 

residues, modulators of esterase function as convenient surrogates for the dehydrogenase 

activity, as has been shown previously with the discovery of ALDH3A1 inhibitors36. The 

esterase assay was selected for the screening assay instead of aldehyde oxidation to: 1.) 

minimize spectral overlap with the absorbance characteristic of the compounds in the 

library, and 2.) eliminate compounds that compete with structurally conserved elements of 

the cofactor binding site. CM026 and CM037 emerged from the HTS as esterase modulators 

of ALDH1A140. CM026 (Figure 1A) has a molecular weight of 442.5 Daltons and CM037 

(Figure 2A) has a molecular weight of 431.6 Daltons. These compounds have no structural 

similarity to any known, commercially available aldehyde dehydrogenase modulators.
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Kinetic characterization of CM026 and CM037

CM026 is a selective inhibitor for ALDH1A1 versus eight other ALDH isoenzymes 

examined. At a concentration of 20 µM, CM026 had no effect on seven other human ALDH 

isoenzymes (ALDH1A2, ALDH1A3, ALDH1B1, ALDH2, ALDH3A1, ALDH4A1, 

ALDH5A1) as well as the carboxyl-terminal ALDH domain of rat ALDH1L1 (Figure 1B). 

At a concentration of 100 µM, CM026 modestly increased aldehyde oxidation catalyzed by 

ALDH1A2, ALDH1A3, and ALDH1B1. CM026 has good potency toward ALDH1A1 (IC50 

of 0.80 ± 0.06 µM40, Figure 1C) for an initial hit compound. Complete inhibition of 

ALDH1A1 was not observed. CM026 has a noncompetitive partial mode of inhibition with 

respect to varied acetaldehyde, with a Ki of 0.80 ± 0.16 µM and β = 0.15 ± 0.03, indicating 

maximum inhibition at 0.15(Vmax) (Figure 1D). CM026 had an uncompetitive partial mode 

of inhibition with respect to varied NAD+ and exhibited a Ki of 0.72 ± 0.03 µM and β = 0.10 

± 0.03 (Figure 1E).

It is possible that the size of the R-groups attached to the xanthine ring influences whether it 

is possible to slowly bind and release small aldehydes at the catalytic nucleophile, such 

substrate length dependency was also observed with the activator Alda-1 in ALDH241.

CM037 (Figure 2A) was also selective for ALDH1A1 at 20 µM versus eight other ALDH 

isoenzymes tested (Figure 2B). While 20 µM CM037 had little effect on most ALDH 

isoenzymes tested, ALDH1A3 was inhibited approximately 20% at this concentration. 

Higher concentrations were not tested due to solubility limits of CM037 under these assay 

conditions. CM037 exhibits an IC50 = 4.6 ± 0.8 µM toward ALDH1A1 versus the substrate 

propionaldehyde (Figure 2C) and a competitive mode of inhibition with respect to varied 

substrate acetaldehyde and an average Ki of 0.23 ± 0.06 µM from three independent 

inhibition experiments42.

Structure Activity Relationship for Analogs of CM026

There were 77 compounds in the initial screening hit list that were structurally similar to 

CM02640. We have tested 17 members of this compound class and they exhibit good 

selectivity for ALDH1A1 compared to ALDH1A2, ALDH1A3, ALDH1B1, ALDH2, and 

ALDH3A1 (Table 1). At high concentrations (100 µM), some compounds activated the 

aldehyde oxidation activity of other ALDH1 enzymes tested (eg. CM026), but in most cases 

these effects were observed as the solubility limit of the compounds in the assay system 

were approached, precluding a full dose-response study. At 20 µM, none of the compounds 

demonstrated activation exceeding 10% of control activity, suggesting any activation is of 

modest potency and not likely to impact these enzyme activities in vivo. These compounds 

share a common xanthine core structure with theophylline and caffeine, but neither of these 

stimulants affected ALDH1A1 activity at concentrations up to 250 µM, indicating that 

substituents at the R1 and R2 positions are necessary for ALDH1A1 inhibition (Table 1). 

Halogens on either R-group were not tolerated. CM053 was the most potent analog 

examined, with an IC50 = 210 ± 40 nM and a Ki = 96 ± 14 nM with noncompetitive tight 

mode of inhibition compared to varied substrate acetaldehyde (Figure 3). CM028 shares the 

same R2 group as CM053 but the isopentyl group at R1 has been replaced with a 

phenylpropyl group. CM028 is less potent, with an IC50 = 2.0 ± 0.1 µM, and exhibits a Ki = 
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240 ± 40 nM with competitive tight mode of inhibition. The lower potency suggests that the 

phenylpropyl group might present steric conflicts not found with the smaller phenyl and 

isopentyl groups (Table 1). Unlike CM026, CM028 and CM053 demonstrated complete 

inhibition, which confirms that the nature of the R1 group alone does not influence the final 

extent of inhibition, since both CM026 and CM053 share the same R1 group.

Crystal Structure of ALDH1A1 Complexed with CM026, CM053 and CM037

To determine the mechanism that underlies the ability of these compounds to selectively 

inhibit ALDH1A1, we used X-ray crystallography to determine the structure of the enzyme-

compound complexes. We solved the crystal structures of human ALDH1A1 in complexes 

with CM026, CM053, and CM037 to resolutions between 1.80 Å and 1.95 Å (Table 2). For 

CM026 and CM037, the naturally occurring N121S polymorphic variant of ALDH1A1 was 

used40, while wtALDH1A1 was used for the structure with bound CM053. A comparison of 

the respective alpha carbons in the structure of the N121S·CM026 to those in the 

WT·CM053 generated an RMSD of 0.12Å, indicating a high degree of similarity between 

WT and the N121S mutant as expected since the two have very similar kinetic behavior40. 

CM026 binds near the solvent exposed exit of the substrate-binding site (Figure 4). The 

xanthine rings for both CM026 and CM053 are parallel to and approximately 3.6 Å from 

Tyr297, with which it interacts via hydrophobic pi-stacking interactions. Four residues form 

hydrogen bonds with CM026; the xanthine ring interacts with His293, Cys302, and Gly458, 

while Trp178 interacts with the ketone group on R2. The isopentyl group of R1 projects 

towards Cys303 and fills much of the hydrophobic space bounded by Phe171 and Phe466. 

CM053 differs from CM026 only in its R2 group, which can form hydrogen bonds with two 

residues, Trp178 and Val460 (Figure 5). CM037 binds at a similar location to the CM026 

compounds, but its long axis is oriented almost orthogonal to that of CM026 and CM053 

(Figure 6A). Most of the tricyclic ring of CM037 is in a hydrophobic pocket formed by 

Phe171, Val460, and Phe466 with a potential hydrogen bond between the ring system’s 

carbonyl oxygen atom and the side chain of Cys302 (Figure 6B). The biggest structural 

adaptation to CM037 binding is the movement of Trp178 away from the substrate-binding 

site to accommodate the benzyl ring of CM037 (Figure 6C). This conformational movement 

appears to be dynamic and impacts the observed electron density for both the benzyl group 

of CM037 and of Trp178. Trp178 is well ordered in all other structures determined of 

human ALDH1A, including our CM026 and CM053 structures, but has weak density for the 

benzyl moiety of the indole ring in this complex (Figure 6D). We would suggest that 

optimization of CM037 could be achieved by altering the thiophene and benzyl ring systems 

to alleviate these steric conflicts. To better understand the selectivity of these compounds for 

ALDH1A1, we compared these structures against human ALDH2 (PDB code 1CW343), 

ALDH3A1 (PDB code 3SZA37), and ALDH4A1 (PDB code 3V9G44) and identified a 

critical glycine (Gly458) that is present near the xanthine ring binding site in ALDH1A1. 

This glycine is replaced by larger amino acid side chains in the other three human structures 

examined, as well as in sheep ALDH1A1 (PDB Code 1BXS45). In rat ALDH1A2 (PDB 

code 1BI946), which shares 97% sequence identity to human ALDH1A2, this location is part 

of a small disordered loop not observed in the crystal structure46. Using sequence 

alignments of the human genes, Gly458 in ALDH1A1 is replaced by an asparagine in 

ALDH1A2, ALDH1A3, and ALDH1B1, an aspartate in ALDH2, and an isoleucine in 
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ALDH3A1 (Figure 7A). As shown in Figure 7B, these side chains would interfere with the 

position of the xanthine ring, effectively eliminating the ability of these analogs to bind to 

any isoenzyme but ALDH1A1.

Characterization of ALDH1A1 G458N Mutant

To confirm whether Gly458 in ALDH1A1 directly impacts the selectivity of the CM026 

analogs and CM037 for ALDH1A1, we mutated the glycine at this position to asparagine, as 

found in ALDH1A2 and ALDH1A3. We determined the kinetic parameters for acetaldehyde 

oxidation for both the wild-type and G458N enzymes (Table 3). This mutation did not 

dramatically affect the enzyme’s catalytic efficiency for aldehyde oxidation. However, when 

Gly458 is mutated to asparagine, CM026 no longer inhibits the enzyme at concentrations up 

to 100 µM and none of the CM026 analogs inhibited the mutant more than 25% (Figure 8). 

Similarly, 20 µM CM037 no longer inhibited the G458N enzyme. However, the non-

selective inhibitors DEAB and CM30240 both inhibit G458N, with IC50 values of 0.52 ± 

0.10 µM and 3.1 ± 0.3 µM respectively39,40 (Table 3). These data support the hypothesis that 

the substrate-binding site, and in particular Gly458, determines the selectivity of both the 

CM026 and CM037 classes of compounds for ALDH1A1, and that bulkier side chains at 

this position in ALDH1A2, ALDH1A3, ALDH1B1, ALDH2, and ALDH3A1 occludes their 

binding to these ALDH isoenzymes.

DISCUSION AND CONCLUSIONS

Aldehyde dehydrogenases contribute to a variety of biological processes and disease states. 

ALDH1A1, in particular, has been linked to such diverse diseases as cancer, Parkinson’s 

disease, obesity, and cataracts. Therefore, selective inhibitors of ALDH1A1 would be of 

tremendous value to understanding the roles of this enzyme in both normal and disease 

processes. However, great structural and functional similarity exists, especially within the 

ALDH1 family, with five members sharing approximately 70% protein sequence identity or 

higher, plus significant overlap in substrate utilization. To date, there are no ALDH1A1-

selective inhibitors commercially available. Although comparisons of available ALDH 

structures indicate a high degree of overlap, there exist distinct surface topographies that 

may enable development of selective inhibitors (Figure 9). ALDH1A1 possesses a wider 

opening leading to the active site, whereas ALDH2 has a much more constricted, cylindrical 

shaped site. ALDH3A1 possesses a wider inner vestibule near the catalytic nucleophile, with 

a much narrower and curved entryway. The narrower entries in ALDH2 and ALDH3A1 

eliminate the binding site for the CM026 and CM037 classes of inhibitors in large part due 

to the side chain present at the position equivalent to Gly458. ALDH4A1 possess a serine at 

the position equivalent to Gly458. However the loop structure in which it resides is different 

enough from ALDH1A1 to prevent compound binding. Similar to daidzin, both the CM026 

and CM037 classes of compounds are planar, multi-ringed structures that adopt binding 

modes that take advantage of the topological characteristics unique to the ALDH isoenzyme 

toward which they demonstrate selectivity and neither of these new compounds can be 

accommodated in the restricted substrate binding sites of ALDH3A1 or ALDH2. Daidzin is 

a strong inhibitor of ALDH2 but it also inhibits ALDH1A147. Daidzin binds in a similar 

location to CM026, but comparison of the structure of ALDH1A1 and ALDH2 (PDB 
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2VLE48) bound to these respective compounds shows that the two compounds bind nearly 

perpendicular to each other in their respective binding modes. In particular, aligning the 

ALDH2-daidzin structure to ALDH1A1 demonstrates that daidzin binding need not engage 

ALDH1A1 near its unique G458 site (Figure 10). As discussed by Lowe et al, the tighter 

binding pocket of ALDH2 compared to ALDH1A1 favors more intimate interactions 

between the ALDH2 and daidzin, increasing specificity48. CM026 exploits a binding pocket 

that is not accessible in other ALDH isoenzymes due to their larger amino acid side chains 

at position 458.

In contrast to CM026, the directionality of CM037 binding within the ALDH1A1 active site 

resembles that of daidzin in ALDH2. However, the 4-oxo group and the branched structure 

of CM037 near the exit of the substrate binding site exploits the same G458 region for 

selectivity. Our structural studies identified Gly458 as a major contributor to the selectivity 

of the CM026 and CM037. Sequence alignments of the other 18 human ALDH isoenzymes 

indicate that the only other family member with a glycine in this position is ALDH16A1. 

However, the function of ALDH16A1 is unknown and has a three residue deletion in the 

active site loop which eliminates the conserved Cys nucleophile, suggesting this protein may 

have functions that are independent of aldehyde dehydrogenase activity49. The presence of a 

non-glycine residue at this position does not adversely affect catalytic activity toward small 

substrates or inhibition by the non-selective compounds, DEAB and CM302. Consequently, 

these compounds identified via an esterase-based high throughput screen successfully 

exploited a unique structural feature found primarily in primate ALDH1A1 enzymes, which 

further validates the use of the esterase activity as a screening tool for ALDH isoenzymes40.

Selective inhibitors of ALDH1A1 are needed to understand the role of this enzyme in both 

normal and disease processes. As recently reviewed by Ma and Allan, a number of ALDH 

family members have been associated with both normal stem cells and cancer stem cells20. 

The viability of the ALDH1A1-/- mice suggests that ALDH1A1 is non-essential or can be 

compensated for by other family members during growth and development50. On the other 

hand, ALDH1A1 is considered a biomarker for lung51, ovarian52, prostate53 and a number 

of other cancers. Ovarian cancer cells form spheroids, cellular aggregates that aid 

metastasis54. Recently ALDH1A1 was shown to be upregulated in ovarian cancer 

spheroids42. This study utilized our ALDH1A1- selective compound CM037 (published as 

A37) to disrupt spheroid formation and reduce cell viability, supporting the hypothesis that 

ALDH1A1 could serve as a target to improve cancer outcomes42. ALDH1A1 and 

ALDH3A1 are both involved in the metabolism of the cancer drug cyclophosphamide, 

metabolizing the active compound to a less active form and contributing to drug resistance. 

ALDH3A1 inhibitors have been shown to increase sensitivity to the cyclophosphamide 

analog mafosphamide when combined in cell lines with high ALDH3A1 expression55,56. 

ALDH1A1 could serve as a similar target to minimize cyclophosphamide resistance in 

cancers with high ALDH1A1 levels. The functional role that ALDH1A1 contributes to stem 

cells and cancer metastasis is not understood. However, the discovery of these two novel 

classes of selective ALDH1A1 inhibitors may serve as chemical tools to uncover those roles 

in both normal and diseased cells.
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EXPERIMENTAL SECTION

Materials

Reagents, including acetaldehyde, propionaldehyde, para-nitrophenylacetate, NAD+, and 

buffers were all purchased from Sigma Aldrich unless otherwise noted. Compounds were 

purchased from ChemDiv Corp. (San Diego, CA) and were >95% pure based on the NMR 

spectra provided by the vendor. Following receipt from the vendor, their chemical identities 

were further verified by LC/MS in the Department of Chemistry, Indiana University-Purdue 

University Indianapolis and used without further purification.

ALDH expression and purification

ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1, ALDH2, and ALDH3A1 were produced 

and purified as previously described36,56,57. The ALDH1A1 protein used for the 

ALDH1A1-CM026 crystal contained an Asn-to-Ser SNP at residue 12140,58. Unless where 

noted otherwise, ALDH1A1 WT protein was used for all aldehyde oxidation assays and for 

the ALDH1A1- CM053 structure. The full length cDNA for human ALDH4A1 and 

ALDH5A1 were generously provided by Daria Mochly-Rosen. ALDH4A1 was subcloned 

into the pET-28a expression plasmid and ALDH5A1 was in pTrcHis-Topo. The carboxyl 

terminal ALDH domain of rat ALDH1L1 was generously provided by Sergey Krupenko in 

the pRSET expression plasmid. ALDH1L1, ALDH4A1, and ALDH5A1 were expressed and 

purified as previously described for ALDH3A136 with the following modifications: 1) for 

ALDH1L1 and ALDH5A1 the medium contained 100 µg/mL ampicillin, 2) cells were lysed 

via 3 passages through a microfluidizer (DivTech Equipment), and 3) a single passage on a 

nickel-NTA column was used for purification, without the second Q-sepharose column used 

to purify ALDH3A1. Purified enzymes used for kinetics were stored at −80°C. ALDH1A1 

used for crystallization was stored at −20°C in a 50% (v/v) solution with glycerol and 

dialyzed against 10 mM Na+-ACES pH 6.6 and 1 mM dithiothreitol at 4°C.

Generation of wild-type ALDH1A1 and the G458N mutant

The QuikChange site-directed mutagenesis protocol was used to make point mutations. 

First, wtALDH1A1 was generated from the Weiner N121S polymorphism as previously 

described40. A point mutation of wtALDH1A1 was performed to produce the G458N 

mutant. The ALDH1A1 G458N mutant was constructed using the forward primer 5’-GTG 

GGT GAA TTG CTA TAA CGT GGT AAG TGC CCAG-3’ and its complement. This 

G458N mutant was purified in the same way as other ALDH1A1 proteins (WT, N121S). 

G458N was stored at 2-mg/mL and 8-mg/mL at −80°C. Kinetic experiments for G458N 

were performed in the same manner as WT protein.

Aldehyde dehydrogenase activity assay

Dehydrogenase activity of purified recombinant ALDH1A1, ALDH1A2, ALDH1A3, 

ALDH1B1, ALDH2, and ALDH3A1 was assayed spectrophotometrically by monitoring the 

formation of NADH at 340 nm (molar extinction coefficient of 6220 M−1 cm−1) on a 

Beckman DU-640 or Cary 300 Bio UV-Vis spectrophotometer. Characterization of 

ALDH1A1 WT and ALDH1A1 G458N were performed by co-varying acetaldehyde and 
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NAD+ concentrations in reactions containing 150 – 300 nM enzyme, 50 – 500 µM or 20 – 

200 µM acetaldehyde, and 50 – 500 µM NAD+ in 50 mM sodium BES, pH 7.5 at 25°C. 

Reactions were initiated by adding enzyme. Selectivity of compounds for dehydrogenase 

activity of ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1 and ALDH2 were measured in a 

solution containing 100 – 200 nM enzyme, 200 µM NAD+, 1% DMSO, and 100 µM 

propionaldehyde (non-saturating for all enzymes tested, except ALDH2) in 50 mM sodium 

BES. ALDH3A1 activity was measured under the following conditions: 25 nM enzyme, 200 

µM NAD+, 1% DMSO, and 300 µM benzaldehyde (~KM) in either 100 mM sodium 

phosphate buffer, pH 7.5 or 50 mM sodium BES, pH 7.5. All assays were performed at 

25°C and were initiated by the addition of the aldehyde substrate following a 2 minute pre-

incubation with compound and cofactor. Selectivity was initially tested using 20 µM 

compound, with ALDH1A1-selective modulators further tested using 100 µM compound. 

IC50 values for propionaldehyde oxidation were calculated by varying the concentration of 

the compounds from 0 to 200 µM. After a 2 minute pre-incubation with compound and 

NAD+, all reactions were initiated by the addition of propionaldehyde. Data were fit to the 

four parameter EC50 equation using SigmaPlot (StatSys v12.3). The values represent the 

average of three independent experiments (each n = 3). The mode of inhibition was 

determined via steady-state kinetics by co-varying inhibitor and substrate concentrations at 

fixed concentration of the second substrate. All reactions contained 100–150 nM ALDH1A1 

and 1% DMSO in 50 mM sodium BES, pH 7.5 at 25°C. When cofactor NAD+ was varied, 

the reactions contained 200 µM propionaldehyde and 20 – 200 µM or 25 – 250 µM NAD+ 

(Km = 50 µM). When acetaldehyde was varied, the reactions contained 800 or 1000 µM 

NAD+ and 100 – 800 µM acetaldehyde (Km = 180 µM). All data were fit to competitive, 

noncompetitive, uncompetitive, and mixed inhibition models using both single substrate-

single inhibitor or tight binding inhibition programs in SigmaPlot (StatSys v12.3). The 

appropriate model was selected through analysis of goodness-of-fit and the residuals of 

those fits. The values represent the average of three independent experiments (each n = 3) 

using at least two protein preps. In Sigmaplot, the data were best fit to the following 

equations:
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Crystallization and structure determination of ALDH1A1 and its complexes with inhibitors

Crystals of ALDH1A1 at 3–5 mg/mL concentration were equilibrated against a 

crystallization solution of 100 mM Na+ BisTris, pH 6.2–6.8, 8–12% PEG3350 (Hampton 

Research), 200 mM NaCl, and 5–10 mM YbCl3 at 25°C. For the enzyme·CM026 and 

enzyme·CM037 complex, ALDH1A1·N121S was used, while wtALDH1A1 was used for 

the ALDH1A1·CM053 complex. CM026 and CM053 complexes were prepared by soaking 

crystals overnight with crystallization solution containing 500 µM inhibitor with 2% (v/v) 

DMSO. The CM037 complex was prepared by soaking crystals with crystallization solution 

containing 500 µM inhibitor, 1% (v/v) DMSO, and 1 mM NAD+ for 5 hours. Cryo-

protection of the crystals for flash-freezing utilized 20% (v/v) ethylene glycol in the ligand 

soaking solution. Diffraction data were collected at Beamline 19-ID for the ALDH1A1-

CM026 complex and Beamline 19-BM for the ALDH1A1-CM053 complex, both operated 

by the Structural Biology Consortium at the Advanced Photon Source (APS), Argonne 

National Laboratory. For the ALDH1A1-CM037 complex, data were collected at Beamline 

23-ID-D (GM/CA), sponsored by National Institute of General Medical Sciences and 

National Cancer Institute of the National Institutes of Health at APS. All diffraction data 

were indexed, integrated, and scaled using either the HKL2000 or HKL3000 program 

suites59. The CCP4 program suite60 was used for molecular replacement and refinement, 

using human apoALDH1A1 structure (PDB code 4WJ9) as a model for both structures. The 

molecular graphics application Coot61 was used for model building and TLSMD 

(Translation/Libration/Screw Motion Determination) server was used to determine the 

appropriate TLS tensors for refinement of the protein62,63.
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Abbreviations Used

ACES N-(2-Acetamido)-2-aminoethanesulfonic acid

ALDH aldehyde dehydrogenase

BES N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid
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BisTris 2-Bis(2-hydroxyethyl)amino-2-(hydroxymethyl)-1,3-propanediol

RA retinoic acid

RALDH retinaldehyde dehydrogenase
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Figure 1. 
Characterization of CM026, a selective inhibitor of ALDH1A1. (A) The structure of 

CM026. (B) Selectivity of 20 µM of CM026 with respect to nine ALDH isoenzymes. (C) 

IC50 of CM026 with ALDH1A139. (D) Lineweaver-Burk representation of noncompetitive 

inhibition for CM026 (0 – 4 µM) verses varied acetaldehyde (100 – 800 µM) at fixed 

concentration of NAD+ (800 µM). (E.) Lineweaver-Burk representation of uncompetitive 

inhibition for CM026 (0 – 3 µM) verses varied NAD+ (25 – 250 µM) at fixed concentration 

of propionaldehyde (200 µM). The IC50 curves and Lineweaver-Burk plots represent one of 

three experiments performed for each condition, with each point the mean/SEM of three 

data points at each concentration.
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Figure 2. 
Characterization of CM037, a selective inhibitor of ALDH1A1. (A) The structure of CM037 

with a molecular weight of 431.6 Daltons. (B) Selectivity of 20 µM of CM037 with respect 

to nine ALDH isoenzymes. (C) IC50 of CM037 with ALDH1A142. The IC50 curve 

represents one of three experiments performed, with each point the mean/SEM of three data 

points at each concentration.
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Figure 3. 
Characterization of CM053. (A) IC50 of CM053 with ALDH1A1. (B) Lineweaver-Burk 

representation of noncompetitive tight inhibition for CM053 (0 – 300 nM) verses varied 

acetaldehyde (100 – 800 µM) at fixed concentration of NAD+ (1000 µM). Both curves 

represent one of three experiments performed, with each point the mean/SEM of three data 

points at each concentration.
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Figure 4. 
Structure of ALDH1A1 N121S with CM026 (PDB Code 4WP7). (A) CM026 binds in the 

active site near Cys 303. Key residues are colored based on element, and Gly458 is shown in 

orange. (B) Two-dimensional representation of the key hydrogen bonds, illustrated with red 

dashed lines, and hydrophobic interactions, illustrated with black arcs, between ALDH1A1 

and CM026. (C) The electron density maps of CM026, with the original Fo – Fc map in 

green contoured at 2.5 standard deviations and the final 2Fo – Fc map in grey contoured at 

1.0 standard deviations. Figures A and C generated in Pymol, while Figure B generated in 

ChemDraw.
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Figure 5. 
Structure of human ALDH1A1 with CM053 (PDB Code 4WPN). (A) Two dimensional 

representation of the key hydrogen bonds, illustrated with red dashed lines, and hydrophobic 

interactions, illustrated with black arcs, between ALDH1A1 and CM053. (B) The electron 

density maps of CM053 with the original Fo – Fc map in green contoured at 2.5 standard 

deviations and the final 2Fo – Fc map in grey contoured at 1.0 standard deviations. Figure A 

generated in ChemDraw and figure B generated in Pymol.
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Figure 6. 
Structure of ALDH1A1 N121S with CM037 (PDB Code 4X4L). (A) CM037 binds in the 

active site near Cys 303. Key residues are colored based on element, and Gly458 is shown in 

orange. (B) Two-dimensional representation of the hydrophobic interactions, illustrated with 

black arcs, between ALDH1A1 and CM037. (C) Binding of CM037 induces structural 

changes in ALDH1A1 (in blue) compared to apo-ALDH1A1 (in gray), particularly at W178. 

NADH binding (in cyan), induces conformational changes at the cofactor binding site, as 

seen here with E269. (D) The electron density maps of CM037, with the original Fo – Fc 

map in green contoured at 2 standard deviations and the final 2Fo – Fc map in grey 

contoured at 1.0 standard deviations. Figures A, C and D generated in Pymol, while Figure 

B generated in ChemDraw.
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Figure 7. 
Structural basis of selectivity of CM026 for ALDH1A1. (A) Multiple sequence alignment in 

the region of ALDH1A1 Gly458 to the mature form of ALDH2. (B) Structure of ALDH1A1 

with bound CM026 (blue) compared to ALDH2 (cyan) and ALDH3A1 (grey) indicating that 

a bulky amino acid such as the Asp of ALDH2 and Ile of ALDH3A1 would clash with 

CM026 and prevent the compound from inhibiting the enzyme. Sequence alignment was 

performed using NCBI delta-BLAST while structural alignment was performed using least 
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square fit (LSQ) in Coot. Figure B generated in Pymol. PDB Codes: ALDH1A1 (4WP7), 

ALDH2 (2VLE), and ALDH3A1 (3SZA)
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Figure 8. 
Selectivity of compounds for WT vs G458N mutant. For CM026 and its analogs, 100 µM of 

compound was used. For CM037 and CM302, 20 µM of compound was used. Each value is 

mean/SEM (n=3).
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Figure 9. 
Comparison of the active site topography of human ALDH1A1, ALDH2, and ALDH3A1. 

The three isoenzymes were aligned using LSQ in Coot and the surface figures generated via 

Pymol. The active site cysteine is shown in red for all three isoenzymes. G458 in ALDH1A1 

(PDB Code 4WJ9) and its equivalent residues D457 in ALDH2 (PDB Code ICW3) and I391 

in ALDH3A1 (PDB Code 3SZA) are shown in yellow.
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Figure 10. 
Comparison of the binding of CM026 to ALDH1A1 (PDB Code 4WP7) with the binding of 

daidzin to ALDH2 (PDB Code 2VLE). ALDH1A1 is shown in light blue with CM026 in 

dark blue. ALDH2 is shown in light green with daidzin in dark green. The active site 

cysteine is shown in red for both isoenzymes. Although both compounds bind in the same 

location, they bind in a different orientation enabling CM026 to inhibit ALDH1A1 but not 

ALDH2 due to steric hindrance of D474 (D457 in the mature sequence, in orange), while 

daidzin inhibits both isoenzymes. Figure generated in Pymol.
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Table 2

Data collection and refinement statistics.

Data Collection

ALDH1A1-
CM026

PDB 4WP7

ALDH1A1-
CM053

PDB 4WPN

ALDH1A1-
CM037

PDB 4X4L

Space Group P422 P422 P422

Cell Dimensions

    a, b, c (Å) 109, 109, 83 109, 109, 83 109, 109, 83

    A,β, γ (°) 90, 90, 90 90, 90, 90 90, 90, 90

Resolution (Å) 50 – 1.80 50 – 1.95 50 – 1.85

Rmerge 0.082 (0.59) 0.11 (0.66) 0.058 (0.70)

I/σi 22.7 (4.7) 18.3 (3.7) 27.4 (3.3)

Completeness (%) 99 (100) 99 (100) 99 (100)

Redundancy 11.7 (11.7) 9.3 (6.9) 8.5 (8.8)

Refinement

No. of Reflections 44544 35048 40517

Rwork/Rfree 0.19 / 0.22 0.19 / 0.24 0.19 / 0.22

No. of Atoms 4109 4080 4066

    Protein 3833 3858 3806

    Ligand/Ion 35 33 80

    Water 241 189 180

R.M.S. Deviations

    Bond Lengths (Å) 0.008 0.009 0.010

    Bond Angles (°) 1.28 1.30 0.135

Numbers in parenthesis represent values of highest resolution shell.

J Med Chem. Author manuscript; available in PMC 2016 February 26.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Morgan and Hurley Page 30

T
ab

le
 3

K
in

et
ic

 p
ar

am
et

er
s 

of
 A

L
D

H
1A

1 
W

T
 a

nd
 m

ut
an

t G
45

8N
.

K
M

A
ce

ta
ld

eh
yd

e

(µ
M

)
k c

at
/K

M

(m
in

−1
 µ

M
−1

)
K

iC
M

02
6

(µ
M

)
K

iC
M

03
7

(µ
M

)
IC

50
C

M
02

6

(µ
M

)
IC

50
C

M
03

7

(µ
M

)
IC

50
C

M
30

2

(µ
M

)
IC

50
D

E
A

B

(µ
M

)

W
T

17
7±

19
0.

18
±

0.
02

0.
80

±
0.

16
0.

23
±

0.
06

42
0.

80
±

0.
06

4.
6±

0.
842

1.
0±

0.
140

0.
05

7±
0.

00
539

G
45

8N
85

.8
±

1.
6

0.
21

±
0.

02
N

I
N

I
3.

1±
0.

3
0.

52
±

0.
10

J Med Chem. Author manuscript; available in PMC 2016 February 26.


