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Abstract

Purpose of review—Rho kinases (ROCKs) are involved in regulating a variety of physiologic 

functions including cytoskeletal reorganization, migration, adhesion, survival and proliferation. 

They do so via activating several different downstream substrates such as myosin light chain 

phosphatase, LIM kinase and ezrin/radixin/moesin proteins. To date, most of the conclusions with 

regard to the function of ROCKs have involved the use of cell line models, pharmacologic 

inhibitors and dominant negative approaches. Importantly, the role of ROCK in hematopoiesis or 

leukemogenesis in the context of whole organism remains poorly understood.

Recent findings—Recent studies utilizing mice deficient in the expression of ROCK1 have 

begun to shed some light into the physiologic role(s) of ROCK in both normal and abnormal 

hematopoiesis. Findings, thus far, suggest that ROCK plays an essential role in regulating growth 

and survival in different hematopoietic lineages via distinct mechanisms, in part, by utilizing 

distinct downstream substrates including maintaining the activation of tumor-suppressor genes.

Summary—In blood cells, emerging data suggest that ROCK plays an essential role in 

negatively regulating inflammatory and erythropoietic stress and positively regulates the growth 

and survival of leukemic cells.
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INTRODUCTION

Members of the Rho guanosine 5’-triphosphatase (GTPase) family play an essential role in 

regulating cell migration, proliferation and apoptosis [1,2]. They stimulate contractility and 

adhesion by generating actin stress fibers and focal adhesions in diverse cell types [3]. Rho 

GTPases cycle between guanosine 5’-diphosphate-bound inactive and guanosine 5’-

triphosphate-bound active forms and the guanosine 5’-triphosphate-bound form binds to 

specific targets that exert biological functions [4,5]. Two closely related Rho kinases 

(ROCKs), ROCK1 and ROCK2, act as downstream effectors of Rho GTPases and 

contribute to multiple cytoskeletal functions [6,7]. Although informative, it is important to 
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recognize that most of the conclusions with regard to ROCK have been based on studies 

conducted in cells of nonhematopoietic lineages. Furthermore, while ROCK1 and ROCK2 

share significant sequence homology in the kinase domain (>90%), the regulatory domains 

at the C terminus show significant divergence [8,9]. Although the functional differences 

between ROCK1 and ROCK2 are poorly understood, pharmacologic studies as well as 

studies conducted with activated and dominant active versions of ROCK in 

nonhematopoietic cells suggest that ROCKs contribute to increased actin–myosin II-

mediated contractility by directly phosphorylating myosin light chain (MLC) and negatively 

regulating MLC phosphatase by phosphorylating the myosin-binding subunit of MLC 

phosphatase [8–12]. ROCKs also activate LIM kinase, phosphorylate cofilin and inhibit its 

actin-depolymerization activity, leading to stabilization of actin stress fibers in fibroblasts 

[13–15]. How isoform-specific forms of ROCK regulate normal and abnormal blood cell 

development and function in the context of whole organisms is only beginning to be 

unraveled. Here, we briefly summarize some recent findings related to this topic and provide 

some future perspectives.

Rho KINASES AND HUMAN EMBRYONIC STEM CELLS

Although less is known about ROCK’s role in hematopoietic stem cell (HSC) biology, 

recent studies show that pharmacologic inhibition of ROCK results in enhanced survival of 

human embryonic stem (hES) cells and enhanced survival of ROCK1 heterozygous mice in 

response to ultraviolet-induced stress compared with wild-type control mice [16,17]. 

Inhibition of ROCKs also results in reduced apoptosis of cardiomyocytes during ischemia–

reperfusion injury [18]. Similarly, pharmacologic inhibition of ROCK activity by ROCK 

inhibitor results in enhanced recovery of cryopreserved hES cells as well as induced 

pluripotent stem cells [16,19]. Furthermore, treatment with ROCK inhibitor also results in 

an increase in the colony number and size of hES cells [20]. In the context of hES cells, 

ROCK inhibitor inhibits ROCK-dependent hyperactivation of actomyosin, which is 

triggered by loss of E-cadherin-dependent intercellular contact [21]. Collectively, these 

results suggest that loss of ROCK or inhibition of ROCK activity is associated with 

enhanced survival of hES cells. Whether a similar pathway is also active in HSCs remains to 

be determined.

Rho KINASE IN MYELOID CELL BIOLOGY

Although the role of ROCK in the context of primitive HSCs remains to be investigated, 

recent findings have begun to shed some light into how ROCK regulates myeloid cell 

functions. Vemula et al. [22] investigated the role of ROCK1 in inflammatory cell migration 

including macrophages and neutrophils using ROCK1−/− mice. These authors demonstrated 

an unexpected role for ROCK1 in negatively regulating the recruitment and migration of 

primary macrophages and neutrophils in vitro and in vivo in the context of whole organism. 

Specifically, they showed enhanced migration of both macrophages and neutrophils in 

response to multiple stimuli, including macrophage colony-stimulating factor (M-CSF), 

fibronectin, monocyte chemoattractant protein-1 and formyl–methionyl–leucyl–

phenylalanine. The defects they observed were present in ROCK1−/− bone marrow-derived 

macrophages, peritoneal cavity-derived macrophages and neutrophils. Importantly, the 

Mali et al. Page 2

Curr Opin Hematol. Author manuscript; available in PMC 2015 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observed defects were not because of the changes in the maturation and expression of β1 

integrins or because of the changes in the expression of ROCK2 in ROCK1−/− cells. At the 

biochemical level, they showed a critical and unique role for ROCK1 in regulating the 

intracellular levels of phosphatidylinositol (3,4,5)-triphosphate/AKT in response to receptor 

activation by regulating the phosphorylation, degradation, stability and activity of tumor-

suppressor protein phosphatase and tensin homolog (PTEN). Specifically, they showed that 

the serine/threonine kinase ROCK1 binds to PTEN in response to M-CSF stimulation and 

that this binding is enhanced when PTEN is phosphorylated. Furthermore, M-CSF-induced 

ROCK1 activity induces the phosphorylation of at least serine (Ser) 380, threonine (Thr) 

382 and Thr383 in the PTEN carboxy tail. In the absence of ROCK1 expression, no physical 

association between PTEN and ROCK2 is observed. As a consequence, carboxy-terminal 

Ser380, Thr382 and Thr383 show significant impairment in phosphorylation, which results 

in enhanced degradation, reduced stability and reduced overall PTEN activity in these cells. 

The functional changes in ROCK1−/− cells take place in spite of the presence of ROCK2, 

suggesting that ROCK1 functions with specificity in regulating the phosphorylation, 

stability and activity of PTEN and in repressing the recruitment of inflammatory cells during 

infection. Vemula et al.’s [22] findings are consistent with other studies showing a critical 

role for ROCK in regulating PTEN localization using a pharmacologic inhibitor of ROCK 

[23]. These studies found PTEN to colocalize with active RhoA at the posterior of the cell. 

Thus, it appears that at least in macrophages or inflammatory cells, ROCK1 is the principal 

regulator of PTEN phosphorylation on serine and threonine residues in response to M-CSF 

and plays an important role in regulating the stability and activity of PTEN. Importantly, 

deregulation of this pathway in ROCK1-deficient cells results in enhanced recruitment of 

macrophages in vivo. Vemula et al.’s [22] results in primary ROCK1 deficient cells 

demonstrating enhanced degradation and reduced stability of PTEN due to reduced 

phosphorylation of PTEN on serine and threonine residues are consistent with previous 

studies implicating these three residues in regulating PTEN stability and degradation. Using 

serine or threonine to alanine mutants of PTEN and overexpression systems, Vazquez et al. 

[24] showed that point mutations in either serine or threonine residues render less-stable 

PTEN. Although, the precise mechanism by which the PTEN protein in ROCK1-deficient 

cells is degraded is unclear; PTEN tail contains two putative PEST sequences that have been 

implicated in targeting proteins for proteolytic degradation. One of the putative PEST 

sequence includes the three residues that show defective phosphorylation of PTEN in 

ROCK1-deficient cells (i.e. Ser380, Thr382 and Thr383), raising the possibility that PTEN 

might be targeted for proteosomal or caspase-3-mediated degradation in ROCK1 cells. 

Given the fact that PTEN plays an essential role in regulating the self-renewal of HSCs, it 

will be interesting to determine whether ROCK1 also regulates PTEN activity and 

consequently self-renewal of HSCs.

Rho KINASE IN STRESS ERYTHROPOIEISIS

Although several downstream signaling molecules have been identified that regulate steady-

state erythropoiesis, the major regulators under conditions of stress remain poorly defined. 

In this context, Vemula et al. [25▪▪] have recently shown that lack ofROCK1in a 

phenylhydrazine-induced oxidative stress model results in enhanced recovery from 
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hemolytic anemia as well as enhanced stress erythropoiesis compared with control mice. 

Deficiency of ROCK1 also results in enhanced survival, whereas wild-type mice die rapidly 

in response to stress. Enhanced survivability of ROCK1-deficient mice is associated with 

reduced level of reactive oxygen species. Bone marrow transplantation studies revealed that 

enhanced stress erythropoiesis in ROCK1-deficient mice is stem cell autonomous. 

Biochemically, ROCK1 uniquely regulates the expression of p53 in response to oxidative 

stress by regulating its phosphorylation. Interestingly, ROCK1 physically associates with 

p53 in normal splenocytes in response to oxidative stress. In the absence of this interaction, 

reduced caspase-3 cleavage and reduced level of reactive oxygen species are observed. Prior 

studies have shown that loss of p53 in p53-deficient mice also results in enhanced erythroid 

cell recovery following an oxidative challenge [26].Thus, these studies reveal a novel 

mechanism of p53 regulation in stress erythropoiesis. Given the fact that p53 levels are often 

upregulated in erythroid progenitors derived from patients with Diamond–Blackfan anemia, 

which is associated with enhanced apoptosis and reduced cell cycle, it will be interesting to 

determine whether inhibition of ROCK1 expression in these cells will rescue the survival 

and associated cell cycle defects in cells harboring mutations in the ribosomal protein 

subunit 19 [27]. Taken together, studies described in ROCK1-deficient mice, thus far, 

suggest that ROCK1 may play an essential role in negatively regulating the survival of 

multiple hematopoietic lineages in the context of both inflammatory as well as oxidative 

stress in myeloid and erythroid cells, respectively, in part by regulating the activation of 

tumor-suppressor genes such as PTEN and p53. It remains to be seen whether this is true for 

other lineages as well.

Rho KINASE IN LEUKEMOGENESIS

Although the role of ROCK in solid tumor metastasis has been well established, its role in 

the context of leukemogenesis is only beginning to be unraveled [28]. Small molecule 

inhibitors of ROCK, namely fasudil (HA-1077), Y27632 and H-1152P or dimethylfasudil, 

have been used to assess the role of ROCK in leukemogenesis [28]. These inhibitors inhibit 

the activity of both ROCK1 and ROCK2 in an ATP-competitive manner. Of the four most 

well described ROCK inhibitors, fasudil is the only one currently used in humans for the 

treatment of cardiovascular diseases such as hypertension, angina and stroke. Mali et al. [28] 

recently demonstrated constitutive activation of ROCK in leukemic cells expressing 

activating forms of KIT, FMS-like tyrosine kinase 3 and breakpoint cluster region–abelson 

kinase, which are oncogenes commonly found in patients with systemic mastocytosis, acute 

myeloid leukemia (AML) and chronic myeloid leukemia, respectively. All three oncogenes 

are associated with poor prognosis and survival in these patients. Mali et al. [28] showed 

that either loss of ROCK1 in HSCs bearing the oncogenes described above or 

pharmacologic inhibition of ROCK in leukemic cells inhibited the growth and survival of 

leukemic cells in vitro and, importantly, prolonged the lifespan of leukemic mice in vivo. 

Although Vemula et al. [25▪▪] found that in the context of stress responses ROCK1 regulates 

PTEN and p53 activation and negatively impacts stress hematopoiesis, in the context of 

leukemogenesis Mali et al. [28] found an essential role for MLC. They found MLC to be 

constitutively hyperphosphorylated on Ser19 in leukemic cells, whose activation could be 

rapidly inhibited upon treating the leukemic cells with ROCK inhibitors. Importantly, 
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increased MLC phosphorylation in leukemic cells was associated with enhanced actin 

polymerization, which was inhibited in the presence of ROCK inhibitors and associated with 

rapid F-actin depolymerization followed by membrane blebbing and rapid cell death. This 

phenomenon was somewhat unique to leukemic cells; thus, it is likely that MLC may be 

uniquely involved in the growth of leukemic cells but not normal hematopoietic cells as 

further shown by MLC knockdown experiments [28].

Although ROCK inhibitors are good initial tools to dissect the role of ROCK in leukemic 

blasts, further experiments utilizing mice deficient in the expression of ROCK1, ROCK2 

and both ROCK1 and ROCK2 will be needed to more precisely delineate the role of ROCK 

in initiation and progression of leukemia. In addition, it will be useful to assess whether the 

traditional well-characterized substrates of ROCK, such as LIM kinase and Ezrin, also 

contribute to leukemogenesis via the oncogenes described above. Small molecule inhibitors 

and mice deficient in the expression of these kinases have been described and will likely 

function as useful tools to dissect their respective role(s) in the context of leukemogenesis. 

An additional important question that remains to be answered relates to the involvement of 

ROCK1 and ROCK2 in regulating the growth and survival as well as actin-based functions 

in leukaemia-initiating cells or leukemia stem cells as well as their role in regulating drug-

resistant mutations of breakpoint cluster region–abelson kinase in chronic myeloid leukemia 

and FMS-like tyrosine kinase 3–internal tandem duplication in AML. Some studies in this 

area are already being conducted. Recent studies involving an unbiased genome-wide 

pooled short hairpin ribonucleic acid screen in primary human AML cells revealed that 

knockdown of ROCK1 in human primary leukemic blasts results in rapid cell cycle arrest 

and cell death. Treatment with fasudil proved to be equally effective in killing leukemic 

cells in these studies. Importantly, fasudil was less toxic to normal hematopoietic cells 

compared to primary leukemic cells. Fasudil treatment of these cells suggested that it had a 

significant negative effect on the self-renewal capacity of primary human leukemic stem/

progenitor cells [29▪].

Once a better understanding of the individual role(s) of ROCK isoforms in normal 

hematopoiesis and in leukemogenesis is established, the development of isoform-specific 

ROCK inhibitors may be a worthwhile strategy, in light of the fact that some patients with 

benign hematologic issues such as Diamond–Blackfan anemia may respond better to 

ROCK1 inhibitors versus patients with malignant hematologic diseases that may respond 

better to ROCK1 and/or ROCK2 inhibitors.

CONCLUSION

Although several substrates of ROCK have been identified in cells of nonhematopoietic 

lineages, few have been identified in primary hematopoietic cells. ROCK isoforms are likely 

to regulate functions in different cell types via distinct and in some cases perhaps 

overlapping substrates. It is, therefore, important to assess the role of ROCK isoforms in the 

context of a specific cell type and in primary cells. Likewise, it would be interesting to 

determine whether the classical ROCK substrates, such as LIM kinase and/or Ezrin’s loss of 

function in specific hematopoietic lineages, will result in similar functional defects as 

ROCK1 and/or ROCK2-deficient cells. An additional key question is to determine which 
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ROCK substrates are critical for normal hematopoietic function and which are relevant for 

leukemogenesis. More importantly, can this information be used to differentially target 

molecules in leukemogenesis versus normal hematopoietic functions? A better 

understanding of the biology of these kinases and their substrates is likely to result in better 

strategies for targeting these related yet distinct molecules in different hematologic diseases.
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KEY POINTS

• ROCK1 negatively regulates stress hematopoiesis, in part, by regulating the 

activation of tumor-suppressor genes such as PTEN and p53.

• ROCK is constitutively activated in leukemic cells and its inhibition results in 

cell death of leukemic cells partly via regulating the activation of MLC.

• ROCK regulates cellular functions in various hematopoietic lineages via distinct 

mechanisms.
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