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Am J Physiol Endocrinol Metab 306: E791–E798, 2014. First pub-
lished February 4, 2014; doi:10.1152/ajpendo.00537.2013.—Thera-
peutic options for treatment of type 1 diabetes (T1D) are still missing.
New avenues for immune modulation need to be developed. Here we
attempted at altering the diabetes outcome of our humanized model of
T1D by inhibiting translation-initiation factor eIF5A hypusination in
vivo. Double-transgenic (DQ8-GAD65) mice were immunized with
adenoviral vectors carrying GAD65 for diabetes induction. Animals
were subsequently treated with deoxyhypusine synthase (DHS) inhib-
itor GC7 and monitored for diabetes development over time. On one
hand, helper CD4� T cells were clearly affected by the downregula-
tion of the eIF5A not just at the pancreas level but overall. On the
other hand, the T regulatory cell component of CD4 responded with
activation and proliferation significantly higher than in the non-GC7-
treated controls. Female mice seemed to be more susceptible to these
effects. All together, our results show for the first time that down-
regulation of eIF5A through inhibition of DHS altered the physiopa-
thology and observed immune outcome of diabetes in an animal
model that closely resembles human T1D. Although the development
of diabetes could not be abrogated by DHS inhibition, the immuno-
modulatory capacity of this approach may supplement other interven-
tions directed at increasing regulation of autoreactive T cells in T1D.

mouse model; type 1 diabetes physiopathology; deoxyhypusine syn-
thase

IN TYPE 1 DIABETES (T1D) a complex interplay of immune cells
makes pancreatic �-cells targets of destruction (9). T1D is a
chronic autoimmune disease where autoantigen-activated
CD4� T cells help CD8� T cells become mediators of selec-
tive �-cell destruction (16). Recent observations of human
islets from diabetic patients have established a prominent role
for CD8� T cells (3, 15). Therefore, facilitating CD4� T cell
regulation of CD8� T cells appears to be a promising thera-
peutic strategy.

A T1D mouse model where antigen-specific diabetes after
immunization with a clinically relevant human autoantigen, in
the context of human MHC-class II diabetes-susceptibility
transgenes occurs, was recently developed (5, 6, 8). In this
transgenic model, human glutamic acid decarboxylase (GAD65) is
expressed in pancreatic �-cells, and human MHC II (DQ8) is

expressed in antigen-presenting cells (APCs). Upon a trigger-
ing event by which tolerance to GAD65 is broken in the
periphery (1), APCs present antigen, activate T cells, and
initiate the downstream events that lead to diabetes (5, 6, 8).

Eukaryotic translation initiation factor 5A (eIF5A) is a small
(17-kDa), highly conserved protein identified as a translation
initiation/elongation factor (11). Studies in mammalian cells
have showed that only 5% of protein translation in a quiescent
cell is dependent on eIF5A (18) and that, in actively dividing
mammalian cells, it is necessary for proteins involved in cell
cycle progression (12). eIF5A is the only known protein to
contain the atypical amino acid hypusine (2). In a rate-limiting
step, deoxyhypusine synthase (DHS) transfers an aminobutyl
moiety from the polyamine spermidine to the epsilon-amino
group of lysine 50 in eIF5A to form deoxyhypusine eIF5A.
Subsequently, deoxyhypusine hydroxylase hydroxylates de-
oxyhypusine to form the final hypusine residue. The hypusi-
nated form of eIF5A (eIF5AHyp) is considered the active
form, and to date most known functions of eIF5A are depen-
dent upon hypusination (2). Thus, targeting of hypusination
serves as a specific means to hinder eIF5A action. In vivo
inhibition of eIF5A hypusination by the DHS inhibitor GC7
conferred resistance to islet dysfunction and hyperglycemia in
the nonobese diabetic mouse model (14).

Here we attempted at altering the diabetes outcome of our
humanized model of T1D by inhibiting eIF5A hypusination in
vivo.

MATERIALS AND METHODS

Mice. Murine MHC-class II molecule-deficient (mII�), HLA-
DQA1*0301/DQB1*0302 (DQ8) (20), and hGAD65 (19) transgenic
mice (5) in BTBR background (6) were used in this study. DQ8 and
hGAD65 homozygosity was determined as previously described (5,
6). All animal protocols were approved by the University of Wiscon-
sin and the Veterans Affairs animal research committees.

Adenoviral constructs for diabetes induction. Adenoviral con-
structs were made using the Gateway system (Invitrogen, Carlsbad,
CA) as previously described (6). hGAD65 was excised from pCI-
hGAD65 with EcoRI and NotI (Invitrogen) and subcloned into the
same sites in pENTR for pAD-CMV cloning, and the sequence was
confirmed. Immunizations were performed two times at 2-wk inter-
vals (Fig. 1A). Mice were intraperitoneally injected with 100 �l of
PBS containing 1011 particles of pAD-CMVhGAD65 (7, 10).

eIF5A in vivo inhibition. Intraperitoneal GC7 or placebo (saline)
injections were given to 16-wk-old (treated and nontreated groups,
respectively) double-transgenic (DQ8-GAD65) mice, 4 wk postim-
munization with hGAD65 adenoviral construct, at the dose rate of 4
mg/kg body wt 5 days in a week for 4 wk (Fig. 1).
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Fig. 1. A: fasting glycemia and weight monitoring after diabetes induction. Wide glucose fluctuations were noted right after GC7 treatment was started with an
abrupt drop posttreatment. B: glucose tolerance test (GTT). Left, GTT at 4 wk postimmunization pre-GC7 treatment. Right, GTT at 4 wk post-GC7 treatment.
There were some statistically significant (*) point differences between placebo (nontreated controls) and GC7-treated animals more noticeable in females.
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Glucose tolerance test and fasting insulin measurement. All ex-
perimental and control animals were subjected to a glucose toler-
ance test (GTT) in at least two time points, 3– 4 wk postimmuni-
zation (before GC7 treatment) and 10 wk postimmunization (3– 4
wk after GC7 treatment; Fig. 1A). Mice were fasted overnight for
10 h before given an intraperitoneal injection of 2 g of glucose.
Blood samples were obtained from a tail vein at 0, 20, 40, 60, 80,
120, and 180 min after injection, and glucose level was assessed
using a glucometer (Fig. 1B).

Animals also underwent fasting insulin measurements before GC7
treatment (Fig. 2, BT), 2 (Fig. 2, 2M) and 4 (Fig. 2, 4M) mo after GC7
treatment initiation. Blood samples were obtained from 10-h-fasted
mice, and insulin content was measured by ELISA using mouse
insulin as a standard (Chrystal Chem, Chicago, IL).

Flow cytometry. In all flow cytometry experiments (Figs. 3 and 4),
cells were stained with fluorochrome-conjugated antibodies against
mice CD3, CD4, CD8, CD25, GDT, NKT, IL-17, interferon-� (IFN-
�), and Foxp3 (BD Biosciences, San Jose, CA) or isotype controls.
For cell phenotyping, spleen- and pancreas-infiltrating lymphocytes
were obtained. Freshly isolated single cells were incubated with
antibodies for 20 min on ice for cell surface staining, washed, and
fixed in 1% paraformaldehyde. A subset of cells was permeabilized
with cytofix/cytosperm fixation and permeabilization solution (BD
Biosciences) and stained with fluorochrome-conjugated antibodies
against mice intracellular proteins. Cells were also stained with
Hoechst 33342 (10 �g/ml) to gate live cells containing 2n-4n
cellular DNA. Cells were acquired in a BD LSR II flow cytometer
(BD Biosciences). The data were analyzed using FlowJo software
(Treestar).

Quantitative RT-PCR analysis. Total mRNA was isolated by the
TRIzol method (Invitrogen) from frozen pancreatic tissue. RNA (1
�g) was converted into cDNA using random hexamer/oligo(dT)
primer cocktail and Moloney murine leukemia virus reverse transcrip-
tase (Invitrogen). eIF5A mRNA expression was quantified by SYBR
green chemistry (ABI) with specific primers using the ��Ct method.
Relative values were normalized to the corresponding 18S rRNA
values. Minus-reverse transcriptase samples were used as negative
controls to test for DNA contamination. The whole experiment was
repeated three times (Fig. 5). Primers used were as follows: eIF5A F1
CCCAACATCAAACGGAATGAC and eIF5A R1 GCAGACGAAG-
GTCCTCTCGTA.

Statistical analysis. Two-tailed probability of the chi square distri-
bution was used to compare results. Flow cytometry data on cells in
various gated populations were statistically analyzed using SAS.

RESULTS

Glucose intolerance and diabetes after eIF5A inhibition.
Homozygous double-transgenic mice carrying DQ8 and hGAD65
(6) were intraperitoneally injected with 1011 hGAD65-adeno-

viral particles (diabetes induction) and monitored for hyper-
glycemia weekly (Fig. 1A). GC7 or placebo was intraperitone-
ally administered to each treatment group 4 wk post-diabetes
induction for 4 wk. Glycemic control was more erratic in
GC7-treated animals compared with nontreated (placebo-
given) controls. Wide fluctuations of fasting glucoses were
noted right after the commencement of GC7 treatment that
resembled the immediate post-diabetes induction period. Fur-
thermore, higher blood glucoses were noted while on GC7
treatment with an abrupt drop post-treatment (Fig. 1A). GTT
results showed that there were some differences between
treated male and female groups before and after GC7 admin-
istration (Fig. 1B). GTT results post-GC7 treatment showed
that there were significant point differences between treated
and nontreated control. At 30 min postglucose administration,
higher glucoses in treated males were observed (Fig. 1B,
males). However, at 270, 310, and 340 min, lower glucoses
were noted. Similarly, for the female groups, most of the
significant point differences were for lower glucoses in the
treated groups except at 30 min (Fig. 1B, females). Moreover,
fasting insulin collected at three time points showed the effect
of GC7 treatment on disease progression/regression. Fasting
insulin was measured before GC7 treatment (Fig. 2, BT), 2
(Fig. 2, 2M) and 4 (Fig. 2, 4M) mo after GC7 treatment
initiation. GC7-treated males had fasting blood insulin
trending up at 2 mo and significantly higher at 4 mo when
compared with nontreated controls. Female differences were
not so impressive although the fasting insulin level over
time was significantly lower for nontreated females than for
treated ones (all in Fig. 2).

CD4� T cells and regulatory T cell responses. Animals were
euthanized at the time of diabetes development (blood glucose
�250 mg/dl for two consecutive days), and their lymphocytes
were studied. An example of the flow cytometry analysis of
CD4�/CD8� T cells and their IFN-� production is shown for
GC7-treated pancreatic infiltrating and splenic lymphocytes
(Fig. 3A). Flow cytometry analysis of CD4� T cells revealed
that GC7 treatment significantly decreased the pancreatic
CD4� T cell populations in the treated groups compared with
nontreated controls (Fig. 3B, top left). Similar trend was
observed for spleen-derived CD4� lymphocytes (Fig. 3B, bot-
tom left). In females, GC7 treatment significantly reduced the
CD4� T cell population in both pancreas and spleen (Fig. 3B).
The pancreatic and splenic CD4� T cell count in the GC7-
treated female group was 1.37 � 0.78 and 20.22 � 5.59,
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Fig. 2. Fasting insulin levels at three time
points, before GC7 treatment (BT) and 2
(2M) and 4 (4M) mo after GC7 treatment
initiation. Blood samples were obtained from
10-h-fasted mice, and insulin content was
measured by ELISA using mouse insulin as a
standard. Statistically significant differences
were reached at 4 mo between GC7-treated
(open bars) and nontreated (closed bars) in
males (left). Female differences (right) were
not significant at 4 mo. However, within the
nontreated group, a statistically significant
drop in fasting insulin was present 4 mo after
treatment initiation (top, P 	 0.01).
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respectively, and in nontreated controls was 2.69 � 0.67 and
24.58 � 0.89, respectively, both significantly different (males
trended along). CD4� IFN-� production was significantly
decreased in both organs in females. Pancreatic and splenic
CD8� lymphocytes, however, did not seem to be affected by
treatment at any anatomical site (Fig. 3B, right). As previously
observed (6), pancreatic infiltrating lymphocytes were overrep-
resented by CD8� T cells in all groups.

We next analyzed the regulatory T cell (Treg) profile. An
example of the analysis is provided (Fig. 4A). CD4� lympho-
cytes were tested for coexpression of CD25 (as a surrogate
marker for activation) and Foxp3 (a transcription factor present
in Tregs). Lymphocytes from pancreas and spleen are shown
(Fig. 4). Treatment with GC7 significantly increased the “sta-
ble” pancreatic Treg population (CD3�CD4�CD25�Foxp3�)
in the male group (mean 18.20 � 6.31) compared with non-
treated controls (mean 9.35 � 1.8) (Fig. 4B, top middle, and
Fig. 4A, left). Also, in spleen, a significant increase in the
Treg population was observed (Fig. 4B, bottom middle, and
Fig. 4A, right). In treated females pancreas Tregs also
increased (Fig. 4B, top middle). The “transient” Treg
(CD3�CD4�CD25�Foxp3�) population was clearly in-
creased in pancreas of treated males (Fig. 4B, top right). The
transient Treg population was significantly higher (mean 30.47
� 4.94) compared with nontreated male controls (mean 10.57
� 5.17) at the pancreas level, whereas in spleen no significant
difference was observed (Fig. 4B, bottom right).

Male vs. female differences and eIF5A expression. eIF5A is
widely expressed in different tissues (BioGPS). Differential
levels of expression of pancreatic eIF5A based on gender have
never been shown. eIF5A pattern of pancreas mRNA expres-
sion was significantly higher in males than in females before
GC7 treatment (Fig. 5). The drop in expression after treatment
was significant in both males and females (Fig. 5). However,
although the drop was higher in magnitude for males, the
absolute level of expression was much lower for females. This
gender-biased differential expression may have influenced the
described outcomes to some extent.

DISCUSSION

Therapeutic interventions for T1D have been overall disap-
pointing. Although blunt immune suppression is capable of
abrogating the autoimmune process and cure diabetes, the side
effects are worse than the benefits provided (13). If immune
suppression of the specific antigen responders were to be
accomplished, the benefits would likely outweigh the risks.
Short of antigen-specific immune suppression, suppression of
individual immune components as opposed to blunt immune
suppression may either delay onset or decrease severity of
target destruction. Furthermore, combination of partial im-
mune suppression and anti-inflammatory interventions might
relieve autoimmune target destruction and/or allow for �-cell
recovery.

The peculiar translation initiation/elongation factor 5A
seems to be linking immunity and inflammation in pancreatic
islets. Furthermore, because of its need of hypusination for
functionality, it becomes an obvious target for therapeutic
intervention. Specifically, the enzyme responsible for its hy-
pusination, DHS, is druggable by the specific inhibitor GC7
(14). Moreover, eIF5A seems to be localized to few cell types.

We have generated transgenic mice that express high levels
of human GAD65 in �-cells and at the same time have their
endogenous mouse MHC-class II replaced by the human HLA-
DQ8 diabetes-susceptibility gene (5, 6, 8). Our double-trans-
genic mice develop impaired fasting blood glucose, glucose
intolerance, and diabetes when immunized with adenoviral
hGAD65.

We strategically introduced DHS inhibition with GC7 treat-
ment to animals programmed to develop diabetes. Although we
were unable to abrogate the diabetes outcome, DHS inhibition
altered immune responses in a particular way. On one hand,
CD4� T cells were clearly affected by the downregulation of
eIF5A mostly at the pancreas level. In our study, female mice
seemed to be more responsive to this effect over CD4� T count
and function (Fig. 3). On the other hand, the T regulatory cell
component of CD4� T cells responded with activation and
proliferation significantly higher than in the non-GC7-treated
male controls (Fig. 4). CD8� T cells, however, seem to
overcome the regulatory suppression allowing diabetes to
progress albeit in a delayed manner (onset of diabetes lagged
behind by 2 wk average in the GC7-treated groups, Fig. 1).
Moreover, fasting insulin monitored through the study seemed
to hold normal levels longer in GC7-treated mice (Fig. 2).

eIF5A has cell context-dependent function, with some cell
types (e.g., more proliferative ones like activated immune
cells) requiring active eIF5A action and others (e.g., more
quiescent ones like pancreatic �-cells) requiring eIF5A only
under specific stress conditions (2). We can only speculate on
where impaired translation might have taken place to account
for the observed outcomes in our animals. If at the �-cell level,
one would have expected to see more of a unified response,
that is, if protein synthesis impairment would have affected
�-cell antigen expression, the immune response might have
been uniformly downregulated. The fact that T regulatory cells
rise while conventional CD4� T cells decrease when animals
are treated with the DHS inhibitor favors a direct effect on
active immune effector cells. As in mice treated with anti-CD3
(17), GC7 treatment induced an increase in the number of
CD4�Foxp3� Tregs maybe because of selective depletion of
CD4�Foxp3� conventional T cells. Moreover, since transient
(CD25�Foxp3�) and stable (CD25�Foxp3�) Tregs were not
just increased but coexisted in GC7-treated animals, the pos-
sibility of downregulation of expression of CD25 needs to be
considered. As opposed to stable, transient Tregs are described
as unstable and short lived. They can effectively recover the
CD25 expression after IL-2 treatment and become stable Tregs

Fig. 3. A: representative flow cytometry analysis (dot plots and histograms) of pancreatic and splenic lymphocytes of GC7-treated animals. The differences in
CD4 as opposed to CD8 lymphocyte counts were also functional [interferon-� (IFN-�)]. B: statistical differences (bar graphs) of lymphocyte populations in the
CD4 and CD8 compartment of all and IFN-�-producing cells. Lymphocytes infiltrating the pancreas (PN, top) and splenocytes (SP, bottom) are shown. GC7
treatment appears to affect almost exclusively the CD4 compartment. Gr, group; Gn, gender. Statistical significance was determined at P 	 0.05. Lowercase
letters (a, b, c, and d) identify significant differences among the groups. Means with different superscript (* or #) have an approaching to significant difference
(P 
 0.06 to P 	 0.1).
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(21). Therefore, if the translation of CD25 were to be selec-
tively impaired by DHS inhibition, the population of transient
Tregs should be expected to be proportionally increased (as
observed). Also, since the half-life of activated CD4� T cells
is locally determined by Tregs, one would expect a propor-
tional increase of the latter against the former (as observed).

Although the overall manifestation of delayed diabetes onset
was common to both genders, we did observe subtle gender
differences in the cellular outcomes described already. The
difference in eIF5A mRNA expression (Fig. 5) is therefore
worth noticing and may help explain these differences. Males
had significant higher levels of pancreas eIF5A mRNA (which
likely translated in higher protein levels) pretreatment, which
might be more difficult to inhibit compared with females.
Females lower levels might have been more sensitive to the
GC7 inhibition. Consequently, CD4 decrease was more and
Treg increase was less pronounced in females. Yet, since their
actions physiologically counterbalance, the net effect over the
diabetes outcome was the same as in males.

All together, our results show for the first time that down-
regulation of eIF5A through inhibition of DHS alters the
physiopathology and observed immune outcome in an animal
model that closely resembles human T1D. Although the devel-
opment of diabetes could not be abrogated by DHS inhibition
in our model, the immunomodulatory capacity of this approach
may supplement other interventions (4) directed at increasing
regulation of autoreactive T cells in T1D.
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