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ABSTRACT
Objective Over 8 years, we have developed an
innovative computer decision support system that
improves appropriate delivery of pediatric screening and
care. This system employs a guidelines evaluation engine
using data from the electronic health record (EHR) and
input from patients and caregivers. Because guideline
recommendations typically exceed the scope of one visit,
the engine uses a static prioritization scheme to select
recommendations. Here we extend an earlier idea to
create patient-tailored prioritization.
Materials and methods We used Bayesian structure
learning to build networks of association among
previously collected data from our decision support
system. Using area under the receiver-operating
characteristic curve (AUC) as a measure of
discriminability (a sine qua non for expected value
calculations needed for prioritization), we performed a
structural analysis of variables with high AUC on a test
set. Our source data included 177 variables for 29 402
patients.
Results The method produced a network model
containing 78 screening questions and anticipatory
guidance (107 variables total). Average AUC was 0.65,
which is sufficient for prioritization depending on factors
such as population prevalence. Structure analysis of
seven highly predictive variables reveals both face-validity
(related nodes are connected) and non-intuitive
relationships.
Discussion We demonstrate the ability of a Bayesian
structure learning method to ‘phenotype the population’
seen in our primary care pediatric clinics. The resulting
network can be used to produce patient-tailored
posterior probabilities that can be used to prioritize
content based on the patient’s current circumstances.
Conclusions This study demonstrates the feasibility of
EHR-driven population phenotyping for patient-tailored
prioritization of pediatric preventive care services.

BACKGROUND AND SIGNIFICANCE
Despite the acknowledged importance of prevent-
ive services and the abundance of authoritative
guidelines for use in primary care,1–3 rates of deliv-
ery of preventive services remain suboptimal. This
is especially true in pediatric primary care settings4

where there are competing demands on physician’s
time for addressing acute and chronic issues and
for providing anticipatory guidance for normal
child growth and development. Furthermore, as the
body of evidence-based recommended guidelines
keeps growing, it becomes extremely difficult to
determine which guidelines may apply to a particu-
lar patient and which are of highest priority5–8

within the time constraints of a typical office visit.

Computer decision support systems (CDSS) have
been shown to improve rates of delivery of prevent-
ive services.9–11 Over the past 8 years, we have
developed and deployed an innovative pediatric
CDSS—the child health improvement through com-
puter automation (CHICA) system—that uses a
scannable paper interface—for use in routine care in
our busy primary care pediatric clinics.12 CHICA
integrates well into the high volume workflow of
our practices by implementing age-appropriate
screening of patients in the waiting room, and then
combining this information with the patient’s elec-
tronic health record (EHR) to generate patient-
specific reminders and recommendations for the
physician. CHICA has been studied in a number of
randomized trials and has been shown to improve
rates of both delivery of preventive services as well
as management of chronic conditions.13–16 By auto-
mating the process of screening and appropriately
alerting the physician, CHICA has significantly
decreased the burden of screening families and iden-
tifying relevant practice guidelines.17

To select which recommendations apply to a
patient at a specific encounter, CHICA employs a
global static prioritization scheme based on the
expected value of the recommendation,18 with pri-
orities assigned by experts based on the product of
risk of adverse outcome, severity of the outcome,
and the effectiveness of the physician’s action to
prevent adverse outcome. Selected guidelines result
in patient screening questions and (if appropriate)
physician prompts.14 18 While this method has
yielded good results, its primary limitation is that it
relies only on known population risks. It does not
adapt to patient-specific risks that may be inferred
from data about their changing circumstances. For
example, a particular patient may have a higher or
lower risk of a health condition or outcome, such as
anemia or developmental delay, based on other data
in the EHR. This would alter the expected value of
screening for these conditions, thus altering the
prioritization for that individual. We previously
described an alternative, patient-tailored prioritiza-
tion scheme using Bayesian networks,18 which
prioritizes based on all of the available context. The
premise of this approach is predicated on the notion
that the patient’s medical record contains data that
can significantly alter or predict the posterior prob-
abilities of variables of interest. In this paper, we
continue this work by studying the predictive power
of data in the EHR.
Bayesian networks place each variable (eg, clinical

information or a screening question) into a directed
acyclic graph, in which vertices represent variable
nodes and edges represent probabilistic relationships
among variables, as in figure 1. Conditional
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probability tables underlying each node define these relation-
ships. Such networks allow the articulation of complex multivari-
ate associations. To use the network, one can instantiate evidence
variables in the network (variables with known values), which
revises the probability of each target variable (the variables one
desires to predict).

A Bayesian network can model complex relationships, such as
those between the patient condition and relevant preventive
care. They are appealing because of their multivariate approach
and because relationships are modularly represented as probabil-
ity distributions that require no a priori hypotheses. Patient
screening prioritization could then be performed by instantiat-
ing variables known about the patient’s current state (ie, current
condition along with past screening and behavior) and selecting
the targets with the highest expected value of information. This
type of approach expands on approaches used in a variety of
systems for medical diagnosis19 and treatment.20

One challenge to this approach is that it requires experts to
articulate both the relationships among variables and the
strength of those relationships. Not only is this time consuming
and challenging,21 but the necessary data are often non-existent.
Our previous work shows that relationships among some
variables might be unknown even to the local experts.22

Therefore, in this paper we propose an approach that does not
initially require any human input (although expert opinion can
later be integrated). The approach uses a well-known, efficient
method to discover a Bayesian network from an observational
dataset.

Algorithms to perform this structure discovery have been
developed relatively recently23 and have become computation-
ally tractable even more recently.24 It is now possible to discover
a Bayesian network of several hundred nodes from a relatively
small dataset in a matter of hours on a desktop computer. While
our previous work using association rule mining discovered
meaningful patterns in a different pediatric dataset,22 this work
extends this idea to create Bayesian networks that can be used
to prioritize pediatric screening questions and interventions.

OBJECTIVE
In this work, we describe a methodology for assessing individual
patient risk of health threats or outcomes, using structure-
discovery algorithms. We then evaluate this approach on a
dataset of nearly 30 000 patients, analyzing both the discovered
relationships and the predictive power of the derived model
with the goal of determining its suitability for use in an
expected value prioritization of relevant preventive care screen-
ing questions and interventions.

MATERIALS AND METHODS
Using data from previous encounters, we used a structure discov-
ery algorithm to build a Bayesian network. We then evaluated the
Bayesian network by instantiating the clinical variables with
known values (called evidence) for a test set of patients and itera-
tively examining the posterior probability of each target value.
This measures the network’s ability to discriminate those patients
with the highest probability of certain outcomes. This discrimina-
tive power is a sine qua non for the expected value calculations to
prioritize questions and reminders. Here we describe the dataset
preparation, model generation, and evaluation.

Dataset preparation
To build the model, we used observational data collected by
CHICA during 2005–11 from 29 402 unique patients and 177
clinical variables that are recorded by CHICA as coded concept
questions and answers. Approximately two-thirds of these
patients are below 12 years of age and one-third are between
12 and 21 years of age. We produced a dataset appropriate for a
structure-learning algorithm using structured query language.

The variables fell into five broad categories, shown in table 1.
The vast majority of the coded concept questions were screening
questions (eg, ‘Is there a smoker at home?’) or physician con-
cerns (eg, concern about drug abuse). The remaining questions
were as follows: 40 questions were exam and test results;
18 were anticipatory guidance (information on patient history
or education—eg, have firearms been discussed?); two were
demographic (preferred language and insurance status).

Some variables were binary, but many had several possible cat-
egorical values, which usually included one normal value and
several gradations of abnormal (eg, in response to ‘Do any house-
hold members smoke?’ possible abnormal answers included
‘relapse’, ‘yes, ready to quit’, and ‘yes, not ready to quit’). To
increase the discriminative power of our statistical methods, a
CHICA expert recoded each variable into a binary response.

Next, we extracted the most recent known value of each vari-
able for each patient, resulting in a dataset of 29 402 rows and
177 columns, with three possible values: ‘true’, ‘false’, and
‘missing’. All the algorithms we describe below (with the excep-
tion of edge orientation) ignore missing values, so our methods
are minimally biased toward unrecorded information. We ran-
domly permuted the rows of the dataset and split the permuted
data into a training and test set (2/3 and 1/3, respectively). The
training set was used for model generation and the test set for
model evaluation.

Model generation
We generated a Bayesian network using Java and the freely avail-
able Tetrad toolkit,25 in four steps.

Table 1 A breakdown of the 177 CHICA variables used in this
study

CHICA variable category Count

Patient screening question or physician concern 117
Anticipatory guidance 18
Exam 31
Test result 9
Demographic 2

The majority were patient screening questions or physician concerns. Eighteen were
‘anticipatory guidance’—information on patient history and education. The remaining
42 were demographics, exams, and test results.
CHICA, child health improvement through computer automation.

Figure 1 A Bayesian network for asthma treatment.
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First, we generated a ‘network skeleton’ from the training data
using the max–min parents and children (MMPC) structure dis-
covery algorithm,24 which is included in Tetrad. A ‘network skel-
eton’ is an undirected Bayesian network without underlying
probabilities. Skeleton generation is becoming a common first
step in modern Bayesian structure learning on large data-
sets.24 26 27 It typically uses tests of statistical association to dis-
cover structure. This has performance advantages over graph
heuristic methods, and the discovered relationships also usually
have a logical meaning to a human viewer. MMPC is one of the
best among these skeleton discovery algorithms, partly because it
can construct a model ‘faithful to the data’ at small sample
sizes.24 28 This means that if the data have no inconsistencies, the
underlying structure is always detected. Of course, no real obser-
vational data are without inconsistency, but MMPC’s small
sample size requirement makes it resilient to noisy data. MMPC’s
underlying statistical test is the G2 test, which is asymptotically
equivalent to χ2 but has preferable behavior for structure learning
at small sample sizes.27 This implementation of MMPC ignores
missing values so that erroneous edges are avoided (eg, a correl-
ation that occurs because edges are missing).

Second, to direct the graph, we implemented a simple greedy
search to optimize a global heuristic (the BDeu statistic, also
available in Tetrad), which estimates how well the graph
explains the data. This follows the example of the max–min hill
climbing algorithm,24 which builds on MMPC. The graph-
heuristic approach is more robust than other approaches on
noisy data. Tetrad’s BDeu statistic cannot ignore missing values.
This might have unfairly biased edge direction when many
values were missing, but studies show that the predictive power
of most Bayesian networks is fairly insensitive to non-structural
errors.29 It does, however, mean that the resulting directionality
might not reflect true causal direction, which must be consid-
ered in interpreting the actual graph structure.

Third, we estimated the probabilities in our model (again,
with missing values ignored), using maximum likelihood estima-
tion with Dirichlet hyperparameters initialized to α=1. This is a
typical method, and it is equivalent to adding one case to each
parameter, which can smooth out network parameters learned
from noisy data.26

Finally, we exported the graph to XDSL format using Java.
XDSL is the preferred format for the SMILE framework,30

a freely available toolkit for network inference.

Evaluation
To evaluate whether these networks could be used for dynamic
prioritization, we used SMILE to compute the area under the
receiver-operating characteristic curve (AUC) for all screening
questions, concerns, and anticipatory guidance given our test
set. We used a standard approach that relies on the Wilcoxon
statistic’s (W) equivalence to the AUC.31 The AUC measures the
predictive power of the network. A higher AUC value corre-
sponds to the probability that when an item is true, it is ranked
higher than when it is not. To compute W, we performed the
following steps: for each target variable, for each applicable test
patient (ie, patients for whom this variable was not missing), we
‘instantiated’ that patient (setting values for all of the other
known variables in the network for that patient) and measured
the posterior probability of the target variable computed by the
network. We used this information to compute Wand the SE of
W.31 Our set of target variables included all variables relevant to
patient screening prioritization: the 135 variables in the first
two rows of table 1.

Because a higher AUC represents greater ability to discrimin-
ate between true and false cases on a test set, it is a sine qua non
for prioritization. If the network can accurately predict when a
variable is true or false, then the posterior probability that the
variable is true or false can be used in an expected value calcula-
tion to prioritize screening questions and prompts. The predict-
ive power needed in an expected value calculation is dependent
on several factors (see examples at the end of the Discussion
section), so lesser predictive ability than is commonly needed
may suffice for the proposed application. Furthermore, incorrect
prioritization of screening questions is less catastrophic than
incorrect prediction of disease. However, the system is unwieldy
if it does not do much better than chance (AUC=0.5). We did
not select a specific AUC threshold, but we analyzed portions of
the network with AUC that were above average on our test set.

We also computed information about the graph structure
using Gephi, an open-source graph visualization and manipula-
tion tool.32 We calculated: the Markov blankets of target vari-
ables, the degree and betweenness centrality of problems and
complaints, and the number of total subgraphs. The Markov
blanket of a node is its parents, children, and siblings, and is fre-
quently used as a heuristic for the set of most relevant variables
in prediction.33 This was computed by using Gephi’s small-
world analysis plug-in to count all variables less than three hops
away from each target variable and manually removing nodes
from this set that were not in the Markov blanket. All other
measures were implemented directly by Gephi. The degree of a
variable is simply the number of edges connecting it to other
variables in the graph. Degree is a proxy of the variable’s overall
relevance in predicting other variables (because the more con-
nected it is, the more of a role it is likely to play). Betweenness
centrality is a somewhat more powerful measure of the vari-
ables’ relevance than degree. It is the number of shortest paths
on which a variable lies between pairs of other variables.34

Finally, the number of subgraphs are found by searching for
components of the graph that have no edges touching other
components.35 The graph visualizations in the figures were also
created with Gephi.

This retrospective analysis was approved by the institutional
review board.

RESULTS
Graph structure
The final graph contained 107 variables (uncorrelated variables
or those without predictive power are automatically removed by
the algorithms described above). Seventy-eight variables were in
the target set for prioritization (screening questions, physician
concerns, and anticipatory guidance) and 10 non-target vari-
ables were in the Markov blanket of that target set. This filtered
graph of 88 variables was made up of 13 subgraphs, of which
10 had three or fewer nodes.

The filtered graph can be seen in figure 2. Each variable is
numbered; the number, name, degree, count, and AUC of each
variable can be found in supplementary appendix A (available
online only). The filtered graph is also included as a supplement
in GEXF (graph exchange XML) format (available online only).

Eight of 10 of the tiny subgraphs contained at least one node
of AUC less than 0.60 (ie, not much more predictive than
chance). The other two were: the year a home was renovated
was predictive of the year it was built (AUC 0.65) and substance
abuse in the family was predictive of engaging in high-risk activ-
ities under the influence of alcohol (AUC 0.60).
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Summary statistics and analysis of most predictive nodes
Average AUC was 0.65 with an average SE of 0.020, and the 39
above-average (AUC≥ 0.65) variables are listed, along with their
SE, in table 2. High AUC tended to have smaller SE than those
with low AUC (mean 0.028 vs 0.054). Table 3 shows the 10
non-target variables and their degree (the number of edges
attaching that variable to the graph). Betweenness centrality is
not shown, because the degree was highly correlated with it—
only nodes of degree 2 and higher had a betweenness centrality
score greater than zero.

The top seven target variables had AUC of 0.8 or above.
Figure 3 shows an extract of the graph containing these seven
nodes and their Markov blankets. These graphs included almost
the entirety of the two smaller subgraphs, and only a small

portion of the largest one. The relationships between these top
seven variables fell into two categories.

Category 1: intuitively correct relationships
Variables that seemed intuitively correlated were reflected in the
graph; for example, drug use is correlated to both alcohol use
and drug use of friends. One entire subgraph is predominantly
alcohol and drug use (see the blue subgraph in figures 2 and 3).

Category 2: less-intuitive relationships
Some unexpected correlations arose. For example, knowing
what to do in response to a smoke alarm is partly predicted by
behavior at a crosswalk. Similarly, whether firearms are kept
unloaded is related to wearing a life jacket (see green and red

Figure 2 Graph learned from a training set of approximately 30 000 patients, filtered to include only screening questions, anticipatory guidance,
and their Markov blankets. It consists of 88 nodes (clinical variables) and 90 edges (relationships). Nodes are colored by subgraph and their size is
determined by area under the receiver-operating characteristic curve (larger is higher). The three largest subgraphs are given a unique color; the
smaller subgraphs are black. Non-target variables are yellow. Node numbers correspond to the node information table in supplementary appendix A
(available online only).
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subgraphs in figures 2 and 3). Correlations with lower AUC
were also frequently interesting, such as the relationships
between mood, drug use, and sex in adolescents (lower AUC
means that the test set did not consistently support the discov-
ered relationship, but its existence in the graph means the train-
ing set supported it.).

DISCUSSION
We have employed a statistical method to learn a Bayesian
network of pediatric preventive care variables, including screen-
ing questions and physician observations, assessments and
actions, entirely automatically from previously collected aggre-
gate data, creating a phenotype of the population. We then eval-
uated the predictive power of the network, laying the

groundwork for an expected value approach to prioritize risk
assessments and physician prompts based on the current state of
the patient. The average AUC (0.65) of the 78 target variables
modeled was the same as an earlier expert-derived Bayesian
network for childhood asthma detection on CHICA data.36

The top seven of these (AUC≥0.8) fell into two categories.
Category 1, teen high-risk behaviors, gives the system good face
validity. These behaviors are known to be correlated.37 Category
2 highlights an advantage of a statistically based system: less well
recognized relationships (including local correlations that might
be true in only the target population) are automatically captured
by the system. For example, correlations among safety behaviors
have been described in our work with other systems.22

The ability to predict an individual patient’s risk of a health
state has myriad practical applications, but for the CHICA
system, it supports an individualized approach to prioritizing
risk assessments and services. The Bright Futures guidelines, the
federally recognized authoritative source of preventive care
guidelines for children, contain 574 pages of recommenda-
tions.3 In a single decade, American Academy of Pediatrics pol-
icies generated over 162 discrete, specific recommendations.8

This vastly exceeds what can be done in a typical visit. Without
prioritization, the advice followed by pediatricians becomes
arbitrary. When the probability of a patient having a particular
health risk is known, it becomes possible to move it up or down
in priority. For example, knowing a teen is likely to have used
tobacco can increase the priority of smoking cessation counsel-
ing, and predicting that a family keeps loaded firearms in the
home could raise the priority of discussing gun safety.

A demonstration of a full expected value approach to priori-
tizing questions and alerts in the CHICA system is beyond the
scope of the present study because it requires the assessment of
severity (utility) of the corresponding adverse outcome.
Nonetheless, a couple of examples can illustrate the value of tai-
loring prioritization to the individual child. Our network offers
an AUC of 0.9 for teen smoking. The posterior probability for
an individual will vary, but this AUC can be thought of as
including (approximately) the point 90% sensitivity and 90%
specificity. The baseline rate of teen smoking in the USA is
about 20%. This means that the network may distinguish teens
with a 69% likelihood of smoking (who certainly would deserve
screening and counseling) from those with a 3% likelihood of
smoking whose visits might be better spent discussing school
performance or asthma.

Table 2 The 39 target variables with above-average AUC (≥0.65,
accounting for SE), alongside their SE

# Variable AUC SE

26 Has used tobacco 0.90 0.017
22 Drunk in the past month 0.83 0.036
38 Friends use drugs 0.83 0.027
34 Firearms are kept unloaded 0.80 0.010
54 Looks both ways when crossing street 0.80 0.018
86 Knows what to do in response to a smoke alarm 0.80 0.011
25 Has an escape plan for house fire 0.79 0.015
15 Uses cigarettes or snuff with friends 0.76 0.019
81 Has safety latches installed 0.76 0.011
94 Uses illegal drugs 0.76 0.034
55 Uses low-iron infant formula 0.74 0.039
87 Stops at the curb before crossing 0.74 0.016
51 Knows how to save a choking child 0.73 0.011
44 Has a smoke detector 0.72 0.017
84 Sleeps on side or back 0.72 0.016
98 Wears sports protective gear 0.72 0.017
45 Has stairway gates 0.71 0.012
3 Abuses over-the-counter drugs 0.71 0.047
20 Has driven with a drunk 0.70 0.036
35 Visits homes with firearms 0.70 0.012
12 Knowledgeable about burns 0.69 0.011
32 Firearms have been discussed 0.69 0.017
52 Knows how to swim 0.66 0.011
68 Play area is fenced 0.66 0.009

71 Has the poison control number on phone 0.66 0.008
76 Lives in a pre-1978 home undergoing renovation 0.66 0.049
96 Wears a bike helmet 0.66 0.008
10 Bicycle has coaster breaks 0.65 0.046
19 Doors are secure for child 0.65 0.031
42 Happy with how things are going 0.65 0.023
43 Has had intercourse 0.65 0.023
49 Home was built before 1950 0.65 0.055
79 Had felt sad the past few weeks 0.65 0.026
91 Has tested smoke detector batteries 0.65 0.011
97 Wears a life jacket 0.65 0.020
39 Has had fun in the past 2 weeks 0.64 0.027
69 Play equipment is protected 0.64 0.020
82 School suspension in the past year 0.64 0.019
106 Has seen a dentist 0.64 0.014

AUC is the probability a true instance is correctly ranked higher than a false instance.
SE is a measure of the SD of the AUC. The # is the variable number in Figure 2 and
supplementary appendix A (available online only).
AUC, area under the receiver-operating characteristic curve.

Table 3 The 10 non-target variables in the Markov blanket of
target variables, alongside their degree

Variable Degree

Standard 18-month developmental screening test 1
Vision screening 1
Normal oral exam 1
Sickle cell disease 1
Has asthma or symptoms of asthma 2
Family history: breastfed 2
Has medication allergies 1
Premature birth 1
English vs spanish speaker 11
ADHD diagnosis 1

Degree is the number of edges connected to this variable, and is related to that
variable’s importance in prediction.
ADHD, attention deficit hyperactivity disorder.
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A less dramatic example might be lead risk (old housing
stock); 3.4% of our patients have such risk.17 With an AUC of
only 0.66, the network can still identify children with a risk of
6.4% from those with a risk of less than 2% who may not need
screening at all.

Limitations and future directions
Like all machine-learning approaches, the model (network) can
be negatively biased by the training set and can contain non-
generalizable relationships (called over-fitting). The magnitude
of this problem is reflected by the predictive power of the
network. Ours was good on average but had weak areas—six
variables were predicted no better than chance (AUC 0.5).
Future work should improve: (1) the training data and (2) the
use of those data. For (1), two problems are commonplace. One
is that data in medical informatics are often noisy. This is actu-
ally unlikely here; our previous work has demonstrated that
data collected using CHICA are reliable and meaningful.38

Another problem is that not enough context is provided,
leading to transitive relationships (ie, there is a valid statistical
relationship but there is a hidden variable, ie, not accounted
for). Such transitive relationships frequently occur in EHR data
mining.39 We can see this in our network: ‘sickle cell disease’
and ‘friends use drugs’ are connected, probably because both

are more common in our African-American population.
Although it is computationally intractable to learn networks of
more than a few hundred variables, feature selection can be
used on a broad dataset to choose relevant contextual variables
for the structure-learning algorithm. Many feature selection
algorithms exist.40 Although they are commonly quite slow, we
are developing fast feature selection methods that use network
analysis in correlation graphs.41 For (2), many of the non-target
variables were connected to each other rather than to screening
questions. It would be preferable to force exam and test results
to be linked to screening questions, which can be accomplished
by specifying a priori knowledge to the structure-learning algo-
rithm before processing.

The networks in our system are time agnostic. It would be
optimal to model not just what was last known to be true but
when it was true. For example, if the last concern about drug use
was 10 years ago, it is likely not to be a concern now. We mitigate
this problem by using the most recent value for each patient; pre-
sumably if drug use was a concern many years ago, there would
be a more recent instance in which the patient no longer said
they used drugs. However, true temporal modeling should be
compared to the standard time-agnostic model. In particular, the
modeling of temporal patterns, such as increasing values of a par-
ameter or recurrence of a risk factor, may impart greater

Figure 3 The Markov blankets of
high area under the receiver-operating
characteristic curve (AUC) nodes from
figure 2. Nodes are sized by AUC and
the color matches figure 2. The
Markov blanket of a node is its
parents, children, and siblings, and is
frequently used as a heuristic for the
set of most relevant variables in
prediction.24
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predictive power. A variety of approaches supports network
learning with time, including dynamic Bayesian networks,42 con-
tinuous time Bayesian networks,43 and a model we are
developing.

Finally, as mentioned earlier, the full prioritization score we
previously proposed includes the likelihood of a health risk, its
severity (disutility), and the effectiveness of addressing it as a
rational way of prioritizing assessment questions or physician
reminders.18 By expanding our Bayesian networks into influence
diagrams that include decision and value nodes, we can select
risk questions and prompts based on their expected value.
At that point, a clinical trial of the patient-tailored prioritized
questionnaires will be appropriate.

CONCLUSION
This study demonstrates the feasibility of Bayesian structure
learning and inference to build models for prioritizing pediatric
screening questions and reminders in a patient-tailored manner,
by using discriminative power as a sine qua non for future
expected value calculations. These population-phenotype models
are built automatically, using only previously collected data
without human intervention. The outputs are easy-to-understand
diagrams that can be edited by designers and researchers. This
preliminary work used a dataset of 29 402 patients and 177
screening and preventive care variables to produce a dynamic
model of 107 nodes and 143 edges. Structure analysis revealed
groups of related nodes as well as some non-intuitive correlations
(eg, firearms and life jackets). Average AUC on a test set was 0.65,
with seven nodes above 0.8. Although we have outlined several
future improvements to our methodology, we have also shown
that even this average AUC can be discriminative enough to pri-
oritize screening questions properly, depending on risk preva-
lence and the other factors in our previously developed expected
value approach.
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