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Abstract

Background—Pig erythrocytes are potentially useful to solve the worldwide shortage of human 

blood for transfusion. Domestic pig erythrocytes, however, express antigens that are bound by 

human preformed antibodies. Advances in genetic engineering have made it possible to rapidly 

knock out the genes of multiple xenoantigens, namely galactose α1,3 galactose (aGal) and N-

glycolylneuraminic acid (Neu5Gc). We have recently targeted the GGTA1 and CMAH genes with 

zinc finger endonucleases resulting in double knockout pigs that no longer express aGal or 

Neu5Gc and attract significantly fewer human antibodies. In this study, we characterized 

erythrocytes from domestic and genetically modified pigs, baboons, chimpanzees, and humans for 

binding of human and baboon natural antibody, and complement mediated lysis.

Methods—Distribution of anti Neu5Gc IgG and IgM in pooled human AB serum was analyzed 

by ELISA. Erythrocytes from domestic pigs (Dom), aGal knockout pigs (GGTA1 KO), aGal and 

Neu5Gc double knockout pigs (GGTA1/CMAH KO), baboons, chimpanzees, and humans were 

analyzed by flow cytometry for aGal and Neu5Gc expression. In vitro comparative analysis of 

erythrocytes was conducted with pooled human AB serum and baboon serum. Total antibody 

binding was accessed by hemagglutination; complement-dependent lysis was measured by 

hemolytic assay; IgG or IgM binding to erythrocytes was characterized by flow cytometry.

Results—The pooled human AB serum contained 0.38 μg/ml anti Neu5Gc IgG and 0.085 μg/ml 

anti Neu5Gc IgM. Both Gal and Neu5Gc were not detectable on GGTA1/CMAH KO 

erythrocytes. Hemagglutinaion of GGTA1/CMAH KO erythrocytes with human serum was 3.5-

fold lower compared to GGTA1 KO erythrocytes, but 1.6-fold greater when agglutinated with 

baboon serum. Hemolysis of GGTA1/CMAH KO erythrocytes by human serum (25%) was 

reduced 9-fold compared to GGTA1 KO erythrocytes, but increased 1.64-fold by baboon serum. 

Human IgG binding was reduced 27-fold on GGTA1/CMAH KO erythrocytes compared to 
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GGTA1 KO erythrocytes, but markedly increased 3-fold by baboon serum IgG. Human IgM 

binding was decreased 227-fold on GGTA1/CMAH KO erythrocytes compared to GGTA1 KO 

erythrocytes, but enhanced 5-fold by baboon serum IgM.

Conclusions—Removal of aGal and Neu5Gc antigens from pig erythrocytes significantly 

reduced human preformed antibody-mediated cytotoxicity but may have complicated future in 

vivo analysis by enhancing reactivity from baboons. The creation of the GGTA1/CMAH KO pig 

has provided the xenotransplantion researcher with organs and cells that attract fewer human 

antibodies than baboon and our closest primate relative, chimpanzee. These finding suggest that 

while GGTA1/CMAH KO erythrocytes may be useful for human transfusions, in vivo testing in 

the baboon may not provide a direct transplation to the clinic.
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Introduction

The creation of GGTA1/CMAH gene double knock out (GGTA1/CMAH KO) pigs has 

made it possible to consider the clinical application of pig erythrocytes for transfusion (1-3). 

Historically, the problem with using domestic (Dom) pig erythrocytes in humans has been 

the same as organ transplantation, antigens on the surface of erythrocytes recognized by 

human antibody initiate rapid complement-dependent lysis (4). Developing α 1,3 

galactosyltransferase knockout (GGTA1 KO) pigs overcame the immune response towards 

galactose α-1,3 galactose (aGal) epitopes reducing antibody binding by approximately 70% 

as compared to Dom pigs (5). Like other blood cells, erythrocytes express another well-

known xenoantigen, N-glycolylneuraminic acid (Neu5Gc) (6-9). Neu5Gc is mediated by the 

enzyme cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH). A 

mutation in the CMAH gene, unique to humans, causes the absence of Neu5Gc in human, 

which is present in pigs and elevated the non-human primates, chimpanzees and baboons 

(10,11). Antibodies not directed towards aGal in most healthy human sera may be directed 

toward Neu5Gc epitopes on many pig cells including vascular endothelial cells, PBMC and 

erythrocytes (12). Anti-Neu5Gc antibodies in human serum are detectable in 85% of human 

population (6). Our recent progress in the creation of a GGTA1/CMAH KO pigs reduced 

antibody binding to peripheral blood cells by approximately 70% when compared to 

GGTA1 KO pigs (13). The GGTA1/CMAH KO pig has created a unique opportunity to 

revisit the use of pig erythrocytes clinically.

Previous in vitro studies of erythrocyte transfusion indicated that removing aGal epitopes by 

treatment with α-galactosidase or using erythrocytes from GGTA1 KO pigs reduced binding 

of human or baboon antibody (7, 8). When erythrocyte agglutination was compared to ABO 

matched or mismatched human serum the erythrocytes from GGTA1 KO pigs, but not Dom 

pigs, agglutinated at a rate comparable to ABO-mismatched human erythrocytes (9). In vivo 

studies in non-human primates showed that GGTA1 KO pig erythrocyte loss was delayed as 

compared to Dom pig erythrocytes (7, 8); further a combination of complement depletion 

from the non-human primate and treatment of the pig erythrocytes with α-galactosidase 

enabled their survival in circulation for 24 hours; if macrophages and complement were 

Wang et al. Page 2

Xenotransplantation. Author manuscript; available in PMC 2015 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



removed, the treated erythrocytes survived for 72 hours (7). Nevertheless GGTA1 KO 

erythrocytes were removed from circulation within a few minutes after intravenous infusion, 

which suggests that multiple mechanisms are involved in rejection of pig erythrocyte 

xenotransfusion (7, 8).

It is challenging to study GGTA1/CMAH KO cells in an animal model since all non-human 

primates express CMAH therefore lacking anti Neu5Gc antibody (14). The limitations of 

using chimpanzees or baboons as organ and cell donors or as in vivo models of 

xenotransplantation may have been due in part to differences in non-aGal carbohydrate 

expression. In this study, we evaluated the neuraminic acid and Neu5Gc expression on 

human, pig and non-human primate erythrocytes. We provide in vitro comparative analysis 

of human and baboon antibody-mediated hemagglutination, cytotoxicity and IgG/IgM 

binding to erythrocytes from genetically modified pigs important to xenotransplantation. 

While the baboon may not be an ideal model, our in vitro analysis supports further 

investigation into GGTA1/CMAH KO erythrocytes for xenotransfusion.

Materials and methods

Blood and serum

Pig blood was collected in heparinized vacuum tubes from Dom, GGTA1 KO, and GGTA1/

CMAH KO pigs (13), which are predominantly landrace mixed breed pigs blood group O 

using Institutional Review Board and Institutional Animal Care and Use Committee 

approved protocols (IRB#0808 and IACUC#10345). Blood (baboon and chimpanzee) and 

serum (baboon only) were obtained from Southwest National Primate Research Center 

(Texas Biomedical Research Institute). Human blood was collected from healthy volunteers 

(type A and O) according to IRB protocol guidelines. Pooled human serum (blood type A 

and B) was purchased from Lonza Bioscience, Rockland .

Isolation of erythrocytes

Erythrocytes were isolated from whole blood using Ficoll-Paque Plus, and washed three 

times with phosphate-buffered saline (PBS). The erythrocytes were diluted 1:10 in PBS at 

room temperature.

ELISA

Total IgG/IgM and anti-Neu5Gc IgG/IgM in human serum was measured by ELISA as 

described previously (15, 16). Briefly, Total human IgG/IgM was captured on ELISA plates 

by mouse anti-human IgG or goat anti-human IgM antibodies (Sigma) and detected by 

peroxidase conjugated goat anti-human IgG and IgM (Jackson ImmunoResearch 

Laboratories, Inc., West Grove, PA, USA). Anti-Neu5Gc antibody from human serum was 

measured by binding to Neu5Gc-PAA (250ng/well) (Glycotech) or Neu5Ac-PAA (250ng/

well) (Glycotech) coated wells. Peroxidase conjugated goat anti-human IgG and IgM were 

used to detect bound antibody. As a control for non-specific human antibody binding to 

carbohydrate linked PAA, antibody bound to Neu5Ac-PAA was subtracted as background. 

The concentration of anti-Neu5Gc IgG/IgM was calculated by comparison to a purified 

IgG/IgM standard curve (Sigma) on each ELISA plate.
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Flow cytometry

To access aGal and Neu5Gc expression, erythrocytes (1 × 106/sample) were prepared and 

stained at 4°C for 1h with fluorescein labeled Sambucus nigra lectin (SNA) (Vector Labs), 

Griffonia simplicfolia IB4 (IB4 lectin) Alexa Fluor 647 (Invitrogen, Grand Island), chicken 

anti-Neu5Gc antibody and isotope control (Sialix, Vista). Donkey anti chicken DyLight 649 

antibody staining was followed at 4°C for 30 min (Jackson ImmunoReserch laboratories 

Inc.). To determine the relative concentration of human and baboon IgG/IgM binding, 

erythrocytes (1 × 106/sample) were incubated with a 4-fold serial dilution of heat-inactivated 

human or baboon serum at 4°C for 1h. Washed cells were stained at 4°C for 30 min with 

Donkey anti human IgG or IgM antibody (Jackson ImmunoResearch Laboratories Inc.). 

Controls consisted of erythrocytes unstained or stained with secondary antibody alone. Flow 

cytometry analysis was performed using an Accuri C6 flow cytometer and CFlow software 

(Accuri, Ann Arbor, MI, USA).

Hemagglutinaiton assay

The assay is carried out in 96-well round bottom plates as described previously (9). Briefly, 

erythrocytes were prepared and suspended at 2 × 107/well. After washing with HBSS, the 

erythrocytes were incubated with a 2-fold serial dilution of heat-inactivated human or 

baboon serum in HBSS at 4°C overnight. Control samples were treated with HBSS without 

serum. The images were scanned with an Epson Perfection 3200. Agglutination was based 

on the modified Marsh standard 5-point scale from 0= none through 4 =maximum.

Antibody-mediated complement dependent hemolytic assay

Erythrocytes were isolated as described above, suspended at 2 × 107/well in 96-well plates 

and treated at 4°C for 1h with 25% human or baboon serum. After washing twice, the cells 

were incubated at 37°C for 1h with rabbit complement with a 1:12 dilution. The control 

samples were treated with rabbit complement alone. The plates were centrifuged at 400g for 

10min. The supernatant was collected and transferred into new plates. Released hemoglobin 

was measured in the supernatant at 541 nm using a SpectraMax M2e plate reader (Molecular 

Devices Corp. Sunnyvale, CA, USA) (7).

Statistics

GraphPad Prism 5 software (GraphPad Software, La Jolla, CA, USA) was used to perform 

one-way ANOVA. Significant differences were considered at P ≤ 0.05.

Results

Distribution of total IgG/IgM and anti-Neu5Gc IgG/IgM in human serum AB pool

To directly access the characteristics of human serum AB pool, ELISA was performed to 

test the level of both total IgG/ IgM and anti-Neu5Gc IgG / IgM in the human AB pooled 

serum. Total IgG was 20.9 mg/ml in AB pool serum, and from15.8 to 28.1mg/ml in donor 

serum; total IgM was 5.5 mg/ml in AB pool, and from 4.1mg/ml to 7.2 mg/ml in donor 

serum (Figure 1, left panel). While anti Nue5Gc IgG was 0.38 μg/ml in human AB pooled 

serum, and individually from 0.001 to 24.1 μg/ml in donor serum; anti Nue5Gc IgM was 
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0.085 μg/ml in AB pool, and individually from 0 to 0.92 μg/ml in donor serum (Figure 1. 

right panel). Since the human serum AB pool had detectable levels of both anti Neu5Gc IgG 

and IgM, pooled human serum was used to characterize GGTA1/CMAH KO erythrocytes in 

comparison with baboon serum.

Undetectable expression of both aGal and Neu5Gc on GGTA1/CMAH KO erythrocytes

To access aGal and Neu5Gc expression on freshly isolated erythrocytes, flow cytometry 

analysis was performed (Figure 2). Neu5Ac was present on all erythrocytes from Dom, 

GGTA1 KO, GGTA1/CMAH KO pigs, baboons, chimpanzees, and humans (blood group A 

and O) (top panel); like humans and primates (baboon and chimpanzee), aGal was in the 

absence of both of GGTA1 KO and GGTA1/CMAH KO erythrocytes, except but Dom 

erythrocytes (middle pane). Similar to humans, Neu5Gc was absent on GGTA1/CMAH KO 

erythrocytes, but present on Dom, GGTA1 KO, baboons and chimpanzees erythrocytes 

(bottom panel).

Hemagglutination by human or baboon serum

Hemagglutination was used to determine the relative amount of natural antibody in pooled 

human or baboon serum directed towards pig erythrocytes (Figure 3). Representative images 

of agglutination by a 2-fold serial dilution of heat-inactivated human or baboon serum were 

shown. When incubated with human serum GGTA1/CMAH KO erythrocytes agglutinated 

the least (1:8 dilution) followed by GGTA1 KO erythrocytes (1:64) and Dom erythrocytes 

(1:1024). Human serum agglutinated baboon and chimpanzee erythrocytes at higher 

dilutions compared with GGTA1/CMAH KO and GGTA1 KO erythrocytes. No 

agglutination was observed in human type O erythrocytes. Hemagglutination of different 

erythrocytes was measured by the modified Marsh scoring system (Figure 3 B). Values 

shown are the sum of scores for each cell type in the dilution series. For human serum-

induced agglutination, the mean agglutination score (n=3) for Dom, GGTA1 KO and 

GGTA1/CMAH KO erythrocytes was 35.5, 19 and 5.5 respectively; the score of baboon and 

chimpanzee erythrocytes were 18.3 and 25.5 respectively; human erythrocytes was 1. For 

baboon serum-induced agglutination, the mean score (n=3) of Dom, GGTA1 KO and 

GGTA1/CMAH KO erythrocytes was 34.3, 8.8 and 14.3 respectively; the score of baboon, 

chimpanzee and human erythrocytes was 4.3, 18.8 and 3.3 respectively.

RBC hemolysis by human or baboon serum

To evaluate antibody-mediated complement-dependent cytotoxicity by human or baboon 

serum we used a hemolytic assay measuring released hemoglobin at the optical density (OD) 

of 541 nm (Figure 4). For human serum-induced lysis, the mean OD values (n=3) of Dom, 

GGTA1 KO and GGTA1/CMAH KO erythrocytes were 1.5, 0.64 and 0.07; the mean OD 

values of baboons, chimpanzees and humans were 0.45, 0.96 and 0.11 respectively. For 

baboon serum-induced lysis, the mean OD values (n=3) of Dom, GGTA1 KO and GGTA1/

CMAH KO erythrocytes were 1.4, 0.39 and 0.64 respectively; the mean OD values of 

baboons, chimpanzees and humans were 0.1, 0.8 and 0.18 respectively.
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Human or baboon IgG/IgM binding on erythrocytes

To assess the binding of human and baboon IgG/IgM towards erythrocytes from pigs, 

primates and humans, we used flow cytometry. Human and baboon serum was evaluated in 

a 4-fold serial dilution including 25%, 6.3% and 1.56% (Figure 5). In panel A, 

representative histograms showed that higher concentrations of human or baboon serum are 

correlated with higher IgG or IgM binding to erythrocytes from Dom, GGTA1 KO, GGTA1/

CMAH KO, baboons, chimpanzees and humans. In panel B, bar graphs expressed a mean 

fluorescence intensity (MFI) of human or baboon IgG/M binding toward erythrocytes using 

6.3% final sera (n=3) normalized by the subtraction of the MFI values for control cells 

incubated with the secondary antibody alone. Human IgG binding was reduced by 27-fold 

on GGTA1/CMAH KO erythrocytes compared to GGTA1 KO erythrocytes, (559 and 15187 

respectively). IgG binding to GGTA1KO erythrocytes was 2-fold lower than Dom 

erythrocytes; the MFI of Dom, baboon and Chimpanzee Erythrocytes were 30079, 9532, 

10613 respectively; human Erythrocytes as a control was 262; while human IgM binding 

(MFI) was decreased significantly by 227-fold on GGTA1/CMAH KO erythrocytes 

compared to GGTA1 KO, respectively 32 and 7278; and GGTA1 KO erythrocytes were also 

significantly Lower by 3-fold than Dom erythrocytes. The MFI of Dom, baboon and 

chimpanzee erythrocytes was 21858, 3803, and 12824 respectively. Human erythrocytes as 

a control was 161.

In contrast, baboon IgG binding (MFI) was markedly increased by 3-fold on GGTA1/

CMAH KO erythrocytes compared to GGTA1 KO erythrocytes, (2034 and 681 

respectively). Baboon IgG binding to Dom erythrocytes was significantly higher than to 

either GGTA1/CMAH KO or GGTA1 KO erythrocytes. The MFI of baboon IgG binding to 

Dom, chimpanzee, and human erythrocytes was 6477, 1898, and 799, respectively. Baboon 

erythrocytes were used as a control for baboon IgG binding and had an MFI of 460. Baboon 

IgM binding (MFI) was enhanced 5-fold to GGTA1/CMAH KO erythrocytes compared to 

GGTA1 KO erythrocytes, (1174 and 235 respectively). Baboon IgM binding to Dom 

erythrocytes was significantly higher than both GGTA1/CMAH KO and GGTA1 KO 

erythrocytes. The MFI of Dom, chimpanzee, and human erythrocytes was 5112, 950, and 

1127 respectively. The MFI of baboon IgM binding to baboon erythrocytes was 52.

Discussion

Genetically engineering pigs without aGal expression (GGTA1 KO) delayed antibody-

mediated rejection (AMR) of pig organs or cell transplantation in non-human primates (17). 

Similar to aGal, Neu5Gc is absent on human cells and has been defined as a non-Gal antigen 

target on human erythrocytes recognized by human preformed antibodies (6, 10). We have 

previously created pigs free of aGal and Neu5Gc that has the potential to be an organ and 

tissue donor to humans (13). The reactivity of human serum to peripheral blood monocytes 

(PBMC) from GGTA1/CMAH KO pigs was similar to the decrease in immunoreactivity 

seen in this study (13). These finding are not unique to our GGTA1/CMAH KO pigs. 

Thymocytes from mice with similar genetic modifications incubated with human serum also 

had a decrease in antibody binding (18). Our results have established that the erythrocytes 
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from GGTA1/CMAH KO pigs are a significant advancement towards a plentiful alternative 

to human erythrocytes for transfusion.

The development of GGTA1/CMAH KO pigs confirmed that Neu5Gc on erythrocytes is an 

important binding target for non-Gal preformed antibody in human serum but not in baboon 

serum. The creation of the GGTA1/CMAH KO pigs has brought us closer than ever to 

clinical xenotransplantation, but our ability to test these pigs in established models is 

hampered by the expression of Neu5Gc in non-human primates. This study demonstrates the 

changes in immunoreactivity of human and baboon serum toward erythrocytes of GGTA1/

CMAH KO, GGTA1 KO and Dom pigs and suggests that the baboon is a poor model of 

antigen binding after the loss of Neu5Gc in pigs. Surprisingly, baboon serum was much 

more reactive to the GGTA1/CMAH KO pig RBC when compared to human serum. 

Theoretically there could be an increase in existing antigen or creation of new antigen 

recognized by baboon IgG or IgM but more importantly the observed increase in hemolytic 

activity prevents further application of the baboon model.

Antibody binding, hemagglutination, and lysis defined the immediate effects of human 

antibody on the pig erythrocytes the way they may occur during transfusion. Cellular effects, 

however, may have an impact on the application of GGTA1/CMAH KO erythrocytes to 

xenotransfusion. The observation that baboon sera was more reactive to GGTA1/CMAH 

KO erythrocytes as compared to GGTA1 KO alone suggests that that there are significant 

changes to the antigenic surface of the erythrocytes. We have no evidence whether these 

changes are in the extracellular proteins or carbohydrates. But since the genetic 

modifications were to the glyco-synthetic pathway, we hypothesize that modification of the 

surface sialic acid profile has created a species-specific glycosylation pattern that made 

baboons more immunoreacitve to the GGTA1/CMAH KO pigs. Given our understanding of 

the role of terminal sialic acid in erythrocyte phagocytosis, this may present a barrier in both 

baboons and humans (19). Xenogeneic cells may be phagocytosed by human macrophages 

in the spleen and liver (7, 9, 20). The variation in carbohydrate may not be the only 

complication. A well described incompatibility between human and pig CD47-signal 

regulatory protein a (SIRPa) signaling protein may predispose any pig erythrocyte to an 

undetermined amount of phagocytosis (21, 22). Our description here of antibody bound to 

pig erythrocytes may predispose xenogenic erythrocyte to be cleared from circulation the 

way many bacteria or foreign particles would be phagocytosed (9). We have made an initial 

step in characterizing GGTA1/CMAH KO pig erythrocytes for xenotransfusion but there 

remain several important cellular issues to address. Additionally, it may be necessary to 

express the human CD47 or SIRPa protein in the GGTA1/CMAH KO pigs using an 

erythrocyte specific promoter (e.g., glycophorin A, hemoglobin) to provide sufficient 

protection from xenogeneic erythrocyte phagocytosis. In lieu of a non-human primate model 

the use of NOD/SCID/gc null mice with a reconstituted human immune system bred on a 

GGTA1/CMAH KO genetic background would provide a suitable in vivo model to further 

address macrophage-mediated rejection of GGTA1/CMAH KO erythrocytes (18, 23, 24). 

The humanized NOD/SCID/gc null mice are well documented and given our recent success 

with the creation of a GGTA1/CMAH KO pig we believe this approach is possible.
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In conclusion, removal of aGal and Neu5Gc provided further protection from human 

antibody-meditated rejection of pig erythrocytes. Given the success of complement 

depletion in the non-human primate model of xenotransfusion, the expression of human 

complement regulatory or thromboregulatory proteins in the GGTA1/CMAH KO pigs may 

provide sufficient protection from antibody-mediated injury bringing us another step closer 

to clinical xenotransfusion.

Acknowledgements

This study was supported by IU Health Transplant Institute.

Abbreviations

AMR antibody-mediated rejection

CMAH cytidine monophosphate-N-acetylneuraminic acid hydroxylase

Gal Gala-1,3-Gal

GGTA1 KO a1,3-galactosyltransferase knockout

GGTA1/CMAH KO a1,3-lalactosyltransferase and cytidine monophosphate-N-

acetylneuraminic acid hydroxylase double knockout

Neu5Gc N-glycolylneuraminic acid

PBMC peripheral blood mononuclear cell

PBS phosphate-buffered saline

RBC red blood cell
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Figure 1. 
Distribution of anti-Neu5Gc IgG/IgM in human serum by ELISA. The concentration of total 

IgG and IgM in pooled AB human serum and on-site donors was measured by ELISA 

(n=11) (left panel). The reactivity of human IgG and IgM to Neu5Gc-PAA in pooled AB 

human serum and donor serum (n=11) were measured in triplicate using anti-Nue5Ac-PAA 

for background subtraction (right panel).
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Figure 2. 
Expression of Gal and Neu5Gc on erythrocytes by flow cytometry. Erythrocytes from Dom, 

GGTA1 KO and GGTA1/CMAH KO pigs, baboons, chimpanzees, and humans were 

labeled with fluorescently conjugated Sambucus nigra (SNA) lectin (red line) to detect 

Neu5Ac linked α 1,6 galactose expression (top panel) were used as a positive control for the 

presence of erythrocytes. Fluorescently conjugated IB4-lectin was used to assess Gal 

expression (middle panel)(red line), and anti-Neu5Gc antibody was used to examine the 

expression of Neu5Gc epitopes (bottom panel)(red line). Unstained erythrocytes are shown 

as negative controls (black line) for SNA and IB4-lectins, and an isotype control for 

Neu5Gc. Histograms are representative of 3 individual experiments.
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Figure 3. 
Hemagglutination by human or baboon sera. Heat-inactivated human and baboon sera were 

serially diluted in HBSS and incubated with erythrocytes overnight at room temperature. 

Untreated erythrocytes were used as negative controls. The 96-well plates were scanned 

with Epson perfection 3200 and a representative image was shown (Panel A). The levels of 

agglutination in each well were measured by the modified Marsh scoring system scored 

from 0 to 4. The scores were expressed as the mean ± SEM, n=3 and *p<0.05 (Panel B).
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Figure 4. 
Antibody-mediated complement-dependent hemolysis by human or baboon sera. 

Supernatants from erythrocytes incubated with human or baboon sera (25%) followed by 

rabbit complement were measured at 541nm with a spectrophotometer. Values were 

normalized to complement treatment in the absence of serum for each group. The results 

from individual experiments were expressed as the mean ± SEM, n=3 and *p<0.05.
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Figure 5. 
Flow cytometry analysis of human or baboon IgG/IgM binding to erythrocytes. A 4-fold 

serial dilution of human or baboon sera was used to label erythrocytes from Dom, GGTA1 

KO and GGTA1/CMAH KO pigs, as well as baboons, chimpanzees, and humans. Bound 

human and baboon antibody was detected with fluorescently conjugated anti-human IgG or 

IgM antibodies. Erythrocytes from each group were treated with secondary antibody only as 

a control. Histograms shown are representative of 3 experiments (Panel A). IgG/IgM 

binding was assessed after normalization with the MFI of erythrocytes incubated with only 

secondary antibody. The results from individual experiments using 6.3% final sera are 

expressed as mean ± SEM, n=3 and *p<0.05 (Panel B).
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