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SU(1,1)-type light-atom-correlated interferometer
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The quantum correlation of light and atomic collective excitation can be used to compose an SU(1,1)-type
hybrid light-atom interferometer, where one arm in the optical SU(1,1) interferometer is replaced by the atomic
collective excitation. The phase-sensing probes include not only the photon field but also the atomic collective
excitation inside the interferometer. For a coherent squeezed state as the phase-sensing field, the phase sensitivity
can approach the Heisenberg limit under the optimal conditions. We also study the effects of the loss of light
field and the dephasing of atomic excitation on the phase sensitivity. This kind of active SU(1,1) interferometer
can also be realized in other systems, such as circuit quantum electrodynamics in microwave systems, which
provides a different method for basic measurement using the hybrid interferometers.
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I. INTRODUCTION

Enhanced phase estimation is important for high-precision
measurements of physical parameters [1–3]. In optical mea-
surements, many physical parameters can be converted to
phase measurements of the optical field based on the interfer-
ometer. The phase-measurement precision can be described
by quantum Fisher information and the quantum Cramér-Rao
bound [4,5]. The mean-square error in phase φ is given by
the error-propagation formula, δφ = �A|d〈A〉/dφ|−1, where
the average 〈A〉 and standard deviation �A =

√
〈A2〉 − 〈A〉2

of an observable A are calculated in an optimal condition.
High precisions based on the interferometer can be reached by
reducing the uncertainty �A or increasing the slope d〈A〉/dφ,
or operating them at the same time. The squeezed states [6–9]
and two-mode squeezed states [10,11] are used to make the
noise (�2A) below vacuum noise. The slope can be improved
by the oscillation frequency or the amplitude enhancements of
the output signal. Beating the standard quantum limit (SQL)
based on the oscillation-frequency enhancement was realized
by the NOON states [12,13]. The amplitude improvement
of the output signal was realized by changing the structure
of the interferometer, where the 50-50 beam splitters (BSs)
in a traditional Mach-Zehnder interferometer (MZI) were
replaced by the optical parameter amplifiers (OPAs) [14].
This interferometer was introduced by Yurke et al. [14] and is
also called the SU(1,1) interferometer because it is described
by the SU(1,1) group, as opposed to SU(2) for BSs. The
SU(1,1) interferometry is under experimental investigation
by different groups [15,16] and even with Bose-Einstein
condensates (BECs) [17–20]. Peise et al. [19] exploited the
quantum Zeno effects using the method of interaction-free
measurements and Gabbrielli et al. [20] realized a nonlinear
three-mode interferometer, where the analogy of optical down
conversion, i.e., the basic ingredient of SU(1,1) interferometry,
is created with ultracold atoms.
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Recently, an improved theoretical scheme was presented
by Plick et al. [21], who proposed to inject a strong coherent
beam to “boost” the photon number. Experimental realization
of this SU(1,1) interferometer was reported recently [15].
The maximum output intensity of this interferometer can be
much higher than the input intensity as well as the intensity
inside the interferometer (the phase-sensing intensity). More
recently, the noise performance of this interferometer was
analyzed [22,23]. Experimentally, under the same phase-
sensing intensity condition, the improvement of 4.1 dB in
signal-to-noise ratio of this interferometer over a traditional
linear interferometer was observed [24]. Due to the improved
phase-measurement sensitivity of this interferometer, it was
suggested for gravitational wave detection, but it needs strong
coherent light input [21]. The very strong coherent light will
generate the higher-order nonlinear effect and the radiation
pressure noise. Combined with the squeezed-state input, the
sensitivity of SU(1,1) can be improved further due to the
noise reduction [23]. Collective atomic excitation due to its
potential applications for quantum information processing has
attracted a great deal of interest [25–32]. Here, we present
an SU(1,1)-type hybrid interferometer composed of the light
and atomic collective excitation. There are two advantages.
One is high conversion based on the Raman process. The
other, more important one is that the phase shift is from
either or both the optical phase and the phase of the atomic
collective excitation which is sensitive to magnetic fields due
to the Zeeman effect. Such an interferometer should find
wide applications in precision measurement in atomic and
optical physics. Our scheme presents an extension and may
be a substantial step forward in an SU(1,1) standard optical
interferometer.

In the SU(1,1)-type hybrid light-atom-correlated interfer-
ometer discussed here, we use a Raman process to produce
a Stokes field together with a correlated atomic collective
excitation; that is, one arm in the optical SU(1,1) interfer-
ometer is replaced by the atomic collective excitation. For
a coherent squeezed state as a phase-sensing field input,
the phase sensitivity can approach the Heisenberg limit. The
effects of photon loss and collisional dephasing of the atomic
excitation on the the phase sensitivity are analyzed.
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II. LIGHT-ATOM-CORRELATED INTERFEROMETER

Let us first introduce the SU(1,1)-type hybrid light-atom-
correlated interferometer. In the optical SU(1,1) interferometer
of Yurke et al. [14], two nonlinear beam splitters take the place
of two linear beam splitters in the traditional Mach-Zehnder
interferometer (MZI). In the SU(1,1)-type hybrid light-atom-
correlated interferometer, one of two arms in the optical
SU(1,1) interferometer is replaced by an atomic collective
excitation, as shown in Fig. 1. In our scheme, the splitting and
recombination of the light field and atomic collective excitation
are composed of two Raman processes. In the first Raman pro-
cess, similar to the beam-splitting process, b̂0 is in vacuum, i.e.,
all atoms in their ground hyperfine state |1〉 by optical pump-
ing, or b̂0 is an initial atomic collective excitation which can
be prepared by another Raman process [28] or electromagneti-
cally induced transparency process [29]. Then an off-resonant
pump light EP 1 is applied to the atomic ensemble together
with a phase-sensing field â0, generating stimulating Raman
scattering â1 together with a correlated atomic collective
excitation b̂1 [28,30]. At the same time, the incoming phase-
sensing field â0 has been amplified by the Raman process. In
the second Raman process, similar to the beam recombination
process, the pump field P2 together with the generated Stokes
field â1 inject the Raman system again. Before the Stokes field
â1 injects the Raman system, it is subject to phase φ. After they

FIG. 1. (Color online) (a) The schematic diagram of the SU(1,1)-
type light-atom-correlated interferometer. In the optical SU(1,1)
interferometer of Yurke et al., two nonlinear beam splitters take the
place of two linear beam splitters in the traditional Mach-Zehnder
interferometer (MZI). Here, we use the Raman process (showed in
the boxes) to produce a Stokes field âi together with a correlated
atomic collective excitation b̂i (i = 1,2), which are the beam-splitting
elements. That is, in the light-atom-correlated interferometer, one arm
is the Stokes field (solid line) and the other arm is replaced by the
atomic collective excitation (dashed line). Two arms splitting and
their recombination are composed of two Raman processes which
are successively implemented inside the same atomic system. â0

is the initial input light field. b̂0 is in vacuum or an initial atomic
collective excitation which can be prepared by another Raman process
or electromagnetically induced transparency process. The pump field
Ep between the two Raman processes has a ψ phase difference. The
output optical mode â2 is detected by the homodyne detector Ha2. φ :
phase shift.

inject the Raman system, the phase-modulated Stokes field â2

is generated, as shown in Fig. 1 [31,32]. When the phase
shift φ is 0, the light field and atomic collective excitation
are decorrelated by the second Raman process. But when the
phase shift φ is not 0, similar to the optical interferometer, the
phase-measurement sensitivity of this hybrid interferometer
is improved due to signal enhancement based on Raman
amplification, i.e., the slope of the output signal is improved.
Compared with the realization of an SU(1,1) interferometry
via four-wave mixing [15,24], the Raman process has high
conversions due to the second-order nonlinear process instead
of the third-order nonlinear process. In addition, the proposal
can also introduce the atomic phase via a magnetic field change
into the phase measurement, and provide a different method
for basic measurements in atomic and optical physics.

Next, we analyze the two Raman processes. Considering a
three-level λ-shaped atom system shown in the box of Fig. 1,
the Raman-scattering process is described by the following
pair of coupled equations [33]:

∂â(t)

∂t
= ηAP b̂†(t),

∂b̂(t)

∂t
= ηAP â†(t), (1)

where â(t) is the light field operator, b̂(t) is the collective
atomic operator, AP is the amplitude of the pump field, and η

is the coupling constant. The solution of the above equation is
â(t) = u(t)â(0) + v(t)b̂†(0) and b̂(t) = u(t)b̂(0) + v(t)â†(0),
where u(t) = cosh(g), v(t) = eiθ sinh(g), g = |ηAP |t , eiθ =
(AP /A∗

P )1/2, and t is the time duration of pump field EP .
Different initial conditions of â(0) and b̂(0) correspond to
different scattering processes. We use different subscripts
to differentiate the two processes, where 1 denotes the first
Raman process (RP1) and 2 denotes the second Raman process
(RP2). We first examine the quantum correlations between
the two modes X̂a = (â + â†)/2 and X̂b = (b̂ + b̂†)/2 of
two Raman processes. The correlation of light and atomic
collective excitation can be described by the linear correlation
coefficient (LCC), which is defined as [34]

J (X̂,Ŷ ) = cov(X̂,Ŷ )

〈(�X̂)2〉1/2〈(�Ŷ )2〉1/2
, (2)

where 〈(�X̂)2〉 = 〈X̂2〉 − 〈X̂〉2, 〈(�Ŷ )2〉 = 〈Ŷ 2〉 − 〈Ŷ 〉2, and
cov(X̂,Ŷ ) = 1

2 (〈X̂Ŷ 〉 + 〈Ŷ X̂〉) − 〈X̂〉〈Ŷ 〉 is the covariance of
the quadrature phase operators X̂ and Ŷ [35]. For RP1, the
LCC J (X̂a1,X̂b1) is dependent on different initial conditions.
When â(0) and b̂(0) start from the vacuum, the first RP1
created pair correlations. Here the pair is not a photon pair, but
is composed of a photon and an atomic collective excitation.
The LCC is given by

J (X̂a1,X̂b1) = cos θ1 tanh(2g1). (3)

For θ1 = 0 (AP 1 is real), the maximum LCC are tanh(2g1).
The generated state is similar to the two-mode squeezed
vacuum state |
〉 = ∑

n cn|n〉ph|n〉atom, where n is the photon
number and the number of atomic collective excitation. If
â(0) and b̂(0) are initially in coherent states, the generated
state is similar to a two-mode squeezed coherent state [36].
After RP1, the LCC is not zero, which shows that a strong
correlation exists between the number of photon and the
number of atomic collective excitation number.

023847-2



SU(1,1)-TYPE LIGHT-ATOM-CORRELATED INTERFEROMETER PHYSICAL REVIEW A 92, 023847 (2015)

FIG. 2. (Color online) A lossy interferometer model. The loss
in the optical arm is modeled by adding a fictitious beam splitter,
i.e., â′

1 = √
T â1(t1)eiφ + √

RV̂ , where T and R are the transmission
and reflectance coefficients, respectively, and V̂ is in vacuum. The
loss in the other arm is the atomic collisional dephasing, i.e., b̂′

2 =
b̂1(t1)e−�τ + F̂ , where � is the collisional dephasing rate, τ is the
delay between two Raman processes, and F̂ is the noise operator.

Then, we examine the quantum correlation of the RP2.
After a delay time τ of the RP1 generation, the Stokes field â1

together with the pumping field EP 2 drive the atomic system
again, shown in Fig. 1. According to the solutions of Eq. (1),
we can obtain â2(t2) = u2(t2)â2(0) + v2(t2)b̂†2(0) and b̂2(t2) =
u2(t2)b̂2(0) + v2(t2)â†

2(0), where t2 is the duration of the pump
field EP 2. â2(0) and b̂2(0) are the initial conditions of RP2,
which is from the atomic collective excitation and stokes field
of RP1. We consider the collisional dephasing, which can be
described by the factor e−�τ (see Fig. 2). Then the initial
condition b̂2(0) is

b̂2(0) = b̂1(t1)e−�τ + F̂ , (4)

where τ is the delay and F̂ = ∫ τ

0 e−�(τ−t ′)f (t ′)dt ′. f̂ (t) is the
quantum statistical Langevin operator describing the collision-
induced fluctuation and obeys 〈f̂ (t)f̂ †(t ′)〉 = 2�δ(t − t ′) and
〈f̂ †(t)f̂ (t ′)〉 = 0. The Stokes light â1 is also subject to photon
loss, which can be equal to the effect of fictitious beam splitters
inserted in the channel, as shown in Fig. 2. Considering the
loss in the propagation, the initial condition â2(0) is given by

â2(0) =
√

T â1(t1)eiφ +
√

RV̂ , (5)

where T and R are the transmission and reflectance coeffi-
cients, respectively, and V̂ is in vacuum.

Using the initial conditions given by Eqs. (4) and (5), the
generated Stokes field â2 and atomic collective excitation b̂2

can be worked out,

â2(t2) = U1â1(0) + V1b̂
†
1(0) +

√
Ru2V̂ + v2F̂

†, (6)

b̂2(t2) = e−iφ[U2b̂1(0) + V2â
†
1(0)] + √

Rv2V̂
† + u2F̂ , (7)

where U1 = √
T u1u2e

iφ + e−�τ v∗
1v2, V1 = √

T v1u2e
iφ +

e−�τu∗
1v2, U2 = e−�τu1u2e

iφ + √
T v∗

1v2, and V2 =
e−�τ v1u2e

iφ + √
T u∗

1v2. When T = 1, �τ = 0, it reduced
to the ideal lossless case, i.e., U1 = U2 = U , V1 = V2 = V ,
and U = [cosh g1 cosh g2e

i(φ+θ1−θ2) + sinh g1 sinh g2]ei(θ2−θ1),
V = [sinh g1 cosh g2e

i(φ+θ1−θ2) + cosh g1 sinh g2]eiθ2 , where
|U |2 − |V|2 = 1. When φ = 0 and θ2 − θ1 = π , we have
U = 1 and V = 0. Therefore, under this condition, the LCC
J (X̂a2,X̂b2) is 0 for any input states. That is, the RP2 will
“undo” what the RP1 did.

Now, we analyze the phase sensitivity of this light-
atom-correlated interferometer. In quantum phase precision

measurement, the phase sensitivity �φ is defined by the linear
error propagation,

(�φ)2 = 〈(�Ô)2〉
|∂〈Ô〉/∂φ|2 , (8)

where Ô is the measurable operator and 〈(�Ô)2〉 = 〈Ô2〉 −
〈Ô〉2. The output amplitude quadrature operator X̂a2 = (â2 +
â
†
2)/2 is the detected variable. If we use the atomic variable

X̂b2 = (b̂2 + b̂
†
2)/2 as the detected variable, we also get the

phase sensitivity of the same order. But the variable X̂b2

needs to read out by another light field. Here, we consider
the balanced situation is g1 = g2, and θ2 − θ1 = π .

For a coherent light |α〉 (|α〉 = D̂(α)|0〉, α = |α|eiθα ,
Nα = |α|2) and a coherent squeezed state |α,ζ 〉 (|α,ζ 〉 =
D̂(α)Ŝ(ζ )|0〉) as the phase-sensing fields, where D̂(α) =
eαâ†−α∗â and Ŝ(ζ ) = e(ζ ∗â2−ζ â†2)/2, ζ = reiθs , and the slopes
of the output amplitude quadrature operator X̂a2 are the same
and are given by

∣∣∣∣
∂〈X̂a2〉

∂φ

∣∣∣∣ =
√

T Nα cosh2 g| sin(φ + θα)|. (9)

When φ + θα = π/2, the maximum slope is
√

T Nα cosh2 g.
But the output uncertainty is different, for the coherent state
and coherent squeezed-state input, and the uncertainties of
the output amplitude quadrature operator X̂a2 are given by
〈(�X̂a2)2〉c=(|U1|2+|V1|2)/4+[R|u2|2+|v2|2(1 − e−2�τ )]/4
and 〈(�X̂a2)2〉s=[|U1|2(e2r sin2 �+e−2r cos2 �)+|V1|2]/4
+[R|u2|2+|v2|2(1 − e−2�τ )]/4, where � = θs/2 + θU1

with U1 = |U1|eiθU1 , in which the second term
[R|u2|2 + |v2|2(1 − e−2�τ )]/4 is generated from the loss
and collisional dephasing.

The phase sensitivities (�φ)c and (�φ)s as a function of
the phase-sensing probe number nph are shown in Figs. 3(a)
and 3(b), respectively. In the presence of the loss and
collisional dephasing, the phase sensitivities can beat the SQL
under the balanced situation. The phase sensitivity of the
coherent squeezed-state input is more easily affected by the
loss and collisional dephasing. Figures 4(a) and 4(b) show
the phase sensitivity (�φ)s as a function of the transmission
rate T and the collisional dephasing rate �τ , respectively.
Under the condition of r = 2.5, Nα = e2r/4, g = 2, when
�τ ≤ 0.3 or T � 0.6, the phase sensitivity (�φ)s can beat
the SQL. Under the lossless ideal condition (T = 1, �τ = 0),
only (�φ)s can reach the Heisenberg limit (HL). Now, we give
the explanations. Under the balanced and lossless situation, the
uncertainty of coherent state input is 〈(�X̂a2)2〉c = 1/4, which
is from the vacuum fluctuation. For coherent squeezed-state
input, the uncertainty is 〈(�X̂a2)2〉s = e−2r/4 with � = 0,
which is below the vacuum noise. The reduced noise can
improve the phase sensitivity. In the ideal case, the phase
sensitivities under the optimal conditions are given by

(�φ)c = 1√
Nα

1

2 cosh2 g
, (10)

(�φ)s = 1

er
√

Nα

1

2 cosh2 g
, (11)
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FIG. 3. (Color online) The phase sensitivity (a) �φc and (b) �φs

as a function of the number of probes nph inside the interferometer
with g = 1. The input coherent squeezed light with r = 2.5.

which is improved by cosh2 g compared to the traditional
Mach-Zehnder interferometer for the same input phase-
sensing field.

Now, we compare the optimal sensitivities given by
Eqs. (10) and (11) with SQL (∝ 1/

√
nph) and HL (∝ 1/nph).

Here, the phase-sensing field is not the input field as in the
traditional MZI, but the amplified field inside the interferome-
ter. Although the phase shift is generated on the light field, the
light field and the atomic collective excitation are quantized.
The phase-sensing probe number includes not only the photon
number 〈â†

1(t1)â1(t1)〉 but also the atomic collective excitation
number 〈b̂†1(t1)b̂1(t1)〉, which is given by

nph = Nin + NinGRP + GRP, (12)

where GRP = 2 sinh2 g. The second term NinGRP on the right-
hand side of Eq. (12) is the amplified signal of the input photon
number due to the stimulated Raman process, and the last term
GRP is the number of amplified spontaneous-emission photons
or noise. For the coherent squeezed-state input case, the input
photon number Nin = 〈α,ζ |â†

1(0)â1(0)|α,ζ 〉 = |α|2 + sinh2 r .
Under the condition GRP 	 1, |α| 
 er/2 
 sinh r 	 1, the
total phase-sensing probe number in the interferometer can be
written as nph 
 2GRPNα . The phase sensitivity of Eq. (11) is
given by

(�φ)s 
 1

2Nα(GRP + 2)
≈ 1

nph
. (13)

From Eq. (13), with coherent squeezed state as input, the
phase sensitivity can reach HL due to the noise reduction
and phase-sensing field amplification. As has been previously
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FIG. 4. (Color online) The phase sensitivity (�φ)s as a function
of (a) the transmission rate T and (b) the collisional dephasing rate
�τ with r = 2.5, Nα = e2r /4, g = 2.

pointed out, the loss is the limiting factor in precision
measurement [22,37–40] . When the transmission T is close
to 1 and the collisional dephasing rate �τ is very small,
the sensitivity is very high and can approach the HL for
the coherent squeezed-state input case, as shown in Fig. 4.
Enhanced Raman scattering can be obtained by the initially
prepared atomic spin excitation [28,30] or by injecting a seeded
light field which is correlated with the initially prepared atomic
spin excitation [31,32]. This scheme is established on the basis
of previous studies and can be realized with high conversions.
For Raman scattering, the number of atoms must be bigger
than the generated photon number, which is easily realized for
hot atoms.

III. CONCLUSION

In conclusion, the correlation between light and atomic
collective excitation can form an SU(1,1)-type hybrid light-
atom-correlated interferometer. The sensitivity is improved
due to the signal enhancement compared to the traditional
MZI. When the transmission T is close to 1 and the collisional
dephasing rate �τ is very small, the sensitivity of the
coherent squeezed-state input can approach the HL under
the optimal condition. This SU(1,1)-type hybrid light-atom-
correlated interferometer can generalize to other systems,
such as circuit quantum electrodynamics [41], which provides
a different method for basic measurement using the hybrid
interferometers. The scheme can be implemented with current
technology.
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