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FUNDAMENTAL GROUPS OF CHARACTER VARIETIES: SURFACES

AND TORI

INDRANIL BISWAS, SEAN LAWTON, AND DANIEL RAMRAS

Abstract. We compute the fundamental group of moduli spaces of Lie group valued
representations of surface and torus groups.

1. Introduction

Let G be the C-points of a reductive affine algebraic group defined over R (reductive C-

group for short). We will say a Zariski dense subgroup G ⊂ G is real reductive if G(R)0 ⊂
G ⊂ G(R), where G(R)0 denotes the connected component of the real points of G

containing the identity element. Let Γ be a finitely presented discrete group. Then G acts
on the analytic variety Hom(Γ, G) by conjugation (via the adjoint action of G on itself).
Let Hom(Γ, G)∗ ⊂ Hom(Γ, G) be the subspace with closed orbits. Then the quotient
space XΓ(G) := Hom(Γ, G)∗/G for the adjoint action is called the G-character variety of
Γ (or the moduli space of G-representations of Γ). By [31], XΓ(G) is a Hausdorff space
and when G is real algebraic it is moreover semi-algebraic. Therefore, XΓ(G) deformation
retracts to a compact subspace, which implies its fundamental group is finitely generated.

The spaces XΓ(G) constitute a large class of affine varieties (see [30, 20]), and are of
central interest in the study of moduli spaces (see [1, 10, 16, 26, 32, 33]). Additionally they
naturally arise in mathematical physics (see [3, 19, 35]), the study of geometric structures
(see [5, 11, 34]), knot theory (see [6]), and even in Geometric Langlands (see [15, 21]).

Extensive attention over the years has been given to the study of the connected com-
ponents of these spaces (see [12, 17, 18, 23]), and recently the systematic study of the
fundamental group of them has begun (see [2], [23]). In this paper, we further these results
to the important cases of (orientable) surface groups and free Abelian (torus) groups.

Let X0
Γ(G) denote the connected component of the trivial representation in XΓ(G). Here

is our main theorem:

Theorem 1.1. Let G be either a connected reductive C-group, or a connected compact

Lie group, and let Γ be one the following:

(1) a free group,

(2) a free Abelian group, or
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2 I. BISWAS, S. LAWTON, AND D. RAMRAS

(3) the fundamental group of a closed orientable surface.

Then π1(X
0
Γ(G)) = π1(G/[G,G])r, where r = Rank (Γ/[Γ,Γ]).

From [CFLO] and [9] we know that XΓ(G) and XΓ(K) are homotopy equivalent when-
ever Γ is free (non-Abelian), or free Abelian with G being a real reductive Lie group
with maximal compact subgroup K. This homotopy equivalence restricts to a homotopy
equivalence X0

Γ(G) ≃ X0
Γ(K), so from Theorem 1.1, we then conclude:

Corollary 1.2. When G is real reductive and Γ is free non-Abelian or free Abelian, then

π1(X
0
Γ(G)) = π1(K/[K,K])r, where r = Rank (Γ/[Γ,Γ]) and K is a maximal compact

subgroup of G.

Remark 1.3. Many of the cases considered in the above theorem, when π1(G) is torsion-
free, were handled in [23] using general results on covering spaces of character varieties.
The case when Γ is free (non-Abelian) was first handled in general in [2], although with
a different proof.

Remark 1.4. For any connected real reductive Lie group G (which includes the complex
reductive and compact cases), G/[G,G] is homotopy equivalent to a geometric torus.
Therefore, in the cases considered in this paper, π1(XΓ(G)) ∼= ZN for some N .
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2. Proof of Main Theorem

Unless otherwise stated, G is a connected real reductive Lie group. By definition,
connectedness of G implies that G is the identity component of the real points of a
reductive C-group.

A continuous map f : X → Y between topological spaces will be called π1-surjective
if for each y ∈ Y , there exists x ∈ f−1(y) such that f∗ : π1(X, x) → π1(Y, y) is surjective.
The following lemma appears in [23] when G is a reductive C-group. However the proof
in [23] establishes the stronger statement below by using results in [31]. We say that
a continuous map p : Y → Z has the (strong) path-lifting property if for each path
α : [0, 1] → Z and each y ∈ Y with p(y) = α(0), there exists a path α̃ : [0, 1] → Y such
that α̃(0) = y and p ◦ α̃ = α. We say that p has the weak path-lifting property if for all
such α there exists α̃ such that p ◦ α̃ = α.

Lemma 2.1. Let X be a real algebraic subset of an affine space V , and let G be a real

reductive Lie group acting linearly on V . Then the projection map q : X → X//G has the

weak path-lifting property. Consequently, q is π1–surjective when G is connected.

Proof. By definition, X//G is the quotient space X∗/G where X∗ is the subspace of points
in X with closed G-orbits. By the generalization of Kempf-Ness Theory (see [22]) devel-
oped in [31], there exists a real algebraic subset KN ⊂ X such that X//G is homeomor-
phic to KN /K, where K is a maximal compact subgroup of G. Moreover, the natural
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diagram

KN // //
� _

��

KN /K

∼=
��

X∗ � � i // X
q

// X//G

commutes. The weak path-lifting property for q now follows from the (weak) path-lifting
property for KN → KN /K. Now, since KN is algebraic, it satisfies the conditions in
[25] for there to be a slice at each point. As shown in [4, page 91], this implies that
KN → KN /K has the (strong) path-lifting property.

Now assume G is connected. Given p ∈ X//G, choose x ∈ X∗ such that q(x) = p. By
the previous paragraph, each loop γ based at p lifts to a path γ̃ in X∗ ⊂ X . However, this
path in X∗ might not be a loop. The ends of the lifted path γ̃ are in the fiber (qi)−1(p),
which is homeomorphic to G/StabG(x). Hence the fiber is path-connected since G is
connected. Therefore, there exist paths in (qi)−1(p) that connects the ends of γ̃ to x,
resulting in a loop in X∗ ⊂ X , based at x. This loop projects, under q, to γ (up to
reparametrization). Thus q is π1–surjective when G is connected. �

We note that Lemma 2.1 includes the cases when G is a reductive C-group (so X//G
is the GIT quotient), and the case when G is compact (so X//G is the usual orbit space
X/G).

Corollary 2.2. Let G be a real reductive Lie group that is both connected and algebraic,

and let Γ be a finitely presented discrete group. The natural projection Hom(Γ, G) →
XΓ(G) is π1–surjective, as is the map Hom0(Γ, G) → X0

Γ(G) between the identity compo-

nents of these spaces.

Proof. Since every reductive C-group has a faithful linear representation, we conclude that
every real reductive Lie group does as well. Thus, there is some gl(n,R) that contains G.
Let Γ be generated by r elements. Then the conjugation action of G is linear on the affine
space gl(n,R)r which naturally contains Hom(Γ, G) via the embedding Hom(Γ, G) ⊂
Gr ⊂ gl(n,R)r. Since G is algebraic and Γ is finitely presented, Hom(Γ, G) is a real
algebraic subset; the result follows by the previous lemma since G is connected. For the
statement regarding trivial components, note that the trivial representation has a closed
orbit, so we may choose it as our basepoint when running the argument in the previous
lemma. �

Let DG = [G,G] be the derived subgroup of G. It is semisimple, normal, and closed.
Consequently, G/DG is an Abelian Lie group. Since G is connected, so is G/DG, and
since G is reductive G/DG does not contain an affine factor. Therefore, G/DG is a finite
product of geometric and algebraic tori; that is, a product of copies of S1 and C∗.

Now assume that G is either a reductive C-group or compact (and still connected).
Under this assumption more can be said. In particular, G ∼= (T ×F DG), where T =
Z0(G) ⊂ Z(G) is the connected component of the center Z(G) containing the identity
element, and F = T ∩ DG is a central finite subgroup acting freely via (t, h) · f =
(tf, f−1h). Consequently, we have T/F ∼= G/DG.

A finitely presented discrete group Γ will be called exponent canceling if it admits a finite
presentation in which the Abelianization of each relation is trivial (see [23]). Consequently,
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Γ/[Γ,Γ] is free Abelian. We will define the rank of Γ to be the rank of Γ/[Γ,Γ]. The rank
of Γ will be denoted by r.

If G is Abelian, π1(XΓ(G)) = π1(Hom(Γ, G)) ∼= π1(G)r = π1(G/DG)r, so we assume
that G is not Abelian.

Lemma 2.3. Let Γ be exponent-canceling and G a connected reductive C-group, or a

connected compact Lie group. Then there is a Serre fibration

XΓ(DG) �
�

// XΓ(G) // // XΓ(G/DG) .

Proof. Recall that G ∼= (DG× T )/F , where T is a central torus and F is a finite central
subgroup. The multiplication actions of F onDG and T commute with the adjoint actions
(since T is central) inducing an action of F r on XΓ(DG)×XΓ(T ), and in fact this action is
free since it is free on T r = XΓ(T ) (this equality uses the fact that Γ/[Γ,Γ] is free Abelian
of rank r). Since

F −→ DG× T −→ G

is a covering sequence of Lie groups, the proof of the main result in [23], along with [23,
Proposition 4.2], shows that there is a homeomorphism

XΓ(G) ∼= [XΓ(DG)× XΓ(T )]/F
r ,

where F r = Hom(Γ, F ) acts diagonally. Since F r acts freely on XΓ(T ) = T r, this action
is in fact a covering space action.

Now consider the trivial fibration (product projection)

XΓ(DG) �
�

// XΓ(DG)× XΓ(T ) // // XΓ(T ) .

The projection on the right is equivariant with respect to the free actions of F r, so we
may apply Corollary A.2 to conclude that

XΓ(DG) �
�

// [XΓ(DG)× XΓ(T )]/F
r ∼= XΓ(G) // // XΓ(T )/F

r

is a Serre fibration. Since XΓ(T )/F
r = T r/F r = (T/F )r = (G/DG)r = XΓ(G/DG),

the proof is complete. �

Lemma 2.4. If Γ is free Abelian, or the fundamental group of an orientable Riemann

surface (closed or open), then the restriction of the fibration from Lemma 2.3 to the

connected component of the trivial representation gives a Serre fibration

X0
Γ(DG) �

�
// X0

Γ(G) // // XΓ(G/DG) .

Proof. Since XΓ(G/DG) is connected, we just need to show that X0
Γ(G) ∩ XΓ(DG) =

X0
Γ(DG).

This is obvious in the case of an open surface since in that case Γ is a free non-Abelian
group and so XΓ(G) and XΓ(DG) are connected.

Next, we consider the case in which Γ is the fundamental group of a closed orientable
Riemann surface. Note that it will suffice to show that the natural map π0(XΓ(DG)) −→
π0(XΓ(G)) is injective. In the Appendix to [23], Ho and Liu established a natural iso-
morphism π0(Hom(Γ, H)) ∼= π1(DH) for connected, complex reductive groups H ; which
they had earlier shown to be true when H is compact and connected (see [18]). Note
that since H is connected we may replace Hom(Γ, H) by XΓ(H) in this statement. Since
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DG is its own derived subgroup, the map π0(XΓ(DG)) → π0(XΓ(G)) corresponds to the
identity map on π1(DG) under Ho and Liu’s isomorphism.

In the free Abelian case, and when G is compact, this can be deduced from the natural

homeomorphism between X0
Γ(G) and T̃ r/W , where T̃ ⊂ G is a maximal torus and W is

its Weyl group. Note that with respect to the decomposition G = DG ×F T , we have

T̃ = T ′ ×F T , where T ′ is a maximal torus in DG. Then X0
Γ(DG) = (T ′)r/W . Clearly

then, X0
Γ(G) ∩XΓ(DG) = X0

Γ(DG) given that a representation in X0
Γ(G) ∩XΓ(DG) is in

X0
Γ(G) ∼= (T ′ ×F T )r/W and also has values in DG; meaning the T part must lie in F ,

and so the representation is in (T ′)r/W ∼= X0
Γ(DG).

Now let G be a reductive C-group with maximal compact subgroup K, and again
let Γ be free Abelian. Note that DK is a maximal compact subgroup in DG since
G/DG ∼= (C∗)d and K/DK ∼= (S1)d are homotopic, where dimZ(G) = d = dimZ(K).
Consider the commutative diagram:

XΓ(DK) �
�

//
� _

��

XΓ(K)
� _

��

XΓ(DG) �
�

// XΓ(G)

The main result in [9] shows that the vertical maps in this diagram are homotopy equiv-
alences, and in particular bijections on connected components. These bijections on com-
ponents clearly send the identity component to the identity component. The argument
in the previous paragraph shows that the top map does not send any non-identity com-
ponent to the identity component; it follows that the same is true for the bottom map.
Therefore, again, we have X0

Γ(G) ∩ XΓ(DG) = X0
Γ(DG). �

Thus, we have a long exact sequence in homotopy:

· · · → π1(X
0
Γ(DG)) → π1(X

0
Γ(G)) → π1(XΓ(G/DG)) → · · ·

However, π0(X
0
Γ(DG)) = 0 since this space is connected. Also since G/DG is Abelian and

Γ is exponent-canceling of rank r, XΓ(G/DG) ∼= (G/DG)r so as above, π2(XΓ(G/DG)) =
0 as well. Hence we find that the above long exact sequence restricts to a short exact
sequence on fundamental groups.

To complete the proof of Theorem 1.1, it suffices to prove that X0
Γ(DG) is simply con-

nected. Since Γ is exponent canceling of rank r, there exists a generating set {γ1, . . . , γr}
for Γ in which all relations have trivial Abelianization; we fix one such choice for the re-
mainder of the argument. We have an associated embedding Hom(Γ, G) →֒ Gr. Consider
the commutative diagram

DG � � //

��

Hom0(Γ, DG)

q

��

DG//DG // X0
Γ(DG),

where the top map is the k-th factor inclusion g 7→ (e, ...e, g, e, ...e), with 1 ≤ k ≤ r
(which maps into the identity component Hom0(Γ, DG) of Hom(Γ, DG) since Γ is expo-
nent canceling and DG is connected) and the bottom map is well-defined since the k-th
factor inclusion is DG-equivariant (with respect to conjugation). By [7, Corollary 17],
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for any compact Lie group H we have π1(H/H) = π1(H/DH); we remind the reader
that H/DH is the quotient by left translation and H/H is the quotient by conjugation.
In particular, if K ≤ G is a maximal compact subgroup, then DK is also compact and
applying this result with H = DK, we find that the conjugation quotient DK/DK is
simply connected. Now, the main result of [8] gives a homotopy equivalence between the
conjugation quotients DG//DG and DK/DK, so we conclude that DG//DG is simply
connected as well. It follows that all elements in π1(DG) all map to 0 in π1(X

0
Γ(DG))

by commutativity. However, we have shown q is π1–surjective (Lemma 2.2). Together,
these observations imply that X0

Γ(DG) is simply connected whenever the images of the
k-th factor inclusions generate π1(Hom

0(Γ, DG)). We call this latter property inclusion

generating.

When Γ is free non-Abelian, Hom0(Γ, DG)) ∼= (DG)r and thus it is obviously inclusion-
generating; which gives a shorter proof of the main result in [2], and completes the proof
of Theorem 1.1 when Γ is free non-Abelian.

In the case when Γ is free Abelian, the main results in [14] and [27] imply that the k-th
factor inclusions induce an isomorphism

π1(DG)r
∼=

−→ π1(Hom
0(Γ, DG)),

and thus again we see that X0
Γ(DG)) is inclusion-generating1. This completes the proof

of Theorem 1.1 when Γ is free Abelian.

It remains to show that Hom0(Γ, DG) is inclusion generating when Γ is a closed hyper-
bolic surface group (note that the genus 0 case is trivial, and the genus 1 case is included
the free Abelian case above). This will follow from the next two lemmas.

Lemma 2.5. The space Hom(Γ, G) is simply connected when Γ is a closed hyperbolic sur-

face group and G is semisimple, simply connected, and complex, or G is simply connected

and compact.

Proof. By [24], we know that Hom(Γ, G) is simply connected when G is complex semisim-
ple and simply connected. We now show this result also holds when G is compact and
simply connected.

Let Γ = π1(M
g), where Mg is a closed hyperbolic surface of genus g (so g ≥ 2), and

let GC be the complexification of G. Let P = Mg ×G be the trivial G-bundle over Mg

and let PC = Mg × GC be the associated GC-bundle. The space of all G-connections
on P , denoted by A, is naturally identified with the space of all holomorphic structures
on PC, denoted by C. Both are infinite dimensional complex affine spaces. Under this
isomorphism, the Yang-Mills stratification of A, determined by the Yang-Mills functional
on A, corresponds to the Harder-Narasimhan stratification of C.

Let G be the gauge group, which is the group of automorphisms of P . Let G0 ⊂ G
be the based gauge group, consisting of all automorphisms that are identity on the fiber

1In order to see that the map π1(DG)r → π1(Hom
0(Γ, DG)) is well-defined, one needs to know a priori

that the images of the k-th factor inclusions commute with one another. By the main results in [14] and

[27], Hom0(Zk, D̃G) is simply connected. Note here that D̃G has the form Fk ×H1 × · · · ×Hn, where F

is either R or C and the Hi are simply connected, simple Lie groups (see [23, Section 2], for instance).
Now the argument in Lemma 2.6 shows that π1(Hom

0(Γ, DG)) is Abelian, and hence the k-th factor
inclusions automatically commute with one another.
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Px0
over the base point x0 of M

g. The space Hom(Γ, G) is homeomorphic to the space of
flat connections on the trivial G-bundle over Mg modulo the action of G0. In particular,
letting A♭ ⊂ A be the subspace of flat G-connections, we have Hom(Γ, G) ∼= A♭/G0.

The space A♭ is the (unique) minimum critical set of the Yang-Mills functional and the
stable manifold of this critical set is the space of semi-stable holomorphic structures on
PC, denoted by Css ⊂ C. By the main result of [28], Css deformation retracts onto A♭.

First we show that A♭ is simply connected. In Section 10 of [1], Atiyah and Bott state
a formula for the complex codimension of the (disjoint) stratification C = ∪Cµ:

codim(Cµ) =
∑

α(µ)>0

(α(µ) + g − 1) .

Here µ records the Harder-Narasimhan type of a GC-bundle with connection (associated
with an element in the positive Weyl chamber), and Cµ is the corresponding stratum.
The symbol α runs over the positive roots of G which implies α(µ) ≥ 0. Since g ≥ 2,
every term in the formula contributes at least 2 to the complex codimension, excepting
only the unique open stratum corresponding to Css, which we denote by Cµ0

. Therefore,
Css = C − ∪µ6=µ0

Cµ is simply connected as it is the complement of a countable disjoint
union, in a Sobolev space, of locally closed submanifolds of complex codimension at least
2 (see Corollary 4.8 in [29]). Since A♭ is homotopy equivalent to Css we conclude that it
is simply connected too.

Next we show that G0 is path connected. The based gauge group of the trivial G-

bundle over Mg is G0 = Map∗(M
g, G). The homotopy equivalence G

≃
−→ ΩBG (where

ΩX denotes the based loop space) induces a homotopy equivalence

Map∗(M
g, G) ≃ Map∗(M

g,ΩBG)

and by adjointness,

Map∗(M
g,ΩBG) ∼= Map∗(ΣM

g, BG) ,

where ΣMg is the reduced suspension S1 ∧ Mg. Since the attaching map for the 2–cell
in Mg is a product of commutators, its suspension is trivial as an element of π2(Σ(S

1)2g);
here we view (S1)2g as the 1-skeleton of Mg. Hence we have a homotopy equivalence
ΣMg ≃ (

∨
2g S

2) ∨ S3, and consequently

Map∗(ΣM
g , BG) ≃

(
∏

2g

Ω2BG

)
× Ω3BG ≃

(
∏

2g

ΩG

)
× Ω2G .

Since π0(ΩG) ∼= π1(G) = {1} and π0(Ω
2G) ∼= π2(G) = {1}, we find that Map∗(ΣM

g, BG)
is path connected, as required.

Therefore, since we have shown G0 is connected and A♭ is simply connected, we conclude
that Hom(Γ, G) is simply connected because the action of G0 on A♭ defines a fibration
sequence

G0 → A♭ → A♭/G0
∼= Hom(Γ, G)

(see [13]), which in turn gives the sequence

0 = π1(A♭) → π1(A♭/G0) ∼= π1(Hom(Γ, G)) → π0(G0) = 0 .

This completes the proof of the lemma. �
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Given that we have now shown that Hom(Γ, G) is simply connected when G is semisim-
ple and simply connected (complex or compact), and Γ is a hyperbolic surface group, the
following observation now completes the proof of the closed surface group case, and con-
sequently, the proof of the main theorem. We note that a similar argument, in the free
Abelian case, appears in [14, Section 3].

Lemma 2.6. Let G be a Lie group with universal cover G̃, and let Γ be exponent-canceling.

If Hom(Γ, G̃) is simply connected, then Hom(Γ, G) is inclusion-generating. In fact, the

factor inclusions induce an isomorphism (π1(G))r → π1(Hom
0(Γ, G)).

Proof. Our choice of generators γ1, . . . , γr for Γ induces a surjection Fr → Γ. Consider
the resulting commutative diagram of representation spaces:

(π1(G))r //

=

��

Hom(Γ, G̃) //

j
��

Hom(Γ, G)

i

��
(π1(G))r // G̃r // Gr.

The top row is the r–fold product of the universal covering map of G, hence a normal
covering map, and the bottom map is a normal covering map by Goldman [12, Lemma
2.2] (note that (π1(G))r = Hom(Γ, π1(G)) since Γ is exponent canceling). We obtain a
resulting diagram of long exact sequences in homotopy, which reads in part:

π1(Hom(Γ, G̃)) = 0 //

=
��

π1(Hom
0(Γ, G))

δ //

i∗

��

(π1(G))r //

=

��

π0(Hom
0(Γ, G̃)) = 0

=
��

π1(G̃
r) = 0 // (π1(G))r

δ // (π1(G))r // (π0(G̃))r = 0.

Note that the boundary maps δ are homomorphisms since these covering spaces are nor-
mal. It follows that i∗ is an isomorphism, and the inverse of i∗, restricted to any factor of
(π1(G))r, is precisely the corresponding factor-inclusion map. �

We end with a conjecture that is motivated by the results, and the proofs, in this paper:

Conjecture 2.7. Let G be a connected real reductive Lie group, and let Γ be an exponent-

canceling discrete group. Then π1(X
0
Γ(G)) = π1(K/[K,K])r, where r = Rank (Γ/[Γ,Γ])

and K is a maximal compact subgroup of G.

Remark 2.8. The above conjecture cannot be written as π1(X
0
Γ(G)) = π1(G/[G,G])r

for real reductive Lie groups in general since, as G = U(p, q) demonstrates, G/DG is
not always homotopic to K/DK when G is not complex algebraic. On the other hand,
as shown in [8, 9, CFLO], when G is a real reductive Lie group and Γ is free (Abelian or
non-Abelian), XΓ(G) is homotopic to XΓ(K).
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Appendix A. Serre Fibrations

Recall that a map f : E → B has the left lifting property with respect to a map
i : W → Z if every commutative diagram

W
H̃0 //

i
��

E

f

��
Z

H // B

admits a lift Z → E making the diagram commute. The map f is a Serre fibration if it
has the left lifting property with respect to the inclusions [0, 1]n−1 × {0} →֒ [0, 1]n for all
n ≥ 1. It is a well-known fact that Serre fibrations satisfy the left lifting property not
just for the inclusions [0, 1]n−1×{0} →֒ [0, 1]n, but also for all inclusions A →֒ B where B
is a CW-complex, A is a subcomplex, and the inclusion is a homotopy equivalence (this
is one part of a model category structure on topological spaces, as constructed in many
places). We need only a very simple special case of this, namely the case of the inclusion

{~0} →֒ [0, 1]n, where ~0 = (0, . . . , 0). This special case can be proved by a simple induction
on n: the case n = 1 is already part of the definition of a Serre fibration, and assuming
the result for n−1, we factor the inclusion {~0} →֒ [0, 1]n through [0, 1]n−1×{0} and apply

the left lifting property first to {~0} →֒ [0, 1]n−1×{0}, and then to [0, 1]n−1×{0} →֒ [0, 1]n.

Proposition A.1. Let X
f

−→ Y
g

−→ Z be maps between topological spaces, and assume

f is surjective. If f and gf are Serre fibrations, then so is g.

Proof. Given a commutative diagram

[0, 1]n−1 × {0}
H̃0 //

i
��

Y

g

��
[0, 1]n

H // Z,

we must produce a map [0, 1]n → Y making the diagram commute. Since f is surjective,

we may choose a point x0 ∈ X such that f(x0) = H̃0(~0), and since X → Y has the left

lifting property with respect to {~0} →֒ [0, 1]n, there exists a map G making the diagram

{~0}
cx0 //

��

X

f

��
[0, 1]n

G

==
④
④
④
④
④
④
④
④
④

H̃0 // Y

commute (where cx0
(~0) = x0). Since gf is a Serre fibration and g ◦ f ◦G = g ◦ H̃0 = H ◦ i,

there exists a commutative diagram

[0, 1]n−1 × {0}
G //

i
��

X

g◦f

��
[0, 1]n

H̃

88
r
r
r
r
r
r
r
r
r
r
r
r

H // Z.
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The desired lift [0, 1]n → Y of H is given by f ◦ H̃ . �

Corollary A.2. Let F be a finite group acting freely on Hausdorff spaces E and B, and

let f : E → B be an equivariant map that is also a Serre fibration. Then the induced map

E/F → B/F is a Serre fibration.

Proof. We will apply Proposition A.1 to the composition

E −→ E/F −→ B/F.

Quotient maps for free finite group actions on Hausdorff spaces are covering maps, and
covering maps are Serre fibrations, so the first map in this sequence is a (surjective) Serre
fibration. The composite map equals the composite map

E −→ B −→ B/F,

which is a composition of Serre fibrations, hence a Serre fibration. �
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