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Abstract
This paper presents a framework named Pin++. Pin++ is an
object-oriented framework that uses template metaprogram-
ming to implement Pintools, which are analysis tools for the
dynamic binary instrumentation tool named Pin. The goal
of Pin++ is to simplify programming a Pintool and promote
reuse of its components across different Pintools. Our re-
sults show that Pintools implemented using Pin++ can have
a 54% reduction in complexity, increase its modularity, and
up to 60% reduction in instrumentation overhead.

Keywords Pin, Pintools, template metaprogramming, frame-
work

1. Introduction
Pin [1] is a dynamic binary instrumentation (DBI) [2] tool
for the IA-32 and x86-64 instruction-set architecture. It en-
ables the creation of dynamic program analysis tools called
Pintools. Pintools have been created to analyze a wide vari-
ety of concerns within programs, such as program faults [3],
program behavior [3–5], performance profiling [4, 5], and
root-cause analysis [6]. Examples of other DBI tools in-
clude, but is not limited to: DynamoRIO [7], DynInst [8],
Solaris Dynamic Tracing (DTrace) [9], and Valgrind [10].

When developers implement a Pintool, they use the C++
programming language. Although developers use C++, Pin-
tools interface with Pin using a C-like application program-
ming interface (API). This does not imply developers are
forced to implement their Pintools using C, but the current
design and structure promoted by Pin through its interface
result in developers creating C-like Pintools. For example,
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the examples discussed in Pin’s user manual [11] and dis-
tributed with Pin are implemented as if it was a traditional C
program (i.e., C functions, global variables, and no informa-
tion hiding).

Unfortunately, current techniques for implementing a
Pintool can result in designs that are fragile [12] (i.e., the
tendency of the software to break in many places every time
it is changed), rigid [12] (i.e., the tendency for software to
be difficult to change, even in simple ways), and have com-
ponents that are hard to reuse due to high cyclomatic com-
plexity [13] (i.e., the number of linearly independent paths
through a program’s source code) and low modularity [14].
For example, if several components in a Pintool are depen-
dent on one or more global variables, then it is hard to reuse
the component across different Pintools due to this coupling.
Likewise, changing the global variable’s definition can break
the design in many locations.

There are also inherent complexities that complicate the
design and implementation of a Pintool. For example, de-
velopers have to manually validate that analysis routines are
registered with Pin using a parameter list that matches the
analysis routine’s signature. This is because there is no check
in place—at compile time or runtime—to validate this re-
quirement (see Section 2 for an example).

Although Pin is widely used today, implementing a Pin-
tool can be a complicated process. Given the capabilities
of C++, such as abstraction, encapsulation, and template
metaprogramming, many complexities in a Pintool should
not exist. Most importantly, developers should be capable of
implementing Pintools from “components engineered with
reuse and for reuse in mind instead of reinvention” [15]. To
achieve this desire, however, Pin needs a supporting frame-
work that embodies these principles.

For these reasons we implemented Pin++, which is
an object-oriented framework for implementing Pintools.
Pin++ uses software design patterns [16] to promote reuse
and reduce the complexity of a Pintool. It also uses template
meta-programming [17, 18] to reduce potential development
errors and optimize a Pintool’s performance at compile-time.
Lastly, Pin++ is engineered to promote reuse of different
components in a Pintool; it codifies required functionality so_______________________________________________________________
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developers do not have to re-implement such functionality
for each and every Pintool.

The main contributions of this paper are as follows:

• It highlights accidental and inherent complexities associ-
ated with implementing a traditional Pintool;

• It discusses how Pin++ addresses accidental and inherent
complexities associated with implementing a traditional
Pintool;

• It quantitatively evaluates Pin++’s impact on the com-
plexity (a design metric), modularity (a design metric),
and instrumentation overhead (a performance metric) of
a Pintool;

• It provides suggestions on what features should be re-
moved from Pin and placed in a supporting framework,
such as Pin++.

We validated Pin++ by implementing examples distributed
with Pin using Pin++. Our results show that Pin++ can re-
duce the complexity of a Pintool up to 54%, improve the
modularity of a Pintool, and reduce instrumentation over-
head by up to 60%. Each of these improvements, however,
is dependent on what features of Pin are used.

Paper organization. The remainder of this paper is or-
ganized as follows: Section 2 introduces a simple example
to illustrate the challenges associated with writing a Pintool;
Section 3 discusses the design and implementation of Pin++;
Section 4 presents results from comparing traditional Pin-
tools against ones implemented using Pin++; Section 5 dis-
cusses different design decision’s impact on performance;
Section 6 compares our work to other related works; and
Section 7 provides concluding remarks.

2. The Complexities of Implementing a
Pintool

Listing 1 illustrates an example Pintool from Pin’s user man-
ual. It is actually the first example in Pin’s user manual.
1 # i n c l u d e <i o s t r e a m>
2 # i n c l u d e <f s t r e a m>
3 # i n c l u d e ” p i n .H”
4
5 o f s t r e a m O u t F i l e ;
6
7 / / The r u n n i n g c o u n t o f i n s t r u c t i o n s i s k e p t he re
8 / / make i t s t a t i c t o h e l p t h e c o m p i l e r o p t i m i z e docoun t
9 s t a t i c UINT64 i c o u n t = 0 ;

10
11 / / F u n c t i o n c a l l e d b e f o r e e v e r y i n s t r u c t i o n i s e x e c u t e d
12 VOID docoun t ( ) { i c o u n t ++; }
13
14 / / Pin c a l l s t h i s f u n c t i o n e v e r y t i m e a new i n s t r u c t i o n
15 / / i s e n c o u n t e r e d
16 VOID I n s t r u c t i o n ( INS i n s , VOID *v ) {
17 I N S I n s e r t C a l l ( i n s , IPOINT BEFORE ,
18 (AFUNPTR) docount , IARG END ) ;
19 }
20
21 KNOB<s t r i n g> KnobOutpu tF i l e (KNOB MODE WRITEONCE, ” p i n t o o l ” ,
22 ” o ” , ” i n s c o u n t . o u t ” ,
23 ” s p e c i f y o u t p u t f i l e name” ) ;
24
25 / / T h i s f u n c t i o n i s c a l l e d when t h e a p p l i c a t i o n e x i t s

26 VOID F i n i ( INT32 code , VOID *v ) {
27 O u t F i l e . s e t f ( i o s : : showbase ) ;
28 O u t F i l e << ” Count ” << i c o u n t << e n d l ;
29 O u t F i l e . c l o s e ( ) ;
30 }
31
32 INT32 Usage ( ) {
33 c e r r << ” Counts number o f dynamic i n s t r u c t i o n s e x e c u t e d ”
34 << e n d l << e n d l << KNOB BASE : : StringKnobSummary ( )
35 << e n d l ;
36 re turn �1;
37 }
38
39 i n t main ( i n t argc , char * a rgv [ ] ) {
40 / / I n i t i a l i z e p i n
41 i f ( P I N I n i t ( a rgc , a rgv ) ) re turn Usage ( ) ;
42
43 O u t F i l e . open ( KnobOutpu tF i l e . Value ( ) . c s t r ( ) ) ;
44
45 / / R e g i s t e r i n s t r u m e n t s and c a l l b a c k s
46 I N S A d d I n s t r u m e n t F u n c t i o n ( I n s t r u c t i o n , 0 ) ;
47 P I N A d d F i n i F u n c t i o n ( F i n i , 0 ) ;
48
49 / / S t a r t t h e program , n e v e r r e t u r n s
50 P I N S t a r t P r o g r a m ( ) ;
51 re turn 0 ;
52 }

Listing 1. Pintool that counts the number of instructions
executed by a program.

As shown in this example, there are several complexities
associated with a traditional Pintool:

1. Hard to see the design and structure of a Pintool. A
Pintool consists of several key components: a tool, one
or more instruments, and one or more analysis routines.
In Listing 1, the docount function (line 12) is the anal-
ysis component; the Instruction function (line 16)
is the instrument component; and the remaining func-
tions comprise the tool component. Although this is a
small example, it is hard to see the individual components
that constitute a Pintool. As the Pintool increases in size
and complexity, it becomes harder to see the design and
structure of a Pintool. This is an accidental complexity
that can result in Pintools having rotten designs [12] (e.g.,
fragility and rigidity due to the use of global variables);
and exhibiting code smells [19] (e.g., the use of global
variables, too many parameters, and vertical separation)
and antipatterns [20] (e.g., spaghetti code, stovepipe Pin-
tool, and reinvent the wheel).

2. Hidden constraints between analysis routine defini-
tion and its registration with Pin. In Listing 1, the
developer creates an analysis routine (line 12). In or-
der to register the analysis routine for callback, the de-
veloper has to first register it with Pin. As shown on
line 17, the analysis routine is registered against each
instruction executed by the program under instrumenta-
tion. As part of the registration process, the developer
must remember the type of each parameter in the anal-
ysis routine’s argument list, and specify it when invoking
INS InsertCall. The developer must also end the ar-
gument list specification with IARG END. In this exam-



ple, since the docount function has no arguments, there
are no parameters included with INS InsertCall.
In some cases, there are analysis routine argument types
that require an extra parameter. In this situation, it is the
developer’s responsibility to remember this requirement.
Unfortunately, there are no mechanisms in Pin to address
this complexity at compile-time (i.e., validating that ar-
guments used to register an analysis routine match its ex-
pected parameters, and validating that required extra ar-
guments are provided when registering the analysis rou-
tine). Instead, the developer realizes the problem exists at
runtime when the Pintool fails.

3. No inherent reuse of Pintool components. In the ex-
ample from Listing 1, each function can be considered
a component in the Pintool. Unfortunately, the Pintool’s
design hinders reuse of its components. This is because
there are multiple global variables used by each of the
components in the Pintool.
For example, the docount function (or component) and
the Fini component use the icount global variable.
Because the docount component is dependent on a
global variable, it is hard to reuse this simple analysis
component in other Pintools. If developers wanted to
reuse the component, then they would have to either de-
clare a similar global variable in the Pintool, or under-
stand how to pass stateful information to Pin.

4. Reinvention of required behavior. When implementing
a Pintool, there are several required steps that must be
implemented in all Pintools. First, the developer must
correctly initialize the environment (line 41). Secondly,
the developer must register each instrument, which is
the component responsible for inserting analysis routines
into the program (line 46). Lastly, the developer must
start the program being instrumented (line 50).
These steps must be completed in a specific order. For ex-
ample, you cannot register any callbacks with Pin before
initializing the environment. Although this seems minor,
this code is re-invented across each tool. Unless there
is a special use case for a Pintool, such as a static Pin-
tool [11], then developers should not have to manually
implement bootstrapping and initialization code for each
Pintool. Moreover, it is hard to get reuse of components
because each Pintool is reimplementing the same code.
This is because developers will be responsible for un-
derstanding how to programmatically bootstrap the com-
ponent instead of the component understanding how to
bootstrap itself when included in the Pintool.

As discussed above, there are many complexities asso-
ciated with writing a Pintool. Some of these complexities
impact design metrics, such as cyclomatic complexity and
modularity—making it hard to maintain a Pintool. Other
complexities impact the performance of a Pintool, causing
the Pintool to add more overhead than wanted to the pro-

gram under instrumentation. The remainder of this paper
will therefore discuss how Pin++ helps address the complex-
ities discussed above—improving the design, implementa-
tion, and performance of a Pintool.

3. The Design and Implementation of Pin++
This section discusses how Pin++ address complexities in-
troduced in Section 2.

3.1 Improving the Design and Structure of a Pintool
As shown in Listing 1 and discussed in Section 2, one of the
complexities of implementing a Pintool is difficulty seeing
its design and structure. We know that Pintools consist of
several key components, but current designs can easily hide
this structure behind a myriad of spaghetti code [20]. Pin++
addresses this complexity by requiring each key component
in a Pintool be defined as an object. This approach helps pro-
mote better design based on accepted object-oriented design
principles [12] and software design patterns [16].

Tool$
<Class>$

//$no,fica,on$methods$

Instrument$
<Class>$

//$instrumenta,on$methods$

Callback$
<Class>$

//$analysis$methods$

Pintool$
<SharedLibrary>$

1$

*$

*$

*$

*$

1$

Figure 1. Composition of a Pintool in Pin++.

As shown in Figure 1, a Pintool in Pin++ consists of the
following key components (or objects):

• Tool object is responsible for connecting Pin with the
instrument objects;

• Instrument object is called by Pin when the Pintool
needs to instrument the element of interest; and

• Callback object is called when the Pintool is to analyze
data at an instrumentation point.

Listing 2 illustrates the example in Listing 1 implemented
using Pin++. As shown in this listing, callbacks subclass
from the Callback class in Pin++ (line 8). Pin++ uses the
Curiously Recurring Template Pattern [21] to define what
data is collected by the callback. The next section discusses
this design choice in more detail. The callbacks must im-
plement the handle analyze() method (line 12). This
method is invoked automatically by Pin, and is where the
Pintool performs its analysis.
1 # i n c l u d e ” p i n ++/ C a l l b a c k . h ”
2 # i n c l u d e ” p i n ++/ I n s t r u c t i o n I n s t r u m e n t . h ”
3 # i n c l u d e ” p i n ++/ P i n t o o l . h ”
4
5 # i n c l u d e <f s t r e a m>
6
7 / / Pin++ c a l l b a c k o b j e c t
8 c l a s s docoun t : p u b l i c C a l l b a c k < docoun t ( void ) > {
9 p u b l i c :

10 docoun t ( void ) : c o u n t ( 0 ) { }



11
12 void h a n d l e a n a l y z e ( void ) { ++ t h i s�>c o u n t ; }
13 UINT64 c o u n t ( void ) c o n s t { re turn t h i s�>c o u n t ; }
14
15 p r i v a t e :
16 UINT64 c o u n t ;
17 } ;
18
19 / / Pin++ i n s t r u c t i o n �l e v e l i n s t r u m e n t
20 c l a s s I n s t r u c t i o n :
21 p u b l i c I n s t r u c t i o n I n s t r u m e n t <I n s t r u c t i o n > {
22 p u b l i c :
23 void h a n d l e i n s t r u m e n t ( c o n s t I n s & i n s ) {
24 t h i s�>c a l l b a c k . i n s e r t ( IPOINT BEFORE , i n s ) ;
25 }
26
27 UINT64 c o u n t ( void ) c o n s t {re turn t h i s�>c n t . c o u n t ( ) ;}
28
29 p r i v a t e :
30 docoun t c n t ;
31 } ;
32
33 / / one and o n l y Pin++ t o o l o b j e c t
34 c l a s s i n s c o u n t : p u b l i c Tool <i n s c o u n t> {
35 p u b l i c :
36 i n s c o u n t ( void ) {
37 t h i s�>e n a b l e f i n i c a l l b a c k ( ) ;
38 }
39
40 void h a n d l e f i n i ( INT32 code ) {
41 s t d : : o f s t r e a m f o u t ( o u t f i l e . Value ( ) . c s t r ( ) ) ;
42 f o u t . s e t f ( i o s : : showbase ) ;
43 f o u t << ” Count ”
44 << t h i s�>i n s t r u c t i o n . c o u n t ( ) << s t d : : e n d l ;
45
46 f o u t . c l o s e ( ) ;
47 }
48
49 p r i v a t e :
50 / / One and o n l y i n s t r u m e n t
51 I n s t r u c t i o n i n s t r u c t i o n ;
52
53 / / / @{ KNOBS
54 s t a t i c KNOB <s t r i n g> o u t f i l e ;
55 / / / @}
56 } ;
57
58 KNOB <s t r i n g> i n s c o u n t : :
59 o u t f i l e (KNOB MODE WRITEONCE, ” p i n t o o l ” , ” o ” ,
60 ” i n s c o u n t . o u t ” , ” o u t p u t f i l e name” ) ;
61
62 / / macro s i m p l i f y i n g p i n t o o l i n i t i a l i z a t i o n
63 DECLARE PINTOOL ( i n s c o u n t ) ;

Listing 2. Pintool in Listing 1 re-implemented using Pin++.

Instrument components in Pin++ (line 21) subclass from
the instrument class that corresponds to the desired level
of instrumentation. Table 1 lists the different types of in-
strument classes available in Pin++, which correspond to
those available when implementing a Pintool using the tra-
ditional method. As shown in Listing 2, each instrument
component must implement the handle instrument()
method (line 23). This method is called automatically by Pin.
Within the handle instrument() method, the instru-
ment is responsible for inserting callbacks into the program
under instrumentation.

Lastly, the tool component in Listing 2 (line 34) is re-
sponsible for handling notifications from Pin by implement-
ing methods of interest defined in the base class. If a noti-
fication is not implemented, then it is optimized out of the
final binary. This is possible since the base class does not
use any virtual methods to implement polymorphic behavior.

Scope Pin++ Type
INS Instruction Instrument
TRACE Trace Instrument
RTN Routine Instrument
IMG Image Instrument

Table 1. Different instrument objects available in Pin++.

Instead, it uses the Curiously Recurring Template Pattern to
gain access to the subclass. Finally, the developer must regis-
ter the tool object for the correct notifications from Pin. This
new design and structure of a Pintool using Pin++ helps im-
prove its quality, reduce its complexity (see Section 4), and
provides foundation for addressing other complexities dis-
cussed in Section 2.

3.2 Removing Hidden Constraints Between Analysis
Routine and its Registration Process

As discussed in Section 2, the argument types passed to the
* InsertCall function must match the signature of the
analysis routine. If incorrect arguments types are provided,
then the Pintool will have runtime failures. This hidden con-
straint is an inherent complexity of implementing a Pintool.

You will notice, however, that the source code in List-
ing 2 does not have this same requirement when instrument-
ing the instruction. As shown on line 24 in Listing 2, the user
only need to call insert—passing a location and target ob-
ject to instrument. The Pin++ framework then automatically
constructs the correct parameter list and invokes the native
* InsertCall function as done in Listing 1.

We are able to achieve this desired behavior because the
developer must parameterize the base class with a function
type. The return type of the function type is the name of
the subclass. This allows the base class to directly call into
the subclass without using virtual methods. The function
type parameters are the arguments that the callback expects
to receive from Pin. In Listing 2, the callback does not
expect any data from Pin and defines its function type as
<docount(void)>.
1 c l a s s Mem Read :
2 p u b l i c C a l l b a c k <Mem Read ( ARG INST PTR , ARG MEMORYOP EA)> {
3 p u b l i c :
4 Mem Read ( FILE * f i l e ) : f i l e ( f i l e ) { }
5
6 void h a n d l e a n a l y z e ( a r g 1 t y p e ip , a r g 2 t y p e add r ) {
7 f p r i n t f ( t h i s�>f i l e , ”%p : R %p\n ” , ip , add r ) ;
8 }
9

10 p r i v a t e :
11 FILE * f i l e ;
12 } ;
13
14 c l a s s I n s t r u m e n t :
15 p u b l i c I n s t r u c t i o n I n s t r u m e n t <I n s t r u m e n t> {
16 p u b l i c :
17 I n s t r u m e n t ( FILE * f i l e ) : mr ( f i l e ) { }
18
19 void h a n d l e i n s t r u m e n t ( c o n s t I n s & i n s ) {
20 UINT32 o p e r a n d s = i n s . memory operand coun t ( ) ;
21 IPOINT l o c = IPOINT BEFORE ;
22
23 f o r ( UINT32 op = 0 ; op < o p e r a n d s ; ++ op )
24 i f ( i n s . i s m e m o r y o p e r a n d r e a d ( op ) )



25 t h i s�>mr . i n s e r t p r e d i c a t e d ( loc , i n s , op ) ;
26 }
27
28 p r i v a t e :
29 Mem Read mr ;
30 } ;

Listing 3. Code snippet of a Pintool in Pin++ that has a
callback object with multiple arguments.

Listing 3 shows a callback that receives multiple argu-
ments from Pin. As shown in this example, the callback
expects to receive two pieces of data (i.e., the current in-
struction pointer and memory address) each time its analysis
method is invoked. Pin++ defines arguments that correspond
to the arguments types in Pin. Pin++ uses its own argument
type system because it provides more control over its gener-
ative programming process. It also allows Pin++ to control
what argument types a callback object supports. We discuss
in Section 5 why Pin++ does not support all the argument
types supported by Pin.

Callbacks with arguments that have additional pa-
rameters. In some cases a callback expects to receive data,
but only providing the argument type is not enough infor-
mation for Pin to know what data to pass to the callback.
For example, the IARG MEMORYOP EA argument expects
an extra argument (i.e., the memory operation index). With-
out the additional argument, Pin does not know what mem-
ory operation index the callback wants.

Pin++ handles this use case by providing the additional
parameters after the target object parameter to the insert
method. As shown on line 25 in Listing 3, the additional ar-
gument required for the ARG MEMORYOP EA parameter is
supplied after the target object parameter. Each additional
argument is supplied in order based on the signature of the
function pointer passed to the base class of the correspond-
ing callback. Pin++ then constructs an argument list contain-
ing the additional arguments. Lastly, this design approach al-
lows Pin++ to type check each additional argument, which
is not possible when implementing a Pintool using the tradi-
tional approach.

Validating analysis routine parameter types. When
implementing a Pintool using the traditional method, it is
not possible to validate the IARG * values passed to the
* InsertCall function match the parameter types ex-
pected by the analysis routine. This is because the analysis
routine parameter for the traditional insert call function is a
function pointer that takes variatric arguments. It is there-
fore impossible for the compiler to type check the argument
types against the signature of the analysis routine.

Because the function type passed to the base class of a
callback object in Pin++ contains the expected argument
types, Pin++ is able to validate the handle analyze
method of a callback object has the correct parameter types.
If the parameter types of the handle analyzemethod are
incorrect, the developer gets a compilation error that details
the expected signature of the handle analyze method.

Lastly, line 6 in Listing 3 shows how Pin++ provides type
definitions for each expected parameter, which helps reduce
compile-time errors and makes Pin++’s design less rigid and
fragile.

Conditional analysis. In some cases, developers do not
want their analysis routines to execute each time an instru-
mented object (see Table 1) is executed. Pin supports this
need using * InsertIfCall and * InsertThenCall
functions. These functions behave similar to the standard
* InsertCall functions. The former function defines the
analysis routine that determines when the analysis routine
should execute. The latter function defines the analysis rou-
tine that is to be executed (i.e., it is same analysis routine
registered using the standard insert call function).

With conditional analysis, developers must manage the
same complexities as the standard insert call function dis-
cussed above. In addition, developers must (1) remember
that the location (i.e., before, after, or anywhere) passed to
the if-function, must also be passed to the then-function; and
(2) remember to call the if-function before the then-function.
Finally, it is hard to switch between standard analysis and
conditional analysis since you must remove the standard in-
sert call, and replace it with the if-then insert calls.
1 c l a s s countdown :
2 p u b l i c C o n d i t i o n a l C a l l b a c k <countdown ( void )> {
3 p u b l i c :
4 countdown ( void ) : c ( 1 ) { }
5
6 / / r e q u i r e d method
7 bool d o n e x t ( void ) { re turn (�� t h i s�>c == 0 ) ; }
8 void r e s e t c o u n t e r ( INT32 c ) { t h i s�>c = c ; }
9

10 p r i v a t e :
11 INT32 c ;
12 } ;
13
14 / / . . .
15
16 c l a s s I n s t r u m e n t :
17 p u b l i c I n s t r u c t i o n I n s t r u m e n t <I n s t r u m e n t> {
18 p u b l i c :
19 I n s t r u m e n t ( FILE * f i l e ) : p r i n t ( f i l e , c o u n t ) { }
20
21 void h a n d l e i n s t r u m e n t ( c o n s t I n s & i n s ) {
22 t h i s�>p r i n t [ t h i s�>c o u n t ] . i n s e r t ( IPOINT BEFORE , i n s ) ;
23 }
24
25 p r i v a t e :
26 countdown c o u n t ; / / C o n d i t i o n a l c a l l b a c k
27 p r i n t i p p r i n t ; / / S t a n d a rd c a l l b a c k
28 } ;

Listing 4. Conditional analysis in Pin++.

Pin++ addresses this complexity by extending its call-
back architecture to support conditional callbacks. As shown
in Listing 4, conditional callbacks are implemented in the
same manner as the analysis objects. The main difference is
that conditional callback objects must implement a method
named do next that has a boolean return value. When this
method returns true, then the analysis routine registered
via the then-function is executed.

Conditional analysis is enabled in Pin++ via an over-
loaded index operator on the callback object. As shown in
Listing 4, the conditional callback object appears in the in-



dex operator before calling the insert method on the call-
back object. Pin++ uses this syntax because it appears like
a guard in many state machine languages. The final re-
sult of this code is that Pin++ automatically calls the if-
then insert functions. If the index operator is removed (i.e.,
[this-->count ]) then Pin++ reverts to using the stan-
dard insert function. This appoach simplifies enabling condi-
tional analysis, and allows us to create reusable conditional
callback objects that implement different sampling strate-
gizes.

3.3 Engineering Pintool Components for Reuse
As explained in Section 2, current design and implementa-
tion techniques make it hard to reuse components in differ-
ent Pintools. For example, to reuse the docount analysis
routine or the Instruction instrument from Listing 1,
the developer has to redefine state (e.g., global variables) that
should be managed by the most appropriate component.

Because Pin++ uses objects to define each of its compo-
nents, its components support engineering for reuse. For ex-
ample, it is possible to package each component in a library
and then assemble the Pintool from the reusable compo-
nents. Each component can also expose configuration meth-
ods for its altering behavior. For example, Listing 5 illus-
trates a simple batch counter callback that can be configured
as needed using the batch countmethod. This callback is
included with the Pin++ framework for reuse in any Pintool.

1 c l a s s B a t c h C o u n t e r :
2 p u b l i c C a l l b a c k <B a t c h C o u n t e r ( void )> {
3 p u b l i c :
4 B a t c h C o u n t e r ( void ) : c ( 0 ) , bc ( 1 ) { }
5
6 void h a n d l e a n a l y z e ( void ) {
7 t h i s�>c += t h i s�>bc ;
8 }
9

10 void b a t c h c o u n t ( UINT64 c ) { t h i s�>bc = c ; }
11 UINT64 b a t c h c o u n t ( void ) c o n s t { re turn t h i s�>bc ; }
12 UINT64 c o u n t ( void ) c o n s t { re turn t h i s�>c ; }
13
14 p r i v a t e :
15 UINT64 c , bc ;
16 } ;

Listing 5. Callback object with a configuration parameter.

Each component in Pin++ is designed to be a self-
contained object composed from other components. In the
case of a tool, it is composed from a set of instruments. In the
case of an instrument, it is composed from a set of callback
objects. Finally, each child object informs its parent (or con-
tainer) object what it needs in order to function correct. For
example, the Memory Read callback in Listing 3 informs
its container instrument that it requires a file handle.

This design approach allows developers to engineer each
component in a Pintool for reuse. Moreover, this design
methodology helps lay a foundation for creating a repository
of components (i.e., callbacks, instruments, and tools) that
can be reused across different Pintools, which is hard to do
with Pin right now.

3.4 Reducing Reinvention of Required Behavior
As discussed in Section 2, developers of Pintools are re-
quired to bootstrap each Pintool with Pin. This includes ini-
tializing the Pintool, registering the necessary callbacks, and
starting the program under instrumentation. Some parts of
the bootstrapping process is common across different Pin-
tools, such as initialization and starting the program under
instrumentation. Other parts of the bootstrapping process are
not common across different Pintools, such as registering the
different callbacks.

Pin++ addresses complexities associated with reinventing
required behavior in two ways. First, Pin++ uses macros to
define required behavior in a Pintool. As shown on line 63
in Listing 2, Pin++ uses the DECLARE PINTOOL(tool)
macro to bootstrap a Pintool. The macro has common behav-
ior that must be implemented in a Pintool, such as defining
the main function, initializing the environment, allocating
to concrete tool component, and starting the program under
instrumentation. This version of the macro starts the pro-
gram in JIT mode. Pin++ also provides an equivalent macro
to start a program in probed mode.

The second way Pin++ reduces reinvention of required
behavior is in the registration process of components. In
a traditional Pintool, the developer must manually register
each instrument with Pin. As shown on line 46 in Listing 1,
the developer has to use the INS AddInstrumentFunction
function to register the Instruction instrument.

Pin++ improves this aspect of a Pintool by leveraging
semantics of a composing a Pintool in Pin++. As seen in
Listing 2, there is no explicit call to a function that registers
an instrument. This is because the instrument objects (see
Table 1) contain this required behavior in its constructor.
Pin++ only requires the developer instantiate an instrument
to register it with Pin. This is the reason the developer only
need to include the instrument object in a tool object, and the
Pintool still functions correctly.

The developer can also lazily load instruments by not al-
locating the instrument object until it is needed. This allows
developers to load instruments after the program has started.
Destroying an instrument, however, does not unregister the
instrument with Pin because Pin does not support such func-
tionality for individual instruments.

Finally, the design of instruments in Pin++ assists with
engineering an instrument component for reuse. This is be-
cause the instrument object is self-contained. It contains all
the necessary logic for registering itself correctly when in-
cluded in any Pintool. The developer therefore does not have
to worry about how to register the instrument component in
their tool. Instead, the developer focuses on configuring the
instrument component using exposed configuration meth-
ods.



4. Experimental Results of Pin++
We evaluated Pin++ by implementing 21 different Pintools
distributed with Pin using Pin++. For this evaluation, we
were interested in answering two main questions:

1. Does Pin++ reduce the complexity of a Pintool? We
are interested in answering this question because it will
give us a better understanding of reuse, maintainability,
and modularity of the code implemented using Pin++.
Section 4.1 discusses our results to this question.

2. Does Pin++ add additional overhead of the instru-
mentation process? We are interested in answering this
question because Pin++ is a layer of abstraction that re-
sides between Pin and what the developer actually im-
plements. When additional layers of abstraction are in-
troduced into the software stack, such as with middle-
ware [22], performance can be impacted negatively. We
therefore want to make sure that Pin++ does not have too
much negative impact on existing instrumentation over-
head. Section 4.2 discusses our results to this question.

4.1 Question 1. Understanding Complexity When
Using Pin++

We used CCCC (cccc.sourceforge.net) to collect
metrics about the source code for the Pintools we used in
our experiments. Figure 2 shows the cyclomatic complexity
for the traditional Pintool implementation, and its equivalent
implemented using Pin++. As shown in this graph, the cy-
clomatic complexity of a Pintool implemented using Pin++
is less. This is because there is less coupling between in-
dividual components in a Pintool when implemented using
Pin++. For example, the Pintools implemented using Pin++
do not use any global variables; whereas, those implemented
as a traditional Pintool make heavy use of global variables,
which increases their cyclomatic complexity.
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Figure 2. Cyclomatic complexity of a Pintool when imple-
mented using the traditional versus Pin++ approach.

The cyclomatic complexity for inscount{1|2} is the
same for both the traditional and Pin++ implementation.
This is because the Pin++ implementation stores count in-

formation in each allocated callback object. In the finalize
method, the Pintool must sum the count stored in each call-
back, which requires using nested for-loops. The traditional
implementation updates a global counter, and therefore does
not require any looping to produce the final count. When we
redesigned the Pin++ implementation to remove the nested
for-loop, its cyclomatic complexity went down to 1 (not
shown in any graph). Its instrumentation overhead, however,
increased upwards of 33% due to a large amount of indirect
calls to update a referenced counter. We therefore reverted
the Pin++ implementation of inscount{1|2} back to the
one currently represented in Figure 2.

Last, we would like to point out that when we imple-
mented the Pintool from reusable components, its complex-
ity went down below that of the regular Pin++ implementa-
tion. As shown in Figure 2, we were only able to implement
inscount{0|1|2} and proccont using a reusable call-
back object provided with the Pin++ framework because
they were each variations of the same tool that relied on a
counter-based analysis routine.

On SLOC. Although Pin++ reduces the cyclomatic com-
plexity of a Pintool, the number of source lines of code
(SLOC) of a Pintool increases when using Pin++. For exam-
ple, Figure 3 shows the SLOC for each of the Pintools imple-
mented using the traditional approach versus using Pin++.
We expected the number of SLOC to increase because each
component in Pin++ is implemented as a class instead of a
function. This design choice in itself automatically increases
the number of SLOC for a Pintool. When we implemented
the Pintool from reusable components, the SLOC decreased
close to the traditional implementation of the Pintool as ex-
pected.
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Figure 3. Source lines of code (SLOC) of a Pintool when
implemented using the traditional versus Pin++ approach.

On modularity. One of the design goals of Pin++ was to
engineer components for reuse. An indicator of reuse is the
modularity of a program [14]. Figure 4 shows the modularity
of a traditional Pintool when compared to its corresponding
Pin++ implementation. As shown in this figure, Pintools im-
plemented using Pin++ have a high modularity value when



compared to its traditional implementation. This means that
components in a Pintool implemented using Pin++ are more
capable of reuse when compared to its traditional implemen-
tation. Finally, the modularity of the Pintool decreases when
constructed from reusable components because part of the
Pintool that helped increase modularity is removed.
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Figure 4. Modularity of a Pintool when implemented using
traditional versus Pin++ approach.

4.2 Question 2. Understanding Performance When
Using Pin++

We evaluated the performance of the traditional versus
Pin++ implementation of the Pintools using the SPEC
CPU2006 benchmark suite. Our performance tests were ex-
ecuted on Dell PowerEdge R815 with 2x AMD Operton
6272 (64-cores), 2.1 GHz processor, 32 GB RAM, and run-
ning Ubuntu 12.10. Each benchmark was compiled using
GCC 4.7.2, with no changes to the SPEC CPU2006 com-
piler and linker flags. We executed each implementation of
the Pintool (i.e., traditional and Pin++) for 5 iterations where
1 iteration is the execution of both implementations. We did
not evaluate the native benchmark execution times because
the purpose of our experiments is to compare performance
between the traditional and Pin++ implementation, and com-
parisons of native versus Pin performance already exist [1].

Figure 5 and Figure 6 show the results of our performance
tests. If the bar is above 0%, then it is a reduction in instru-
mentation overhead. If the bar is below 0%, then it is an in-
crease in instrumentation overhead. We used a subset of the
Pintools from the previous section because the Pintools in
Figure 5 and Figure 6 are more intrusive and not just show-
casing simple features of Pin, such as how to detach from
a program under instrumentation. Also, the Pintools in the
figures above are the same ones used by the authors of Pin
in previous performance tests [1].

As you can see in both figures, the Pin++ implementa-
tion for many of the Pintools and benchmarks reduces in-
strumentation overhead. Of all the Pintools we evaluated,
inscount tls, which uses thread-local storage to save
instrumentation data for each thread in the program, has the

Figure 5. Percent difference in instrumentation overhead of
traditional vs. Pin++ Pintool against integer benchmarks in
SPEC CPU2006.

Figure 6. Percent difference in instrumentation overhead of
traditional vs. Pin++ Pintool against floating point bench-
marks in SPEC CPU2006.

most reduction in instrumentation overhead. inscount0
and staticcount are the two most intrusive Pintools be-
cause they count every single instruction executed either dy-
namically at runtime or statically without executing the pro-
gram, respectively. In both cases, the Pin++ implementation
reduces the instrumentation overhead.
inscount{1|2} are the two Pintools where the Pin++

implementation added more instrumentation overhead in
some cases. The traditional implementation of inscount1
is an improvement to inscount0 because it does not count
every instruction, but performs a batch count of the num-
ber of instructions in a basic block (BBL)—a sequence of
instructions with single entry and exit. inscount2 is an
improvement to inscount1 because it uses fast calling
mechanisms in Pin. The Pin++ implementation differs for



these two Pintools in that (1) it always uses fast call mech-
anisms in Pin; and (2) it allocates a new callback object for
each BBL and stores the batch value in the callback object
instead of registering the batch value with the analysis rou-
tine.

Our tests indicate that Pin++ performance benefit over
Pin is more significant when Pintools are more intrusive
(e.g., inscount tls, inscount0, and staticcount).
For Pintools that are not as intrusive, there is less reduction
in instrumentation overhead, and in some cases an increase
in instrumentation overhead. Moving forward, one of our
goals is to understand if we can enhance Pin++ to ensure
that it does not add any extra overhead when compared to its
traditional implementation for less intrusive Pintools.

5. Design Decisions Impact on Performance
The performance results in Section 4 show that Pin++ was
able to reduce instrumentation overhead of a Pintool when
compared to the traditional implementation. Although the
results show this is the case, it is counterintuitive to what
was expected. This is because Pin++ is an added layer of
abstraction between Pin and the actual Pintool’s application
logic. It could therefore be expected that Pin++ will add
more overhead of the Pintool. Our results, however, show
this is not the case.

We did notice for some test runs that the Pin++ imple-
mentation performed worse than the traditional implementa-
tion, but the average performance for Pin++ was better. We
therefore cannot definitively state that a Pintool written using
Pin++ will always reduce instrumentation overhead since it
depends on what features of Pin used. Lastly, the following
design decisions helped reduce instrumentation overhead:

• Remove registration of multiple global callbacks.
There are aspects of Pin where the developer can register
multiple global callbacks. For example, developers can
register multiple global callbacks for program lifecycle
events, thread lifecycle events, and exceptions to name
a few. It is understandable why such a feature is neces-
sary, but it should not be implemented at the DBI level.
Instead, the DBI tool should support a single callback.
The single callback, which resides at the domain-specific
level, is a bridge to registering multiple callbacks.
Using this design approach should allow Pin to further
optimize its design and performance. This is because
Pin will not be concerned with managing and looping
through multiple callbacks, which adds unwanted over-
head to instrumentation. By moving such concerns into
a supporting framework, such as Pin++, instrumentation
overhead can be optimized case by case. For example, a
Pintool that represents the minimal case (e.g., one call-
back) will not suffer because Pin is implemented to sup-
port the broadest case (e.g., multiple callbacks).

• Prohibit registration of domain-specific data. Pin al-
lows a Pintool to register domain-specific data to be
passed to the analysis routine. The parameters that allow
domain-specific data include: IARG BOOL, IARG ADDRINT,
IARG PTR, and IARG UINT32. For example, ins-
count{1|2} optimize the implementation of inscount0
by counting the number of instructions in a BBL, and
passing that number to the analysis routine each time a
BBL executes.
As shown in our results above, the Pin++ implementa-
tion of inscount{1|2} performs better (in majority
cases) because Pin++ does not, and does not need to, sup-
port domain-specific data arguments. We therefore be-
lieve that Pin should remove such functionality from its
design and let such data be managed by a framework,
such as Pin++, where its access can be optimized ac-
cordingly. Likewise, the data remains close to where it
is used [19].

6. Related Works
A majority of the inspiration for Pin++ comes from working
with the Boost.Spirit [23] library. Boost.Spirit is a C++ li-
brary that uses template metaprogramming facilities to cre-
ate parsers for context-free grammars. By using template
metaprogramming facilities, Boost.Spirit parsers are im-
plemented using a syntax that closely resembles Extended
Backus-Naur Form (EBNF) [24]. This means that develop-
ers are implementing parsers using a domain-specific syntax
that resembles how context-free grammars are described.
Although Pin++ does not have a domain-specific language,
its use of template metaprogramming to reduce the complex-
ity of a Pintool is similar to how template metaprogramming
helped the Boost.Spirit library reduce complexities associ-
ated with creating parsers for grammars in C++.

The Adaptive Communication Environment (ACE) [25]
is an object-oriented framework that implements patterns
for concurrent communication software. It provides reusable
C++ wrapper facades [16] and framework components that
perform common communication software tasks across a
range of OS platforms. Our work relates to ACE because our
decision to use the resource allocation is initialization idiom
to manage the behavior of Pin is similar features provided
by ACE. Likewise, Pin++ use facades to improve the usage
of low-level C functions as done in ACE, and many other
frameworks.

DynamoRIO [7], DynInst [8], and Valgrind [10] are DBI
frameworks that allow developers to write analysis tools in
C/C++. Although each DBI framework allows developers to
write analysis tools in C++, many of the analysis tools use a
mixture of C and C++. Similar to the traditional method of
implementing a Pintool, this results in code that is unneces-
sarily complex. Moreover, it is hard to understand the struc-
ture and design of the analysis tools. We therefore believe
that (1) these tool developers can learn from our experiences



with Pin++ and (2) the tools can benefit from layer of ab-
straction that resides between the DBI framework and the
analysis tool with the goal of reducing accidental and inher-
ent design complexities without impacting performance.

7. Concluding Remarks
This paper discussed our work on a framework named
Pin++, which is used to write analysis tools for the dy-
namic binary instrumentation (DBI) tool named Pin. Our
experience and results show that Pin++ improves several de-
sign metrics, such as cyclomatic complexity and modularity,
while reducing instrumentation overhead. Because we have
a framework like Pin++ that increases the level of abstrac-
tion for designing and implementing Pintools, we believe we
can start answering harder questions with DBI tools such as
those dealing with large volumes of instrumentation data,
meaningful sampling, and multi-language instrumentation.
Lastly, Pin++ has many other features not discussed in this
paper due to space limitations, such as STL-like iterator for
objects; ScopeGuards [26] to ensure paired functions are
ordered correctly; and objects to represent exceptions and
replacement functions in Pin1.

Pin++ is freely available in open-source format at the
following location: github.com/SEDS/PinPP.
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