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Srikant Devaraj 

SPECIFICATION AND ESTIMATION OF THE PRICE RESPONSIVENESS OF 

ALCOHOL DEMAND: A POLICY ANALYTIC PERSPECTIVE 

 Accurate estimation of alcohol price elasticity is important for policy analysis – 

e.g.., determining optimal taxes and projecting revenues generated from proposed tax 

changes.  Several approaches to specifying and estimating the price elasticity of demand 

for alcohol can be found in the literature.  There are two keys to policy-relevant 

specification and estimation of alcohol price elasticity.  First, the underlying demand 

model should take account of alcohol consumption decisions at the extensive margin – 

i.e., individuals’ decisions to drink or not – because the price of alcohol may impact the 

drinking initiation decision and one’s decision to drink is likely to be structurally 

different from how much they drink if they decide to do so (the intensive margin).  

Secondly, the modeling of alcohol demand elasticity should yield both theoretical and 

empirical results that are causally interpretable.  

The elasticity estimates obtained from the existing two-part model takes into 

account the extensive margin, but are not causally interpretable.  The elasticity estimates 

obtained using aggregate-level models, however, are causally interpretable, but do not 

explicitly take into account the extensive margin.  There currently exists no specification 

and estimation method for alcohol price elasticity that both accommodates the extensive 

margin and is causally interpretable.  I explore additional sources of bias in the extant 

approaches to elasticity specification and estimation:  1) the use of logged (vs. nominal) 

alcohol prices; and 2) implementation of unnecessarily restrictive assumptions underlying 

the conventional two-part model.  I propose a new approach to elasticity specification and 
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estimation that covers the two key requirements for policy relevance and remedies all 

such biases.  I find evidence of substantial divergence between the new and extant 

methods using both simulated and the real data.  Such differences are profound when 

placed in the context of alcohol tax revenue generation. 

 

Joseph V. Terza, PhD, Chair 
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Chapter 1.   

Background and Significance 

1.  Introduction 

 From principles of economics, the quantity demanded of any product is linked to 

its price.   In the context of alcohol, an increase in alcohol prices would result in a 

decrease in alcohol consumption.  Alcohol pricing policies are used to stem negative 

externalities associated with alcohol use and abuse (Elder et al., 2010; Leung & Phelps, 

1993).  Some example of such negative externalities include increases in: traffic fatalities 

resulting from drunk driving (Chaloupka, Saffer, & Grossman, 1993; Kenkel, 1993; 

Mullahy and Sindelar, 1994; Ruhm, 1996; Sloan, Reilly, & Schenzler, 1994); underage 

drinking (Grossman, Chaloupka, Saffer, & Laixuthai, 1994); utilization of publicly 

financed healthcare programs (Manning, Keeler, Newhouse, Sloss, & Wasserman, 1989); 

alcohol consumption among pregnant women (Patra et al., 2011); alcohol-related crime 

and domestic violence (Cook & Moore, 1993, 2002; Markowitz & Grossman, 1998, 

2000); the incidence of sexually transmitted diseases (Chesson, Harrison, & Kassler, 

2000); cirrhosis of the liver (Sloan, Reilly, & Schenzler, 1994); and adverse labor market 

outcomes (Mullahy & Sindelar, 1996; Terza, 2002).   

 Several state legislatures in the US have imposed, or are considering increasing, 

sumptuary taxes (often referred to as “sin taxes” or Pigouvian taxes) predominantly on 

alcohol and tobacco to reduce negative externalities.  Studies have shown that such taxes 

increase the prices of alcohol, decrease the demand for alcohol, and thus lead to lower 
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negative externalities (Byrnes, Shakeshaft, Petrie, & Doran, 2013; Cook & Durrance, 

2013).  

 There also has been growing interest in raising alcohol excise taxes to increase 

government revenues so as to reduce budget deficits or to fund various state and federal 

programs such as:  alcohol and substance abuse treatment programs; drug courts; family 

court services; early childhood education programs; law enforcement; and health care.  

The Alcohol and Tobacco Tax and Trade Bureau (TTB) estimated the federal excise tax 

revenues from alcohol to be $13.9 billion in 2014.  State and local government revenues 

from alcoholic beverages sales taxes amounted to $6.2 billion in 2014.1   

 The federal government increased excise taxes on all alcoholic beverages in 1991.  

Since then, the Congressional Budget Office has proposed additional increases in excise 

taxes on alcohol as a means of reducing budget deficits (Congressional Budget Office, 

2013).  States also levy additional taxes on alcoholic beverages.  For example most states, 

in addition to general sale tax rates, levy alcohol excise taxes per gallon at the wholesale 

or retail level separately.  A few states also levy ad valorem taxes on each alcohol type 

expressed as a percentage of its retail price.2  Such ad valorem tax rates differ in on- and 

off-premise sales of alcohol.  Any change in alcohol taxes would impact the revenues 

generated by the state/federal government as a result of it.   

 To summarize, one reason to raise alcohol taxes is to increase the government 

revenues to reduce budget deficits or fund various governmental programs.  Another 

                                                 

1 See http://ttb.gov/statistics/final15.pdf for details on federal excise tax revenues and 
http://www2.census.gov/govs/statetax/G14-STC-Final.pdf for details on state and local 
sale tax revenues. 
2 Some states that levy ad valorem taxes do not apply general sales tax on alcoholic 
products.  
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reason to raise alcohol taxes is to alleviate the negative consequences of alcohol use and 

abuse.  Such Pigouvian taxes will have an impact on the quantity of alcohol consumed as 

a result of price increase.  Elasticity is a pertinent measure that captures the change in 

consumption as a result of change in prices through taxes.  Existing models that forecast 

revenue generation from an increase in alcohol taxes incorporate the price elasticity of 

alcohol demand in their models along with changes in alcohol taxes, the price of alcohol 

and current alcohol consumption (Alcohol Justice, 2014).   

 The alcohol price elasticity can also be used to study the effect of a varied set of 

proposed tax rates for curbing alcohol consumption to a certain level and, hence, impact 

public health issues (for example: reducing alcohol abuse among pregnant women, 

reducing a specific percentage of alcohol-related traffic accidents, bringing down under-

age drinking, reducing crime and violence due to alcohol consumption, decreasing the 

number of sexually transmitted disease incidences, or achieving other policy goals).  

Furthermore, aside from the applications on the demand side, knowing the alcohol price 

elasticities is also valuable to the alcohol industry or the supply side.  It could help the 

industry determine the changes in its sales and profits as a result of change in prices from 

tax changes and from government imposed policies (such as minimum legal drinking age, 

monetary penalties for underage drinking, blood alcohol concentration limits for driving, 

etc.).   

 Therefore, accurate estimation of the alcohol price elasticity is important for 

policymakers to forecast tax revenues from increases in alcohol taxes, and evaluate the 

optimal level of alcohol taxes intended to maximize revenues from taxes or restrict the 

growth in alcohol consumption for social welfare.  It is also an equally essential measure 
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for the alcohol industry to estimate the effect of new (or proposed) federal and state taxes 

on the industry’s sales and profits.   

 

2.  Role of Elasticity to Inform Alcohol Pricing Policy through Revenue Generation 

 Elasticities also play a key role in determining the direction of tax revenue 

changes due to tax rate changes.  Ornstein (1980) and Levy and Sheflin (1985) show that 

if alcohol demand is inelastic, an increase in alcohol excise taxes will have a trivial 

shrinking effect on consumption; increase tax revenues; and increase disposable income 

spent on alcohol by consumers.  Alternatively, when alcohol demand is elastic, an 

increase in excise taxes decreases consumption by a relatively larger amount and leads to 

a decline in tax revenues.  Leung and Phelps (1993) extend the Ornstein (1980) model by 

relaxing some of the restrictions on the magnitude of the relevant demand elasticities.  

They show that revenues are maximized by setting the tax rates in such a way that the 

equilibrium alcohol consumption level is in the elastic part of the demand curve.   

 Alcohol Justice is an organization that monitors the alcohol industry and also 

leads campaigns for increasing alcohol taxes at a national and state-level to fund 

government programs on alcohol prevention and treatment.  They derived a simple model 

to estimate revenue generation through alcohol tax increases (Alcohol Justice, 2014).  

The model incorporates the elasticity of alcohol demand, changes in alcohol taxes, the 

price of alcohol and current alcohol consumption.  Their model shows that the more 

elastic is demand, the smaller the change in revenues.  Also, different own price 

elasticities of alcohol demand yield different revenue generation values.  As in the 

published studies cited above, when the price responsiveness of alcohol or any product is 



5 

elastic, increases in prices will reduce revenues.  Alternatively, when demand is inelastic, 

tax revenues will be higher with increases in prices.  In chapter 2 (section 5), I discuss the 

Alcohol Justice (2014) model in detail and demonstrate how different specifications of, 

and estimation methods for, the price elasticity of alcohol demand can lead to divergent 

revenue generation policies.   

 

3. Existing Approaches to Alcohol Elasticity Specification and Estimation 

 Many different approaches to specifying and estimating the price elasticity of 

demand for alcohol can be found in the literature.  Elder et al. (2010) does a systematic 

review of thirty-eight studies on alcohol elasticity.  Gallet (2007) performs a meta-

analysis of 132 studies that estimate the price elasticity of alcohol demand.  Nelson 

(2014) meta-analyze 114 studies of beer elasticities.  Wagenaar et al. (2009) find 112 

studies that estimate the relationship between alcohol price/taxes and consumption.  The 

studies found in these reviews implement different specifications, estimation methods 

and datasets.  Approaches to alcohol demand regression modeling found in the literature 

include the: double-log, semi-log, Tobit, two-part, three-stage budgeting, and finite 

mixture.  The systematic reviews, however, do not give attention to the methodological 

aspects of elasticity.  Unfortunately, nearly all (if not all) extant estimates of alcohol price 

elasticity [including almost all of the studies meta analyzed by Elder et al. (2010), Gallet 

(2007), Nelson (2014), and Wagenaar et al. (2009)] and are of limited usefulness in the 

context of empirical policy analysis because they are subject to bias from one or more of 

a number of sources.   
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4. Exploring sources of bias in extant alcohol elasticity specification and estimation 

 As discussed in the section 2, accurate estimation of alcohol price elasticity is 

important for policy analysis.  A complicating factor in the specification and estimation 

of the own price elasticity of alcohol demand is the typical abundance of zeros among the 

observed alcohol consumption values, which is the first source of bias.  Such zero values 

present a challenge in econometric modeling and estimation because one’s decision to 

drink [extensive margin] may be structurally different from his choice as to how much to 

drink (if he decides to drink) [intensive margin].  According to the American Medical 

Association, alcoholism is classified as illness.  Alcohol consumption has negative effects 

with potential risk of addiction and alcohol abuse.  Even light or moderate drinkers may 

show signs of slight dependency, which could be revealed by a strong craving to drink at 

certain occasions.  The addictive and abusive potential of alcohol drinking takes a toll on 

a drinker’s own health, inability to make rational decisions, impacts public health, and 

reduces the disposable income of drinkers.  Individuals, who foresee these adverse effects 

of alcoholism or due to their cultural norms, may restrain from drinking.   

 Furthermore, it is quite plausible that the price of alcohol differentially impacts 

these two margins of the consumer’s alcohol demand decision.  Studies have shown that 

the drinking initiation decisions are negatively responsive to prices of alcohol (Chaloupka 

& Laixuthai, 1997; Cameron and Williams, 2001; Farrell et al., 2003; Manning et al., 

1995; Ruhm et al., 2012).  Youth when faced with higher alcohol prices were highly 

unlikely to switch from being abstainers to moderate drinkers (Williams, Chaloupka, & 

Wechsler, 2005).  Therefore, it is essential to allow for this distinction in the specification 

and estimation of the price elasticity of alcohol demand.  The two-part model developed 
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by Manning et al. (1995) [MBM henceforth] to estimate the own price elasticity of 

alcohol demand is indeed designed to account for the structural difference between the 

extensive and intensive margins.  Of all the alcohol elasticity studies we surveyed, only 

three alcohol elasticity studies take explicit account of the extensive margin by 

implementing the MBM approach (Farrell et al., 2003; Manning et al., 1995; Ruhm et al., 

2012). 

 The second source of bias in extant alcohol elasticity literature stems from the fact 

that the modeling of alcohol demand elasticity should yield both theoretical and empirical 

results that are causally interpretable and, therefore, useful for the analysis of potential 

changes in alcohol consumption that would result from exogenous (and ceteris paribus) 

changes in the price of alcohol (e.g., a change in tax policy).  Terza, Jones, Devaraj et al. 

(2015) [TJD et al. henceforth], show that the elasticity measure suggested by MBM is not 

causally interpretable.  Therefore, although the three aforementioned studies take explicit 

account of the extensive margin, they do not produce elasticity estimates that are causally 

interpretable.  On the other hand, the remaining studies that we surveyed (the 

overwhelming majority of all studies surveyed) are designed to produce causally 

interpretable results.3  Unfortunately, nearly all of these studies are based on aggregate-

level (e.g. state-level) models and data and are, therefore, incapable of taking explicit 

account of individual alcohol demand decisions at the extensive margin.  Most of these 

studies implement a log-log demand specification and use aggregate data (e.g., Goel & 

Morey, 1995; Lee & Tremblay, 1992; Levy & Sheflin, 1983; Wilkinson, 1987; Nelson, 

1990; Young & Bielinska-Kwapisz, 2003).  There are also a few studies that use 

                                                 

3 See TJD et al. (2015) for details. 
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individual data to estimate alcohol elasticity, but do not allow for structural differences in 

the modeling of the extensive margin (Ayyagari, Deb, Fletcher, Gallo, & Sindelar, 2013; 

Kenkel, 1996).  TJD et al. suggest an alternative elasticity specification (estimator) for 

the two-part context that is causally interpretable.   

 The third source of bias, among the studies that explicitly account for the 

extensive margin (Manning et al., 1995; Farrell et al., 2003; Ruhm et al., 2012; TJD et 

al.), is the imposition of unnecessary restrictions on the two-part model underlying 

elasticity specification and estimation.  Such restrictions make simple ordinary least 

squares (OLS) estimation of the parameters of the intensive margin possible. This ease in 

estimation comes, however, at the cost of potential misspecification bias. Moreover, these 

restrictions are unnecessary because equally simple nonlinear least squares (NLS) 

estimators can be implemented.   . 

 Nearly all of the conceptual and empirical treatments of alcohol demand elasticity 

found in the literature use log-price rather than nominal price.  The origin of this practice 

traces to the convenience it affords via applying the ordinary least squares (OLS) method 

to a linear demand model with log consumption as the dependent variable and log price 

and other demand determinants as the independent variables.  There is, however, no 

substantive reason for using log-price vs. nominal price and imposing this restriction on 

the model may lead to fourth source of bias.   

 In summary, there currently exist no specification and estimation method for 

alcohol price elasticity that accommodates the extensive margin, is causally interpretable, 

is less restrictive and uses the nominal price of alcohol.  One of the primary goals of this 

dissertation is to detail and evaluate a new approach to the specification and estimation of 
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alcohol price elasticity [UPO henceforth] that takes into account these key aspects for 

policy relevance.  Using simulated and real data, I compare the elasticities obtained using 

UPO to extant (biased) approaches.  I also evaluate such differences in the context of 

revenue generation. 

 

5. Goals of the Dissertation 

 The first objective of this dissertation is to develop a specification and estimation 

method for the own-price elasticity of alcohol demand that takes explicit treatment of the 

extensive margin in modeling and causal interpretability.  In this chapter of the 

dissertation, I will first discuss the importance of accounting for the extensive margin in 

model specification.  I will then detail the TJD et al. two-part model that is designed for 

this purpose.  I will also address why the MBM model is not causally interpretable.  

Finally, I will detail the causally interpretable two-part-model-based alcohol elasticity 

specification and estimation approach of TJD et al. 

 The second objective of the dissertation is to compare the TJD et al. elasticity 

specification and estimation method to the extant approach that accounts for the extensive 

margin but is not causally interpretable (the MBM approach).  I will compare the 

elasticities obtained by MBM and the TJD et al. with simulated and real data.  I also 

demonstrate how the raw elasticity differences (TJD et al. vs. MBM approach) translate 

to policy differences in the revenue generation context.  Such policy differences will be 

evaluated in an empirical context using data from the Ruhm et al. (2012) study.   

  The third objective of this dissertation is to develop a new elasticity specification 

and estimation method that take into account the extensive margin; is causally 
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interpretable; uses nominal prices of alcohol instead of logged price; and relaxes the 

unnecessarily restrictive assumptions underlying the conventional two-part model   (the 

UPO approach). 

 The fourth objective of dissertation is to compare the UPO elasticity specification 

and estimation method to the aggregated log-log demand based approach which yields 

causally interpretable theoretical and empirical results but does not (cannot) account for 

individual drinking decisions at the extensive margin.  First, I will create a state-level 

database by artificially aggregating data from the Ruhm et al. (2012) study.  Secondly, I 

estimate alcohol price elasticities by applying the conventional log-log model to the 

artificially aggregated database.  Third, I compare this aggregated elasticity estimate with 

that obtained using the UPO method.  Finally, I will discuss how the raw elasticity 

differences obtained in this comparison translate to policy differences in the revenue 

generation contexts. 

  The final objective of this dissertation is to compare the elasticities obtained by 

using a version of the unrestricted causally interpretable two-part model with logged 

prices [UPOL henceforth] and UPO methods using simulated and real dataset.  I will then 

evaluate how differences in elasticity estimates translate to differences in revenue 

generation.  

 

6. Overview of the Dissertation 

 This dissertation will be organized as follows.  The first and second objectives 

presented in section 5 of this chapter will be discussed in chapter 2 of the dissertation.  

The third and fourth objectives will be discussed in chapter 3 of this dissertation.  Finally, 
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the last objective will be discussed in chapter 4 of this dissertation.  Chapter 5 will 

provide a summary and discussion of the results obtained in the main chapters of the 

dissertation.  
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Chapter 2.   

Specification and Estimation of Alcohol Price Elasticity in  

Individual-Level Demand Models with Zero-Valued Consumption Outcomes 

1.  Introduction 

 Numerous studies have estimated the own-price elasticity of alcohol demand 

using different data and methods (Elder et al., 2010; Gallet, 2007; Nelson, 2014; 

Wagenaar et al., 2009).4  Previous studies have applied different models to estimate the 

alcohol demand elasticity using utility maximization theory, where consumers allocate 

their limited income towards activities and goods that maximize their utility (Ayyagari et 

al., 2013; Blake and Nied, 1997; Coate & Grossman, 1988; Farrell et al., 2003; Kenkel, 

1996, 1993; Laixuthai & Chaloupka, 1993; Manning, Blumberg, & Moulton, 1995; 

Mullahy, 1998).  

 A complicating factor in the specification and estimation of the own price 

elasticity of alcohol demand is the typical abundance of zeros among the observed 

alcohol consumption values.  According to the Center for Disease Control and 

Prevention’s (CDC) National Health Interview Survey (NHIS), 51.6% of adults aged 18 

and above were current regular drinkers in the year 2012.5  Amongst the remaining share, 

21.3% of adults were life-time abstainers, 12.8% adults were current infrequent drinkers, 

                                                 

4 Elder et al. (2010) conduct a systematic review of 38 studies that specifically estimate 
price elasticities of alcohol demand. Gallet (2007) performs meta-analysis of 132 studies 
on alcohol demand elasticity. Wagenaar, Salois, and Komro (2009) find 112 studies that 
estimate the relationship between alcohol price/tax and consumption.  Nelson (2014) 
conduct meta-analysis on 191 estimates of beer elasticities. 
5 Refer to page 75 of CDC’s National Health Interview Survey (NHIS) report on 
http://www.cdc.gov/nchs/data/series/sr_10/sr10_260.pdf.   
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8.0% adults were former infrequent drinkers and 5.9% adults were former regular 

drinkers.  Such zero values present a challenge in econometric modeling and estimation 

because one’s decision to drink [extensive margin] may be structurally different from his 

choice as to how much to drink (if he decides to drink) [intensive margin].  According to 

the American Medical Association, alcoholism is classified as illness.  Alcohol 

consumption, like cigarettes, substance use and illicit drugs, has negative effects with 

potential risk of addiction and alcohol abuse.  Even light or moderate drinkers may show 

signs of slight dependency, which could be revealed by a strong craving to drink at 

certain occasions (for example: to overcome stress, excessive drinking during social 

events, etc.).  The addictive and abusive potential of alcohol drinking takes a toll on a 

drinker’s own health, inability to make rational decisions, impacts public health, and 

reduces the disposable income of drinkers.  It is quite plausible that individuals, who 

foresee these adverse effects of alcoholism or due to their cultural norms, may restrain 

from drinking.   

 In particular, the price of alcohol may differentially impact these two margins of 

the consumer’s alcohol demand decision.6  Several empirical studies have shown that the 

drinking initiation decisions are negatively responsive to prices of alcohol (Manning et 

al., 1995; Chaloupka & Laixuthai, 1997; Cameron & Williams, 2001; Farrell et al., 2003; 

Ruhm et al., 2012).  Also, youth when faced with higher alcohol prices were highly 

                                                 

6 A total of 35.2% adults [i.e., 21.3% life-time abstainers + 8.0% former infrequent 
drinkers + 5.9% former regular drinkers] did not consume alcohol in 2012.  Life-time 
abstainers had fewer than 12 drinks in his/her lifetime.  The former (current) infrequent 
drinkers had at least 12 drinks in his/her lifetime and no drinks (fewer than 12 drinks) 
during the last year of NHIS survey period.  The former regular drinkers had at least 12 
drinks in his/her lifetime/1 year and had no drinks in the past year. 
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unlikely to switch from being abstainers to moderate drinkers (Williams, et al., 2005).  

Therefore, it is essential to allow for this distinction in the specification and estimation of 

the price elasticity of alcohol demand.   

 To date, only three studies (Farrell et al., 2003; Manning et al., 1995; Ruhm et al. 

2012) have accounted for this important and essential two-part modeling aspect (i.e., 

differentiating extensive and intensive margins) of alcohol demand.   Manning et al.  

(1995) [henceforth MBM] was the first study to suggest and apply a two-part-modeling-

based estimator to account for the systematic difference between the extensive and 

intensive margins.  This approach has also been applied by Farrell et al. (2003) and Ruhm 

et al. (2012).  However, Terza, Jones, Devaraj et al. (2015) [henceforth TJD et al.] argue 

that the MBM approach produces elasticity results that are not causally interpretable 

because they are not founded in a potential outcomes framework that is causally 

interpretable.7  They derive an elasticity measure and estimator that follow from well-

defined potential outcomes based framework placed in the two-part modeling context and 

argue, therefore, that their approach does indeed produce causally interpretable elasticity 

estimates. 

 In order to assess whether the lack of causal interpretability of the MBM approach 

has empirical consequences (e.g. potential bias), in the present chapter I perform 

simulation analysis, re-estimate the Ruhm et al. (2012) model using the method of TJD et 

al. [henceforth, the potential outcomes (PO) method] and compare the resultant elasticity 

                                                 

7 Refer TJD et al.; Pages 13 to 15 and pages 52 to 59 of Angrist & Pischke (2009); and 
Terza (2014). Health Policy Analysis from a Potential Outcomes Perspective: Smoking 
During Pregnancy and Birth Weight. Unpublished manuscript, Department of 
Economics, Indiana University Purdue University Indianapolis.  
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estimates to the those obtained via the MBM method. I replicate the study by Ruhm et al. 

(2012) using the consumption data from the second wave of National Epidemiological 

Survey of Alcohol and Related Conditions (NESARC) survey and price data from 

Uniform Product Code (UPC) barcode scanners collected by AC Nielsen.  I find 

substantively different elasticity estimates from the MBM method vs. the PO method 

using both the simulated and real data.  

 The elasticity of alcohol demand is used in forecasting the changes in total tax 

revenues that may result from changes in the tax rate (Alcohol Justice, 2014; Leung & 

Phelps, 1993; Ornstein, 1980; Levy & Sheflin, 1985).  Therefore, in this chapter, I will 

also evaluate how differences in the elasticity estimates (MBM vs. PO) translate to 

differences in empirical policy measures in the contexts of sin tax revenue generation.   

 Overall, applying the PO method of TJD et al. to the samples used in Ruhm et al. 

(2012) study, I find substantial divergence between the estimates of alcohol price 

elasticity.  These differences in the raw elasticity estimates become even more evident 

when placed in the policy making (tax revenue generation) context.  The discussion in 

TJD et al. supporting the PO approach, combined with the present comparison results, 

favor the use of the PO elasticity estimator. 

 This chapter is structured as follows. In the next section, I will outline the two-

part model of alcohol demand, the elasticity measures proposed by MBM and TJD et al. 

(the PO specification), and the MBM and PO elasticity estimators.8  In section 3, I will 

compare both MBM and PO estimates using simulated and real data from Ruhm et al. 

                                                 

8  For details of these modeling aspects, see TJD et al.  
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(2012) study.  I also discuss the data and results in detail.  The comparison of elasticity 

estimates in the context of a change in beer tax revenues are given in the same section.  

The final section summarizes and concludes the chapter. 

 

2.  The Two-Part Model of Alcohol Demand and Relevant Elasticity Estimators  

 A complicating factor in the specification and estimation of the own price 

elasticity of alcohol demand is the typical abundance of zeros among the observed 

alcohol consumption values.  Such zero values present a challenge in econometric 

modeling and estimation because one’s decision to drink may be structurally different 

from his choice as to how much to drink (if he decides to drink).  In particular, it is quite 

plausible that the price of alcohol differentially impacts these two margins of the 

consumer’s alcohol demand decision.  Therefore, it is essential to allow for this 

distinction in the specification and estimation of the price elasticity of alcohol demand.  

In this section, I detail the extant approaches that take into account the extensive and 

intensive margins (MBM and TJD et al.), and I also identify additional sources of bias in 

these and other extant approaches to the specification and estimation of the price 

elasticity of alcohol demand. 

 

2.1 The MBM Elasticity Measure and Estimator 

 MBM was the first study to suggest and apply a two-part-modeling-based 

elasticity measure (
MBMη ) and estimator (

MBMη̂ ) to account for the systematic difference 

between the extensive and intensive margins.  They model the extensive margin as 

 

    A > 0 iff EM
P1 X1I(Pβ Xβ ε 0)+ + >       (2-1) 
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where A denotes the level of alcohol consumption, P is log-price, X is a vector of 

regression controls, EM(ε | P, X) is a logistically distributed random error term, 

1 P1 X1β = [β β ]′ ′  is the vector of parameters to be estimated and I(C) denotes the indicator 

function whose value is 1 if condition C holds and 0 if not.  The intensive margin is 

modeled as 

 

 IM
P2 X2(A | A 0) exp(Pβ Xβ ε )> = + +      (2-2) 

    

where IM(ε | P, X)  is the random error term, with unspecified distribution, defined such 

that IME[ε | P, X] 0=  with IME[exp(ε ) | P, X] ψ=  (a constant); and  2 P2 X2β = [β β ]′ ′  

is the vector of parameters to be estimated. Consistent estimates of 1β  and 2β  are 

obtained using the following two-part protocol. 

 

Part 1:  Estimate 1β  by applying maximum likelihood logistic regression based on (1) to 

the full sample with I(A > 0) as the dependent variable and [P     X] as the vector of 

regressors. 

Part 2:   Estimate 2β  by applying OLS to 

 

    IM
P2 X2ln(A | A > 0) = Pβ Xβ + ε+          (2-3) 

    
using the subsample of observations for whom A  >  0. 
 
 
In this modeling context, MBM define the own price elasticity of alcohol demand to be 
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    ( )MBM
P1 X1 P1 P2η 1 E[Λ(Pβ Xβ )] β β= − + +      (2-4) 

    
with corresponding consistent estimator 
 
 

    

n

i P1 i X1
MBM i 1

P1 P2

ˆ ˆΛ(Pβ X β )
ˆ ˆη̂ 1 β β

n
=
∑

  +   = − +    

.        (2-5) 

    

where Λ( ) denotes the logistic cumulative distribution function (cdf), iP  and iX  are the 

observed values of P and X for the ith sampled individual (i = 1, ..., n), and the β̂ s are the 

parameter estimates from the above two-part protocol.  The correct asymptotic standard 

error of (2-5) is derived in Appendix A. 

 

2.2 The PO-based Elasticity Measure and Estimator of TJD et al. 

 TJD et al. argue that the MBM approach produces elasticity results that are not 

causally interpretable because they are not founded in a potential outcomes framework 

that is causally interpretable.  They propose the following elasticity measure and 

estimator which follow from a well-defined PO framework placed in the two-part 

modeling context 

 

    [PO
P1 X1 P2 X 2 P1η E λ(Pβ Xβ ) exp(Pβ Xβ )β= + +      

 

       ]P1 X1 P2 X2 P2Λ(Pβ Xβ ) exp(Pβ Xβ )β+ + +        

  

        
exog exog

P1 X1 P2 X2

1

E Λ(P β Xβ ) exp(P β Xβ )
×

 + + 

   (2-6) 
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and 

 

    {
n

PO
i P1 i X1 i P2 i X2 P1

i 1

1 ˆ ˆ ˆ ˆ ˆη̂ λ(Pβ X β ) exp(Pβ X β )β
n=

∑= + +      

 

      }i P1 i X1 i P2 i X2 P2
ˆ ˆ ˆ ˆ ˆΛ(Pβ X β ) exp(Pβ X β )β+ + +      

       
n

i P1 i X1 i P2 i X2
i 1

1

1 ˆ ˆ ˆ ˆΛ(Pβ X β ) exp(Pβ X β )
n=

∑

 
 

×  
 + +
 

 .     (2-7) 

 
 

where λ(  ) denotes the logistic probability density function (pdf); and 1 P1 X1
ˆ ˆ ˆβ = [β β ]′ ′ ′  

and 2 P2 X2
ˆ ˆβ = [β β ]′ ′ ′  are the two-part estimates described above.9  The correct 

asymptotic standard error of (2-7) is derived in Appendix B. 

 

2.3 Causal Interpretability   

 TJD et al. argue that 
POη  and 

POη̂  are causally interpretable because they can be 

derived within a coherent potential outcomes framework.  Because there is no apparent 

potential outcomes framework primitive for 
MBMη  (and, therefore, 

MBMη̂ ) TJD et al. 

conclude that it (and the MBM estimator) is not causally interpretable.  As a result, they 

are not useful for empirical policy analysis. 

 

3. Bias from using the MBM instead of TJD et al. 

 In the present section, as a follow-up to this conceptual argument favoring the PO 

specification and estimator [(2-6) and (2-7)] over the MBM approach [(2-4) and (2-5)], I 

                                                 

9 See TJD et al. for details. 
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examine potential divergence between the two approaches in the two-part modeling 

context from both theoretical and practical perspectives. 

 

3.1  A Simulation Study of the Bias 

 In Appendix C, I show that the difference between MBMη  and POη   (the bias from 

implementing MBMη̂  instead of the causally interpretable POη̂ ) can be formally expressed 

as 

 

 MBM PO
P1

ω
η η β ζ

ν

 
− = − 

 
       (2-8) 

 
where 

 1 2ν E[Λ(Wβ )exp(Wβ )]≡  

 1ζ E[Λ(Wβ )]≡  

 2
1 2ω E[Λ(Wβ ) exp(Wβ )]≡  

 
 W [P X]=  

 
and the expected values are with respect to W.  To get a sense of the range of (2-8) and 

the extent of the influences of various factors on it, I simulated values of ν, ζ and ω using 

the following population design 

 
 P ~ U{.5, .5}  

 X [U{.5, .5} 1]=  

 2 P2 X2 C2β [β β β ]′=  

 1 P2 X1 C1β [h β β β ]′= ×        (2-9) 
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where 2U{µ, σ }  denotes the uniform random variable with mean µ and variance 
2
σ , P2β  

is the coefficient of price in the second part of the model (intensive margin), Xjβ  and Ciβ  

(j = 1 [extensive], 2 [intensive]) are the coefficient of the control variable and the 

constant term, respectively, for each of the parts of the model, and h is a factor 

representing the relative influence of log price on the extensive margin vs. the intensive 

margin (0  ≤  h  ≤  ∞).  The bigger is h, the greater the relative influence of log price on 

the extensive vs. the intensive margin.  The “true” values of ν, ζ and ω for this simulated 

population design were obtained by generating a “super sample” of 2 million values for 

W based on (2-9) and then evaluating 

 

 { }
T

t 1 t 2
t 1

1
ν Λ(W β ) exp(W β )

T=
∑≡  

 
T

t 1
t 1

1
ζ Λ(W β )

T=
∑≡  

 { }
T

2
t 1 t 2

t 1

1
ω Λ(W β ) exp(W β )

T=
∑≡ . 

 

 To investigate the nature of the bias, I varied h and C1β  with P2β , X2β  and X1β  all 

set equal to -1; and C2β 1= .  By increasing h, I increase the relative influence of log 

price on the extensive margin (vis-a-vis the intensive margin).  Ceteris paribus increases 

in C1β  correspond to increases in the fraction of drinkers in the population.  The values of 

the nominal bias (2-8) corresponding to the various (h, C1β ) pairs are given in Table 2.1 

along with the bias as a percentage of POη  (in parentheses) -- a measure of relative bias.  

In each cell I also report the fraction of drinkers in the population [in brackets].  
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 I first note that the nominal values of the bias in Table 2.1 are uniformly negative.  

This follows from the law of demand as it applies to the extensive margin (i.e., the 

negativity of P1β )  and the apparent positivity of the bias factor 
ω

ζ
ν

 
− 

 
 in (2-8).  It is 

also clear from Table 2.1 that for any given value of C1β  (i.e., for a population with a 

given fraction of drinkers) the absolute values of both nominal and percentage bias 

monotonically increase as h increases (i.e., as log alcohol price becomes relatively more 

influential at the extensive margin).  We can also see from Table 2.1 that for a given 

value of h, the bias appears to peak when the fraction of drinkers is in the low to mid-

level range (i.e., from about 15% to 50%).  Note that the bias can get quite large even for 

reasonable levels of h and the population proportion of drinkers – e.g. at h=3 and ζ = 

62.66% ( C1β 3= ) the bias is 67.64%. 

 

3.2  Evaluating and Testing the Bias in a Real Data Context 

 As part of their examination of how estimates of the price elasticity of the demand 

for alcohol can vary depending on the researcher’s choice of alcohol pricing database, 

Ruhm et al. (2012) consider a two-part model of alcohol demand in which 

 A = average daily volume of ethanol consumption from beer in ounces during the  

  past year 

 P = log of price of beer in $ per ounce of ethanol 

 X = [gender, marital status, age, race, family size, education, census region, and  

  occupation (blue collar, white collar, and service), household income] 

where 



23 

 gender = 1 if female, 0 otherwise  

 marital status = 1 if married, 0 otherwise 

 age = log of age 

 race = 1 if black, 0 otherwise; 1 if Hispanic origin, 0 otherwise; and 1 if other 

race,  

  0 otherwise  

 familysize = log of family size 

 education = 1 if no high school, 0 otherwise; 1 if some college, 0 otherwise; and 1  

   if completed college, 0 otherwise  

 region of residence = 1 if Midwest, 0 otherwise; 1 if Southern, 0 otherwise; and 1  

    if Western, 0 otherwise 

 occupation = 1 if blue collar, 0 otherwise; 1 if white collar, 0 otherwise; and 1 if  

   service occupation, 0 otherwise 

and 

 household income = log of household income. 

  

 The analysis sample for this model is drawn from the Uniform Product Code 

(UPC) barcode scanner dataset collected by AC Nielsen in grocery stores from 51 

markets in the U.S.  The UPC data contains accurate information on alcohol prices by 

type of beverage and packaging size.  Ruhm et al. (2012) compared elasticity estimates 

obtained using UPC prices with those obtained via the commonly used American 

Chamber of Commerce Research Association (ACCRA) [now, Council for Community 

and Economic Research (C2ER)] prices.  They were able to obtain both UPC and 
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ACCRA beer prices for only 35 states.10  Data on beer consumption and the control 

variables comprising the vector X were drawn from the second wave of the National 

Epidemiological Survey of Alcohol and Related Conditions (NESARC) conducted in 

2004-2005.  The NESARC is a longitudinal survey that elicited information from 

respondents regarding alcohol consumption, alcohol use disorders and treatment services.  

The summary statistics of the Ruhm et al. (2012) analysis sample (size n = 23,743) are 

shown in Table 2.2. 

 As did Ruhm et al. (2012), I applied the conventional two-part estimation protocol 

culminating in (2-3) and obtained the estimates of 1β  and 2β  given in Table 2.3.  Using 

these parameter estimates I calculated the price elasticity of demand for alcohol using 

both the causally interpretable PO-based estimator POη̂  in (2-7) and the MBM estimator 

MBMη̂  in (2-5) proposed by MBM and implemented by Ruhm et al. (2012).  The latter is 

not causally interpretable.  The results are given in Table 2.4.  Both estimates are 

statistically significant.  The elasticity estimate of MBM is 0.089 higher in absolute value 

than POη̂  and the difference is statistically significant.11  In this case, estimated alcohol 

demand would be seen as price elastic if MBMη  and MBMη̂  were taken as the relevant 

measure and estimator.  Whereas, using the causally interpretable POη  and POη̂  the 

opposite inference would be drawn. 

                                                 

10The 35 states from which the price data were taken are AL, AR, AZ, CA, CT, DC, FL, 
GA, ID, IL, IN, IA, KY, LA, MD, MA, MI, MS, MO, NE, NV, NH, NM, NC, NY,OH, 
OR, SC, VA, TN, TX WA, WV, WI, and WY.  
11 The correct asymptotic standard error of the difference is derived in Appendix D. 
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 It is interesting that the results in the present real data example correspond closely 

with the case for the simulated population depicted in the first column, fifth row of Table 

2.1 (cell 1-5).  In that cell, h = 0.5 (measuring the relative influence of price in the 

extensive vs. the intensive margin) and the % of the population who are drinkers is 34%.  

As can be seen in Table 2.4, in the present real world example, the estimated value of h (

ĥ ) is .726 and the percentage of drinkers in the sample is 36%.  Therefore, cell 1-5 in 

Table 2.1 is most closely relevant.  For the hypothetical population represented therein, 

the model predicts an 8% bias from using the MBMη̂ .  The estimated bias as a percentage 

of POη̂  is about 9%. 

 

3.3 Revenue Generation from Tax Changes 

 Elasticities play a role in determining the revenues generated from taxes.  Alcohol 

Justice is an organization that monitors the alcohol industry and also leads campaigns for 

increasing alcohol taxes at a national and state-level to fund government programs on 

alcohol prevention and treatment.  They derive a simple model to estimate revenue 

generation through alcohol tax increases.  The model incorporates the elasticity of 

alcohol demand, changes in alcohol taxes, the price of alcohol and current alcohol 

consumption.  Their model shows that the more elastic is demand, the smaller the change 

in revenues.  Alternatively, when demand is inelastic, tax revenues will be higher with 

increases in prices.  Also, different own price elasticities of alcohol demand yield 

different revenue generation values. 

 Following Alcohol Justice (2014), the change in tax revenues as a result of the 

alcohol tax changes can be expressed as follows: 
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    ( ) [ ]1 1

δ
∆Rev t δ 1 η A t A

   
= + × + × − ×   

   P
          (2-10) 

 

where  ∆Rev  is change in tax revenues due to change in the alcohol taxes; t is the current 

alcohol tax rate; δ  is the change (increase or decrease) in the alcohol tax rate or the 

change (increase or decrease) in price of alcohol due to change in the alcohol tax rate 

(assuming 100% pass-through of excise tax rates to the retail price); A1 is the current 

alcohol consumption; P is the current nominal price of alcohol and η  is elasticity of 

alcohol demand.12  

 In order assess the substantive consequences of an estimation bias of this size, I 

placed it in the context of a $0.8533 per gallon increase in the federal excise tax on all 

alcoholic beverages that has been proposed by the Congressional Budget Office (CBO).13  

Using the calculator developed by Alcohol Justice (2014) [AJ], I projected the implied 

corresponding change in tax revenue based on each of the elasticity estimates (

PO 0.983η̂ −=  and MBM 1.073η̂ −= ).  Aside from the elasticity value and the size of the 

                                                 

12 When the excise tax is increased, the price of alcohol is also more likely to increase at 
least to the level of the tax increase.  Studies have shown that the increase in the excise 
tax rate for each alcohol-type is more than fully passed-through to the price of the 
relevant alcohol-type.  For a detailed discussion of alcohol tax pass-throughs see 
(Congressional Budget Office, 1990; Kenkel, 2005; Young and Bielińska-Kwapisz, 
2002). 
13 With the aim of reducing the federal debt, the CBO frequently offers a number policy 
options.  During the fiscal years 2014 and 2015, as one of many options suggested as 
means of raising revenues, was a proposed an increase in excise taxes on all alcoholic 
beverages (Congressional Budget Office, 2013 – see Option 32: 
https://www.cbo.gov/budget-options/2013/44854; Congressional Budget Office, 2014  – 
see  Option 71: https://www.cbo.gov/budget-options/2014/49653). 
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proposed tax change, the AJ revenue calculator requires the following, which I held fixed 

for this example 

 current excise tax rate of beer = $0.5867 per gallon14 

 total U.S. consumption of beer in 2011 = 6.303 billion gallons15 

 U.S. national average beer price in 2011 = $15.20 per gallon.16 

 We also assume, for this illustration, that the tax increase is fully passed through 

to the retail price.17  The estimated changes in tax revenue from the proposed tax change 

are $4.9380 billion using POη̂  and $4.8920 billion using MBMη̂ .  The latter falls short of 

the former by $46.082 million. To place this shortfall in perspective, I note that it is equal 

to 10.2% of the budget for National Institute of Alcohol Abuse and Alcoholism (NIAAA) 

for Fiscal Year 2015 (NIAAA, 2015).18   

 

4.  Summary and Conclusion 

 MBM propose and implement an estimator of the own-price elasticity of the 

demand for alcohol that is based on a conventional two-part model of alcohol 

consumption.  This estimator has been implemented by Farrell et al. (2003) and Ruhm et 

al. (2012).  Although the two-part modeling approach to alcohol demand is reasonable, 

TJD et al. argue that the elasticity estimator suggested by MBM, and its corresponding 

                                                 

14 Obtained from Congressional Budget Office (2013), (https://www.cbo.gov/budget-
options/2013/44854) 
15 Obtained from Brewers Almanac (Beer Institute, 2013) 
16 Obtained from ACCRA (C2ER-COLI, 2015)  
17 For discussion of tax pass-through rates see Congressional Budget Office (1990), 
Kenkel, (2005) and Young and Bielińska-Kwapisz (2002)  
18 National Institute of Alcohol Abuse and Alcoholism (NIAAA) has an annual budget of 
$447.4 million (in FY2015). See http://www.niaaa.nih.gov/grant-funding/management-
reporting/financial-management-plan 
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implied elasticity measure, have no causal interpretation because they cannot be cast in a 

potential outcomes framework that is causally interpretable.  TJD et al. develop an 

alternative elasticity specification [estimator] for the two-part context, which is causally 

interpretable (the PO approach).   

 To examine the determinants and extent of the divergence (bias) between MBM’s 

stylized elasticity specification (and estimator) vs.  PO approach, I conducted a 

simulation study in which I varied: 1) the level of the relative price influence at the 

extensive vs. intensive margins; and 2) the fraction of the population who are drinkers.  I 

found that the former has a positive and monotonic effect on the bias, while the influence 

of the latter peaks when the fraction of drinkers is in the low to mid-level range. 

 As a follow-up to the conceptual discussion favoring the PO-based approach, and 

as a complement to the simulation study, I applied both methods to one of the models 

considered by Ruhm et al. (2012) using the same dataset as was analyzed by them.  I 

found the elasticity estimates to be statistically significant from zero and from each other 

( MBM POˆ ˆη η 0.089− = − ; p-value = .0286).  To place this difference in a policy-relevant 

context, for each of the two elasticity estimates, I calculated the projected tax revenue 

change that would result from a proposed change in the federal excise tax on alcohol.  I 

found the difference in tax revenue projections to be substantial; amounting to more than 

10% of the yearly budget of the NIAAA.  The discussion in TJD et al. supporting their 

potential outcomes framework approach, combined with the present comparison results, 

favor the use of the PO elasticity estimator. 
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Table 2.1:  Simulation Analysis of the Bias 

 
 

h 

0.5 1 2 3 5 10 

C1β  

-10 -0.00 
(0.00%) 
[0.00%] 

-0.00 
(0.00%) 
[0.00%] 

-0.00 
(0.01%) 
[0.00%] 

-0.00 
(0.02%) 
[0.00%] 

-0.01 
(0.10%) 
[0.01%] 

-0.41 
(3.83%) 
[0.19%] 

-5 -0.00 
(0.20%) 
[0.43%] 

-0.01 
(0.44%) 
[0.40%] 

-0.04 
(1.25%) 
[0.44%] 

-0.11 
(2.89%) 
[0.60%] 

-0.64 
(12.18%) 
[1.40%] 

-5.70 
(126.41%) 

[7.91%] 

-3 -0.02 
(1.31%) 
[3.02%] 

-0.06 
(2.92%) 
[2.78%] 

-0.22 
(7.90%) 
[2.97%] 

-0.55 
(16.52%) 
[3.76%] 

-1.89 
(49.94%) 
[6.66%] 

-6.51 
(220.38%) 
[15.41%] 

-1 -0.08 
(5.72%) 

[17.40%] 

-0.20 
(12.39%) 
[15.63%] 

-0.62 
(29.52%) 
[14.68%] 

-1.21 
(51.68%) 
[15.49%] 

-2.66 
(109.58%) 
[18.45%] 

-6.45 
(292.24%) 
[23.47%] 

0 -0.10 
(7.99%) 

[34.14%] 

-0.25 
(17.65%) 
[30.45%] 

-0.72 
(41.35%) 
[26.57%] 

-1.33 
(69.34%) 
[25.51%] 

-2.70 
(134.23%) 
[25.93%] 

-6.26 
(316.13%) 
[27.54%] 

1 -0.09 
(7.76%) 

[55.43%] 

-0.23 
(18.50%) 
[50.00%] 

-0.69 
(46.49%) 
[41.78%] 

-1.27 
(79.16%) 
[37.35%] 

-2.58 
(149.49%) 
[33.83%] 

-6.03 
(332.32%) 
[31.62%] 

3 -0.03 
(2.77%) 

[88.31%] 

-0.09 
(8.50%) 

[84.37%] 

-0.37 
(31.71%) 
[73.43%] 

-0.86 
(67.64%) 
[62.66%] 

-2.10 
(149.36%) 
[50.01%] 

-5.44 
(344.20%) 
[39.79%] 

5 -0.01 
(0.47%) 

[98.13%] 

-0.02 
(1.68%) 

[97.22%] 

-0.10 
(9.84%) 

[92.98%] 

-0.37 
(33.18%) 
[84.51%] 

-1.45 
(117.41%) 
[66.18%] 

-4.77 
(333.50%) 
[47.96%] 

10 -0.00 
(0.00%) 

[99.99%] 

-0.00 
(0.01%) 

[99.98%] 

-0.00 
(0.09%) 

[99.94%] 

-0.01 
(0.53%) 

[99.78%] 

-0.14 
(13.12%) 
[96.74%] 

-2.94 
(240.20%) 
[68.39%] 

%-bias in parentheses, % of population for whom I(A > 0)=1in square brackets. 
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Table 2.2:  Descriptive Statistics of Ruhm et al. (2012) Sample 

Variable Name Description 
Mean 

N=23,743 
Std.Dev 

Extensive Margin 
(Drinker/Non-Drinker) 

Beer drinker during the past 
year 

0.36 0.48 

Intensive Margin (Alcohol 
Consumption if Drinker) 

Daily ethanol from beer in 
ounces during the past year 

0.42 1.11 

Intensive Margin (log of 
Alcohol Consumption if 
Drinker) 

Log of oz of daily ethanol from 
beer during the past year 

-2.64 2.08 

    
  

X Variables 

lnbeer 
Logged price of beer per oz of 
ethanol from UPC barcode data 

0.22 0.08 

female Female gender (1=yes) 0.58 0.49 

married Currently married (1=yes) 0.50 0.50 

lnage Ln(age) 3.82 0.36 

black Black race (1=yes) 0.21 0.40 

hispanic Hispanic origin (1=yes) 0.22 0.41 

other Other race (1=yes) 0.04 0.21 

lnfamsize ln(Family size) 0.82 0.58 

nohs No high school (1=yes) 0.16 0.36 

somecllg 
Some college attendance 
(1=yes) 

0.32 0.47 

college Completed college (1=yes) 0.27 0.45 

midwest Midwest region 0.22 0.41 

south Southern region 0.39 0.49 

west Western region 0.25 0.43 

bluecllr Blue-collar occupation 0.15 0.36 

whitcllr White-collar occupation 0.54 0.50 

servwrkr Service occupation 0.15 0.36 

lnincome ln(household income) 10.58 0.92 
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Table 2.3:  Two-part Model Parameter Estimates for Ruhm et al. (2012) 

 

 Extensive Margin Intensive Margin 
Independent 

Variable 
MLE Logit for 2β̂  

Dep. Variable: I(A > 0)  

OLS for 2β̂    

Dep. Variable: (ln(A) | A > 0) 

   
lnbeer -0.532** -0.733** 

 (-2.20) (-2.15) 
female -1.091*** -1.258*** 

 (-35.73) (-28.29) 
married -0.166*** -0.276*** 

 (-4.66) (-5.28) 
lnage -0.780*** -1.132*** 

 (-16.33) (-15.99) 
black -0.497*** -0.00949 

 (-12.09) (-0.15) 
hispanic -0.186*** -0.329*** 

 (-4.63) (-5.78) 
other -0.508*** -0.249** 

 (-6.89) (-2.29) 
lnincome 0.219*** -0.0411 

 (10.86) (-1.43) 
lnfamsize -0.0503 -0.150*** 

 (-1.56) (-3.24) 
nohs -0.109** 0.0797 

 (-2.12) (1.03) 
somecllg 0.0530 -0.238*** 

 (1.33) (-4.14) 
college 0.194*** -0.387*** 

 (4.46) (-6.20) 
midwest 0.0275 0.172** 

 (0.45) (2.01) 
south -0.0867* 0.271*** 

 (-1.79) (3.90) 
west 0.123** 0.182*** 

 (2.56) (2.66) 
bluecllr 0.490*** 0.425*** 

 (8.18) (4.55) 
whitcllr 0.458*** 0.0855 

 (8.73) (1.01) 
servwrkr 0.435*** 0.192** 

 (7.24) (2.01) 
_cons 0.598** 2.914*** 

 (2.04) (6.87) 

sample size  23743 8543 
t statistics in parentheses;  * p<0.10, ** p<0.05, *** p<0.01  
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Table 2.4: Causal and Non-Causal Elasticity Estimates 

 

POη̂  MBMη̂  
Difference 
MBM POˆ ˆη η−  

%-Difference 
MBM PO

PO

ˆ ˆη η
100%

η̂

−
×  P1 P2

ˆ ˆ ˆh β / β=  

% of 
Sample 
I(A > 0)  

= 1 

-.983*** 
(-4.195) 

-1.073*** 
(-4.181) 

-.089** 
(-2.188) 

9.1% 0.726 36% 

T-statistics in parentheses; ** p < 0.05, *** p < 0.01 
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Chapter 3.   

Specification and Estimation of Alcohol Price Elasticity in Aggregate-Level Demand 

Models: Consequences of Ignoring the Extensive Margin 

 

1.  Introduction 

 Recall, in Chapters 2, I discuss two of four keys to accurate estimation of 

elasticity:  1) accounting for the extensive margin; and 2) causal interpretability.  In 

Chapter 2, I noted that the two-part modeling-based estimator of Manning et al. (1995) 

[the MBM method] accounts for the extensive margin, but is not causally interpretable.  

Therein, I also discuss the elasticity specification and estimator proposed by Terza, Jones, 

Devaraj et al. (2015) [henceforth TJD et al.]  (the PO method) that both takes account of 

the extensive margin and produces causally interpretable estimates.  Moreover, I produce 

evidence of potential bias that may result from applying the MBM method (which is not 

causally interpretable) by comparing it to the PO method in simulated and real data 

settings.  

 To complement the analysis in Chapter 2, in the present chapter I will consider 

the most common approach to elasticity specification and estimation – viz. the log-log 

demand model with aggregated data [henceforth the aggregated log-log (AGG-LOG) 

method].  The discussion here will complement the analysis in Chapter 2.  As TJD et al. 

show, the AGG-LOG method produces simple elasticity estimates which can be cast in a 

potential outcomes framework that is causally interpretable.  For obvious reasons, 
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however, aggregation precludes the modeling of individual consumption decisions at the 

extensive margin.19   

 In the present chapter I explore the following additional sources of bias in extant 

approaches to elasticity specification and estimation:  1) data aggregation; 2) the use of 

logged (vs. nominal) alcohol prices; and 3) implementation of an unnecessarily restrictive 

version of the two-part model.  I introduce a new approach to elasticity specification and 

estimation that remedies all such biases [UPO method henceforth].   

 This chapter is structured as follows. In the next section, I will detail the three 

aforementioned sources of bias.   In section 3, I will introduce a new approach to alcohol 

demand elasticity specification and estimation that is free of these biases and, using 

simulated and real data, compare it to extant (biased) approaches.  In section 4, I will 

compare the most commonly used extant method (AGG-LOG) with the newly proposed 

UPO methods using simulated data and a real analysis sample from the Ruhm et al. 

(2012) study.  I also discuss the data and results in detail.  The comparison of elasticity 

estimates in the context of a change in beer tax revenues are also given therein.  The final 

section summarizes and concludes the chapter. 

 

 

                                                 

19 There are other individual-level approaches that produce elasticity estimates that are 
causally interpretable – viz. Kenkel (1996) [who implements a Tobit model] and 
Ayyagari et al. (2013) [who use a finite mixture specification].  Neither of these modeling 
approaches explicitly allows for systematic differences in demand decisions made at the 
extensive margin.  Therefore, we expect that they, like the AGG-LOG method, are 
subject to potential bias when used to evaluate individual-level responsiveness to price.  
Empirical evaluation of the extent of this bias is, however, beyond the scope of this 
dissertation.   
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2.  Additional Sources of Bias in Elasticity Estimation  

 Correct specification and accurate estimation of the own price elasticity of 

demand lies at the heart of effective formulation and evaluation of alcohol pricing policy.  

Policy analytic goals such as the determination of optimal alcohol taxes (Kenkel, 1996; 

Pogue & Sgontz, 1989) and the projection of revenues from alcohol tax changes (Alcohol 

Justice, 2014) are cases in point. Unfortunately, nearly all (if not all) extant estimates of 

alcohol price elasticity [including almost all of the studies meta analyzed by Gallet 

(2007), Wagenaar et al. (2009), Nelson (2014)] and are of limited usefulness in the 

context of empirical policy analysis because they are subject to bias from one or more of 

a number of sources.   

 Among all of the studies I surveyed, only three take explicit account of the fact 

that for many individuals in the population, their utility maximizing consumption bundles 

include zero alcohol use.20  Aside from these three studies, the vast literature on this 

subject ignores the likely possibility that an individual’s decision to drink at all [the 

extensive margin] and his decision regarding how much to drink (if one chooses to drink) 

[the intensive margin] structurally differ (from both behavioral and econometric 

modeling perspectives).  Failure to incorporate this distinction in any model of alcohol 

demand will likely lead to a biased elasticity estimate.  The three studies that do draw this 

distinction all implement the two-part modeling approach to elasticity estimation 

suggested by Manning et al. (1995) [henceforth MBM]. 

                                                 

20 These studies are: Manning et al. (1995) [henceforth MBM]; Farrell et al. (2003); and 
Ruhm et al (2012). 
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 TJD et al. however, argue that the three aforementioned studies are themselves 

subject to bias because, although the MBM elasticity measure takes explicit account of 

both the extensive and intensive margins, it is not informative for alcohol pricing policy.  

This lack of policy relevance of the MBM approach follows from the fact that it cannot 

be placed in a potential outcomes framework and, as such, cannot be interpreted as 

representing the causal relationship between price and alcohol consumption.  TJD et al. 

suggest an alternative elasticity specification (estimator) for the two-part context that is 

derived within a potential outcomes framework that is causally interpretable. 

 In this section, I identify and detail additional sources of bias in TJD et al. (PO 

method) and other extant approaches using two-part model (MBM method) to the 

specification and estimation of the price elasticity of alcohol demand: 1) implementing a 

restricted version of the two-part model (TJD et al.); 2)  data aggregation that ignores the 

extensive margin (AGG-LOG); and 3) the use of logged (vs. nominal) alcohol prices as a 

matter of convenience (TJD et al. and AGG-LOG). 

 

2.1 Restrictive Nature of TJD et al. 

 Recall from Chapter 2 that the MBM approach and the PO method of TJD et al. 

are based on the two-part model specified in equations (2-1) and (2-2).  Specifically, they 

model the intensive margin as  

 

 IM
P2 X2(A | A 0) exp(Pβ Xβ ε )> = + +      (3-1) 

 
 
where A denotes the level of alcohol consumption, P is log-price, X is a vector of 

regression controls, IM(ε | P, X)  is the random error term, with unspecified distribution, 
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defined such that IME[ε | P, X] 0=  with IME[exp(ε ) | P, X] ψ=  (a constant); and  

2 P2 X2β = [β β ]′ ′  is the vector of parameters to be estimated. Consistent estimates of 1β  

and 2β  are obtained using the following two-part protocol. 

 The intensive margin as given in (3-1) is, however, unnecessarily restrictive.  

Neither the explicit inclusion of 
IM
ε  therein nor its accompanying conditional mean 

assumptions are necessary.  They are imposed merely as a matter of convenience – so 

that the regression parameters P Xβ [β β ]′ ′=  can be estimated via OLS.  Instead, we 

need only assume that 

 

 [ ] P2 X2E A | P, X, A > 0 exp(Pβ Xβ )= + .     (3-2) 

 
 
and the relevant regression parameters can still be estimated by applying the nonlinear 

least squares (NLS) estimation method directly to (3-2).  

 This difference in assumptions is not trivial. Assumption (3-2) encompasses a 

broader class of models than the conventional intensive margin specification given in (3-

1).  Therefore, the conventional two-part model may be subject to misspecification bias.  

As a result, in general, causal effect estimators cast in the conventional two-part 

modeling framework, 
POη̂  in particular, may be biased. 

 

2.2 Log-Linear Models with Aggregated Data:  Ignoring the Extensive Margin 

 The most widely implemented approach to estimation of the own-price elasticity 

of the demand for alcohol is applying the ordinary least squares (OLS) method to a linear 

demand model to an aggregated level dataset with log consumption as the dependent 
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variable and log price and other demand determinants as the independent variables 

(henceforth the aggregate LOG method [AGG-LOG]).  This includes a majority of the 

aggregate-level studies covered by the meta analyses by Wagenaar et al. (2009), Nelson 

(2014) and Gallet (2007).21  Here the OLS estimate of the regression coefficient of log 

price is taken as the elasticity estimate.  Its popularity notwithstanding, I argue that AGG-

LOG is potentially biased for analyzing pricing policies aimed at modifying alcohol 

demand behavior at the individual level because it ignores individual alcohol demand 

decisions at the extensive margin.  The AGG-LOG model of the demand for alcohol is 

expressed as     

 

    P XA exp(Pπ Xπ ξ)= + + .         (3-3)  

 

where A  denotes the observed level of alcohol consumption, P  is logged alcohol price, 

and X  is a vector of other alcohol demand determinants (controls); all of which are 

measured at an aggregated level (e.g. averages at the level of the county, state, etc.).  The 

vector of regression parameters to be estimated is P Xπ [π π ]′ ′=  and ξ is the random 

term defined such that E ξ | P, X 0  =  .  In this case, it is easy to show that own-price 

elasticity of alcohol demand is Pπ  -- the coefficient of P in (3-3) [ AL
Pη π= ].  Under 

these assumptions Pπ  can be easily estimated by applying the OLS estimator to the 

following log-log version of (3-3) 

                                                 

21 Almost all aggregate-level studies in Wagenaar et al. (2009) meta-analysis, at least 169 
out of 191 beer elasticity estimates from meta-analysis by Nelson (2014), and 974 out of 
1,172 alcohol elasticity estimates meta-analyzed by Gallet (2007) uses either Double-Log 
or System (Almost Ideal Demand System, Rotterdam) models, which ignore the 
extensive margins. 



39 

 

    p Xln(A) Pπ Xπ ξ= + + .          (3-4)  

 
 

 Owing to its simplicity, this approach is widely implemented and results obtained 

from it are often used to analyze pricing policies aimed at modifying alcohol demand 

behavior at the individual level.  If, however, the population from which the aggregated 

quantities A , P  and X  are drawn includes a nontrivial proportion of non-drinkers, and 

the distinction between the extensive and intensive margins is important, in which case 

individual level demand behavior may be more accurately characterized by a two-part 

model, then this AGG-LOG approach is likely to be biased because it ignores this 

distinction.   

 

2.3 Using Log vs. Nominal Prices 

 Nearly all of the conceptual and empirical treatments of alcohol demand elasticity 

found in the literature use log-price rather than nominal price.  This is also true of TJD et 

al. in the development of their causally interpretable elasticity measure, 
POη̂ .22  The 

origin of this practice traces to the convenience it affords via the log-log OLS (AGG-

LOG) model discussed in the previous section.  There is, however, no substantive reason 

for using log-price vs. nominal price and imposing this restriction on the model may lead 

to bias.   

 

 

                                                 

22 TJD et al. specified their model using log price to conform to the extant literature. 
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3.  An Alternative Elasticity Specification and Estimator 

 In the previous section I point out the lack of causal interpretability of the MBM 

approach to elasticity specification and estimation (discussed in detail in TJD et al.) and 

identify three additional potential sources of bias in extant elasticity measures and 

estimators (including TJD et al.):  1) data aggregation that ignores the extensive margin 

(AGG-LOG); 2)  implementing a restricted version of the two-part model (TJD et al.); 

and 3) the use of logged (vs. nominal) alcohol prices as a matter of convenience (TJD et 

al. and AGG-LOG). In this section, I introduce a new approach to alcohol demand 

elasticity specification and estimation that extends the PO model of TJD et al. so as to 

avoid the three aforementioned biases.    Table 3.1 summarizes various extant alcohol 

elasticity estimators used by empirical researchers in the published literature and the 

potential bias arising from each of them.  An overwhelming majority of the extant 

literature meta-analyzed by Wagenaar et al. (2009) [81.4% elasticity estimates], Nelson 

(2014) [88.5% elasticity estimates] and Gallet (2007) [86.35% elasticity estimates] uses 

the AGG-LOG model to estimate the price elasticity of alcohol demand in aggregated 

data settings.23  Unfortunately, the extensive margin is ignored in all of these studies; 

therefore, the policies implemented using these AGG-LOG elasticity estimates are 

subject to bias.      

                                                 

23 These AGG-LOG elasticity estimates from the extant literature include double-log 
model and system models (such as the Almost Ideal Demand System (AIDS) and 
Rotterdam modeling approaches) when applied to aggregated data. The studies using 
system models allocate consumer expenditure from disposable income to different 
categories (such as alcohol, cigarettes, food, etc.) or its sub-categories.  Using the 
aggregate data, the (log of) share of the expenditure on alcohol relative to total 
expenditure is then regressed on the log of a retail price index and other covariates to 
compute the (semi-) elasticity of alcohol.  
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 I begin by specifying the following unrestricted version of the two part model 

given in (1) and (2).  This unrestricted model is cast in terms of nominal rather that log 

prices: 

 
 
Extensive Margin 

 

    A > 0 iff EMNOM
1 X1I( a Xa e 0)+ + >PP      (3-5) 

    

where P is nominal price, 
EMNOM(e | , X)P  is a logistically distributed random error term 

and 1 1 X1a = [a a ]′ ′
P  is the vector of parameters to be estimated. 

 

Intensive Margin 

 

 IMNOM
2 X2(A | A 0) exp( a Xa e )> = + +PP      (3-6) 

 

where 2 2 X2a = [a a ]′ ′
P  is the vector of parameters to be estimated and 

IMNOM(e | , X)P  

is the random error term, with unspecified distribution, defined such that 

 

 [ ] 2 X2E A | , X, A > 0 exp( a Xa )= +PP P .     (3-7) 

 

Consistent estimates of 1a  and 2a  are obtained using the following unrestricted two-part 

protocol. 
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Part 1:  Estimate 1a  by applying maximum likelihood logistic regression based on (3-5) 

to the full sample, with I(A > 0) as the dependent variable and [P     X] as the vector of 

regressors. 

 

Part 2:  Estimate 2a  by applying NLS to 

 

    NOM
2 X2A = exp( a Xa ) + e+PP           (3-8) 

 
using the subsample of observations for whom A  >  0. 

 
Following the logic of TJD et al. in their derivation of the elasticity of alcohol demand in 

terms of log price, based on (3-5) through (3-7), I can express the unrestricted elasticity 

measure and estimator in terms of nominal price [henceforth, unrestricted PO (UPO)] as: 

 

    [UPO
1 X1 2 X 2 1η E λ( a Xa ) exp( a Xa )a= + +P P PP P     

      ]1 X1 2 X2 2Λ( a Xa ) exp( a Xa )a+ + +P P PP P     

       
[ ]

[ ]1 X1 2 X2

E

E Λ( a Xa ) exp( a Xa )
×

+ +P P

P

P P
    (3-9)  

and 
 
 

    {
n

UPO
i 1 i X1 i 2 i X2 1

i 1

1
ˆ ˆ ˆ ˆ ˆ ˆη λ(  a X a )exp(  a X a )a

n=
∑= + +P P PP P     

      }i 1 i X1 i 2 i X2 2
ˆ ˆ ˆ ˆ ˆΛ(  a X a )exp(  a X a )a+ + +P P PP P       

       

n

i
i 1

n

i 1 i X1 i 2 i X2
i 1

1

n
1

ˆ ˆ ˆ ˆΛ(  a X a ) exp(  a X a )
n

=

=

∑

∑

 
 

×  
 + +
 

P P

P

P P

   (3-10)  
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where 1 1 X1
ˆ ˆ ˆa = [a a ]′ ′

P  and 2 2 X2
ˆ ˆ ˆa = [a a ]′ ′

P  are the unrestricted two-part estimates 

described above. The correct asymptotic standard error of (3-10) is derived in Appendix 

E.  Similar to the PO elasticity specification and estimator, 
UPOη  and 

UPOη̂  are founded 

in a potential outcomes framework that is causally interpretable (see TJD et al.).  

Therefore, (3-10) produces elasticity estimates that are causally interpretable and, as 

such, are useful for policy analysis.  In the section 4, I use simulated and real data, to 

compare results obtained using 
UPOη̂  (our preferred estimator) to those from the most 

commonly used extant method discussed in section 2, viz., AGG-LOG (
ALη̂ ). 

 

4. Bias from using AGG-LOG method Ignoring the Extensive Margin and the UPO 

 In Appendix F, I show that the difference between 
ALη  and

UPOη (the bias from 

implementing 
ALη̂  instead of the 

UPOη̂ ) can be expressed as: 

 

 AL UPO
P 1

u
η η π 1 a a m

v

  
− = − − +  

  
P P2 P        (3-11) 

 
where24 

 

 1 2v E[Λ(Wa )exp(Wa )]≡        (3-12) 

 2
1 2u E[Λ(Wa ) exp(Wa )]≡        (3-13) 

                                                 

24 The expected values are with respect to W .   
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 [ ]W     X= P   

 [ ]m E≡P P             (3-14) 

 

P is the nominal price of alcohol; 1aP and 2aP  are the coefficients of nominal prices in 

the extensive and intensive margins, respectively, in the unrestricted two-part model with 

nominal prices defined in (3-5) and (3-6); and Pπ  is the coefficient of average log price 

of alcohol ( P ) in the AGG-LOG demand model in (3-4).  

 
 

4.1 A Simulation-Based Study of the Bias Between 
ALη̂  and 

UPOη̂  

 Similar to the approach taken in section 3.1 of chapter 2, I focus on two factors in 

my simulation study of the divergence of 
ALη̂  and 

UPOη̂  as given in (3-11):  the relative 

influence of nominal price at the extensive margin; and the fraction of drinkers in the 

population. To get a sense of the range of (3-11) and the extent of the influences of these 

two important factors on it, I simulated values of u  and v  using the following pseudo 

population design: 

 
 ~ U{.5, .5}P  

 X [U{.5, .5} 1]=  

 2 2 X2 C2a [a a a ]′= P  

 1 2 X1 C1a [h a a a ]′= × P  

 IMNOM *
1 X1(A | , X) I( a Xa e 0) A= + + > ×PP P  

 
IMNOMe is logistically distributed 
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 *
2 X2(A | , X) ~ gamma(exp( a Xa ),1)+PP P      (3-15) 

 

where U{m, v} denotes the uniform random variable with mean m and variance v, 

gamma(sh,sc) denotes the gamma random variable with shape parameter sh and scale 

parameter sc, 2aP  is the coefficient of nominal price in the second part of the unrestricted 

two-part model (intensive margin), Xja  and Cja  (j = 1 [extensive], 2 [intensive]) are the 

coefficient of the control variable and the constant term, respectively, for each of the 

parts of the model, and h is a factor representing the relative influence of nominal price 

on the extensive margin vs. the intensive margin (0  ≤  h  ≤  ∞).  A is assumed to be  a 

gamma random variable so that it does not conform to the restrictions imposed by the 

restricted two-part model.  The bigger is h, the greater the relative influence of nominal 

price on the extensive vs. the intensive margin.  The “true” values of v , u  and mP  for 

this simulated population design were obtained by generating a “super sample” of 2 

million values (n* = 2000K) for W and A based on the sampling design in (3-15) and 

then evaluating 

  

 { }
n*

i* 1 i* 2
i* 1

1
v Λ(W a )exp(W a )

n *=
∑≡  

 

 { }
n*

2
i* 1 i* 2

i* 1

1
u Λ(W a ) exp(W a )

n *=
∑≡  

 
and 

 { }
n*

i
i* 1

1
m )

n *=
∑≡P P   

 
 

respectively.  To get the true value of Pπ  I first equally split the super sample into 50 

arbitrary states. I then aggregate the simulated data at to the state-level by taking the 
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means of A and X, represented by A  and X  respectively. The nominal prices, P are first 

averaged across states and that mean is logged to get P .  OLS is then applied to (3-4) 

using the super sample and the estimated coefficient of P ( Pπ̂ ) is taken as the true value 

of Pπ  because 

 

  P Pˆπ plim(π )= .25 

 

 To investigate the nature of the bias, I varied h and C1a  with 2aP , X2a  and X1a  all 

set equal to -1; and C2a  is set equal to 1. By increasing h, I increased the relative 

influence of nominal price at the extensive margin (vis-a-vis the intensive margin).  

Ceteris paribus increases in C1a  correspond to increases in the fraction of drinkers in the 

population.  The values of the nominal bias (3-11) corresponding to a variety of (h, C1a ) 

pairs are given in Table 3.2 along with the bias as a percentage of UPOη  (in parentheses) -

- a measure of relative bias.  In each cell I also report the fraction of drinkers in the 

population [in brackets].  

 I first note that the nominal values of bias in Table 3.2 are uniformly positive for 

almost all combinations of h and C1a .  It is also evident from the Table 3.2 that for any 

given value of C1a  the absolute values of both nominal and percentage bias 

monotonically increases as h increases.  Also, for a given value of h, the absolute values 

of bias vary upwards and then downwards when the fraction of drinkers increases.  Note 

                                                 

25 plim is short for “probability limit” which is a large sample (n approaches infinity) 
desirable statistical property of an estimator analogous to unbiasedness, the desirable 
small  (or finite) sample property.  
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that the bias can get quite large even for reasonable levels of h and the population 

proportion of drinkers – e.g. at h=1 and proportion of drinkers=58.53% ( C1a 3= ) the bias 

is 30.54%.  

 

4.2 Comparison of ALη̂  and UPOη̂  with Real Data  

 As a means of demonstrating the potential empirical consequences of ignoring the 

extensive margin, I estimate own price elasticity by applying both the 
ALη̂  and the 

UPOη̂  

estimation protocols to the following demand specification  

 A = average daily volume of ethanol consumption from beer in ounces during the  

  past year 

 P = Nominal price of beer in $ per ounce of ethanol 

 X = [gender, marital status, age, race, household income, family size, education,  

  region of residence, and occupation] 

where variables and datasets are defined in section 3.2 of Chapter 2. 

 I then construct the artificially aggregated data by first taking the mean of the 

dependent variable (average daily volume of ethanol from beer in ounces) and the 

observable confounders (such as gender, marital status, age, race, household income, 

family size, and education) across all observations in each state.  The UPC price data was 

already available at a state-level, measured in weighted price per ounce of ethanol.  The 

mean of nominal price and actual consumption across observations at the state level were 

then logged as a precursor to the implementation of the AGG-LOG method.  This 

artificial state-level aggregated database was then used to estimate the price elasticity of 

alcohol demand using the AGG-LOG method detailed in the section 2.2 of this chapter.  
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The summary statistics of this artificially aggregated state-level database are presented in 

Table 3.3.    

 Our focus here is on the size and statistical significance of 
ALη̂ ,  

UPOη̂  and their 

difference 
AL UPOˆ ˆη η− .  The standard error of 

UPOη̂ is derived in Appendix E and that of 

the difference statistic for the bias, 
AL UPOˆ ˆη η− , is derived in Appendix G.  Table 3.4 

shows the comparison of the AGG-LOG and UPO elasticity estimators for the price of 

beer.  The first column presents the elasticity estimate 
ALη̂ , obtained using the parameter 

estimation protocol in equation (3-4).  The second column of Table 3.4 shows 
UPOη̂ , the 

elasticity estimate in equation (3-10) obtained using the two-part protocol culminating in 

equation (3-8).  For the demand specification with all controls, I find the AGG-LOG 

elasticity estimate is -0.7136 and insignificant, but the UPO estimate was -0.5057 and 

statistically significant at 5% level.  The difference between AGG-LOG and UPO was -

0.2079 and statistically insignificant for the demand specification with all controls.  

However, for an alternate demand specification without the region of residence and 

occupation as controls, I find the AGG-LOG estimate for beer is -0.8966 and was 

insignificant, whereas the UPO estimate is -0.4902 and was significant at 1% level.  The 

difference between the AGG-LOG and the UPO estimates is -0.4064 and significant at 

5% level.  It should be noted that the elasticity estimate obtained using the UPO model is 

statistically significant in both demand specifications, implying that it is imperative to 

take into account the extensive margins, which AGG-LOG ignores.  The percentage 

discrepancy between the AGG-LOG and UPO elasticity estimates is 82.91%.   

 In both the simulation and real data analyses, I find strong evidence of biased 
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estimates from ignoring the extensive margin in price elasticity of alcohol demand.  In 

the following, I examine how such differences may translate to the assessment of 

potential revenue generation from changes in alcohol taxes. 

 

4.3 Revenue Generation from Tax Changes 

 As discussed in section 3.3 of Chapter 2, alcohol elasticities can also be used to 

estimate the potential change in revenues that would result from an increase in taxes.  

Therein, I also detail the simple revenue generation model developed by Alcohol Justice 

(2014), an organization that leads campaigns for raising alcohol taxes to fund government 

programs.  Combining the Alcohol Justice model with the elasticities obtained by 

applying the AGG-LOG method to the artificially aggregated version of the data from 

Ruhm et al. (2012), I forecast the change in revenue that would result from a proposal to 

increase the Federal excise tax on alcohol by Congressional Budget Office (CBO) [See 

section 3.3 of Chapter 2 for details].  Table 3.5 shows the results for the revenue 

generation forecasts based on both the AGG-LOG and the UPO elasticity estimates 

obtained in section 4.3 (viz.,
UPOη̂ 0.4902= −  and ALη̂ 0.8966= − ).  The difference is 

substantial, amounting to a $207.1 million per year shortfall for the former. Such 

forecasting mistakes could result in serious errors in budget appropriation.  In this 

example, the discrepancy is equal to 46.3% of the budget for the National Institute of 

Alcohol Abuse and Alcoholism (NIAAA) in Fiscal Year 2015. 
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5.  Summary and Conclusion 

 In this chapter, I introduced a specification of the price elasticity of alcohol 

demand [
UPOη in equation (3-9)] and its corresponding consistent estimator [

UPOη̂ in 

equation (3-10)] that takes into account the extensive margin, is founded in a potential 

outcomes framework that is causally interpretable, uses nominal prices of alcohol instead 

of logged price and relaxes the unnecessarily restrictive assumptions underlying the 

conventional two-part model.  To examine the extent of the bias between the widely used 

AGG-LOG method vs. the UPO method, I performed a simulation study, where I varied 

the relative influence of nominal price at the extensive margin and the fraction of drinkers 

in the population.  I found uniformly positive and substantial bias for almost all 

combinations and for a given level of former, as latter increases the bias monotonically 

increases.  I also applied both methods to the dataset analyzed by Ruhm et al. (2012) and 

found the elasticity estimates to be statistically different from each other (

AL UPOˆ ˆη η 0.4064− = − ; p-value=0.0277) for a particular demand specification.  Such 

differences are profound when placed in the context of revenue generation.  The 

difference between the approaches in terms of projected revenue for a recently proposed 

federal excise tax increase for beer was $207.1 million per year, which is 46.3% of the 

yearly budget of the NIAAA. 
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Table 3.1: Summary of extant alcohol elasticity estimators and additional biases  

Econometric 
Models 

Accounts 
for 

extensive 
margin 

Studies 
using 

Nominal 
prices 

instead of 
Log 

Unrestricted 
version of the 

two-part model 

Causally 
Interpretable 

Percentage 
or # of 

elasticity 
studies 

 

AGG-LOG 
Models No Mixed NA Yes 

W=81.40% 
N=88.47% 
G=86.36% 

Tobit No No NA Maybe 1 study 

Finite Mixture 
Models 

No No NA Maybe 2 studies 

2PM – MBM Yes No No No 3 studies 

2PM –  
TJD et al. 

Yes No No Yes 1 study 

2PM –  
This paper 

Yes Yes Yes Yes - 

NA =Not applicable 

Wagenaar et al. (2009) [W], Nelson (2014) [N], Gallet (2007) [G] 
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Table 3.2:  Simulation Analysis of the Bias: 
ALη̂  vs. 

UPOη̂  

 
 

h 

0.5 1 2 3 5 10 

C1a  

-10 -336.873 
(10727.96%) 

[0.00%] 

-518.345 
(12380.32%) 

[0.00%] 

-126.565 
(-

2015.27%) 
[0.00%] 

-109.704 
(-1310.09%) 

[0.00%] 

† 
 

† 
 

-5 7.326 
(-233.77%) 

[0.23%] 

13.016 
(-311.55%) 

[0.12%] 

-2.730 
(43.53%) 
[0.05%] 

2.986 
(-35.69%) 
 [0.02%] 

-17.351 
(138.19%) 
[0.01%] 

-157.021 
(681.90%) 

[0.00%] 

-3 3.395 
(-109.66%) 

[1.59%] 

4.521 
(-109.65%) 

[0.89%] 

8.261 
(-133.06%) 

[0.36%] 

14.652 
(-176.32%) 

[0.17%] 

-5.458 
(43.58%) 
[0.04%] 

-30.161 
(131.01%) 

[0.00%] 

-1 1.464 
(-50.56%) 
[10.02%] 

1.459 
(-38.27%) 
[5.75%] 

3.883 
(-66.72%) 
[2.43%] 

8.546 
(-107.56%) 

[1.17%] 

21.846 
(-177.76%) 

[0.32%] 

-25.452 
(110.75%) 

[0.02%] 

0 1.309 
(-48.66%) 
[21.57%] 

2.372 
 (-68.69%) 
[13.04%] 

3.343 
(-63.18%) 
[5.86%] 

4.608 
(-62.40%) 
[2.93%] 

15.278 
(-128.68%) 

[0.82%] 

19.018 
(-83.04%) 
[0.04%] 

1 1.093 
(-44.24%) 
[39.19%] 

1.806 
(-59.74%) 
[25.34%] 

2.976 
(-65.78%) 
[12.51%] 

5.312 
(-82.62%) 
[6.71%] 

8.972 
(-81.75%) 
[2.05%] 

20.111 
(-88.63%) 
[0.12%] 

3 0.555 
 (-25.34%) 
[77.11%] 

0.728 
(-30.54%) 
[58.53%] 

1.574 
(-51.03%) 
[35.20%] 

 2.785 
(-66.59%) 
[22.57%] 

 5.725 
(-75.44%) 
[9.42%] 

21.639  
(-1.035%) 
[0.79%] 

5 0.607 
(-28.75%) 
[95.25%] 

0.529 
(-24.58%) 
[84.21%] 

0.691 
(-28.87%) 
[58.72%] 

1.084 
(-37.85%) 
[42.90%] 

2.983 
(-65.16%) 
[23.87%] 

14.458 
(-95.13%) 
[4.12%] 

10 0.571 
(-27.29%) 
[99.96%] 

0.575 
(-27.46%) 
[99.76%] 

0.554 
(-26.30%) 
[91.58%] 

0.568 
(-26.37%) 
[75.68%] 

0.645 
(-26.52%) 
[54.86%] 

2.632 
(-58.23%) 
[26.67%] 

%-bias in parentheses, % of population for whom I(A > 0)=1 in square brackets. 
†Insufficient observations for the AGG-OLS simulation 
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Table 3.3:  Summary Statistics of Artificially Aggregated Data  

Variable Name Description 
Mean 

N=35 
Std.Dev 

Average Alcohol 
Consumption if Drinker 

Average Daily ethanol from beer 
in ounces 

0.1639 0.0430 

log of Average Alcohol 
Consumption 

Log of Average oz of daily ethanol 
from beer 

-1.8418 0.2647 

Price 
Logged price of beer per oz of 

ethanol from UPC barcode data 
0.1877 0.0808 

   
X Variables 

female Average share of females 0.5775 0.0282 

married 
Share of sample who are currently 

married 0.5043 0.0563 

lnage Log of (average age) 3.8117 0.0565 

black 
Share of Black population in the 

sample 0.2226 0.1705 

hispanic 
Share of sample who are Hispanic 

origin 0.1430 0.1397 

other Share of sample with other race 0.0395 0.0246 

lnincome 
Log of (average household 

income) 10.5434 0.1525 

lnfamsize Log of (Average Family size) 0.7953 0.0570 

nohs 
Share of sample with no high 

school 0.1447 0.0375 

somecllg 
Share of sample with some college 

attendance 0.3157 0.0374 

college 
Share of sample who have 

completed college 0.2748 0.0650 
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Table 3.4: Comparing  ALη̂  vs. 
UPOη̂ Method Using Real Data 

 

Demand 

Specification 
ALη̂  

UPOη̂  

Difference, 
AL UPOˆ ˆη η−

 

% Difference 
AL UPO

UPO

ˆ ˆη η
100%

η̂

−
×

 

With all 
controls 

-0.7136 
(-0.7623) 

-0.5057** 
(-2.1309) 

-0.2079 
(-0.8663) 

41.11% 

Without 
region of 

residence and 
occupation as 

controls 

-0.8966 
(-1.0934) 

-0.4902*** 
(-2.6907) 

-0.4064** 
(-2.2017) 

82.91% 

T-statistics in parenthesis. 
* p<0.10, ** p<0.05, *** p<0.01 
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Table 3.5: Results of Changes in Tax Revenues from Federal Excise Tax Increase 

Description 

Change in tax 

revenues using 
ALˆη η=  

(a) 

 

Change in tax 

revenues using 
UPOˆη η=  

(b) 

 

Difference 

(a) – (b) 

nominal dollars 

 

Additional revenues 
from “proposed” 
federal excise tax 
increase 

$4.921 billion $5.128 billion -$207.064 million 
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Chapter 4.   

Specification and Estimation of Alcohol Price Elasticity in Individual-Level Demand 

Models Using Nominal vs. Log Prices  

1.  Introduction 

 Chapters 2 and 3, respectively, assess possible empirical consequences (bias) 

from implementing elasticity specifications and estimators that are not causally 

interpretable; or do not take account of individual alcohol demand decisions made at the 

extensive margin; or implements unnecessarily restrictive version of the two-part model.  

The results demonstrate that these modeling deficiencies can lead to substantial 

divergence from elasticity estimates obtained via an approach that is both causally 

interpretable, explicitly models the extensive margin, are least restrictive and uses 

nominal prices of alcohol.  Moreover, the prior chapters show that these differences can 

translate to nontrivial differences in associated policy recommendations in the context of 

revenue generation.  To remain consistent with existing literature, however, in Chapter 2, 

I cast the elasticity specifications, estimators, and comparisons thereof, in terms of log of 

prices instead of nominal prices.  Recall that in Chapter 3, I develop the UPO approach to 

alcohol demand elasticity specification and estimation which is free of biases including 

the use of nominal prices.  Majority of the extant literature on alcohol elasticity uses 

logged prices of alcohol instead of nominal prices.  Other than the need to conform to 

extant literature, there is no clear reason to formulate alcohol demand models and their 

corresponding elasticity measures in terms of log vs. nominal prices.   

 In the present chapter, to investigate the empirical consequences of modeling 

alcohol demand in terms of log vs. nominal prices, I develop a version of the UPO 
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method for elasticity specification and estimation (detailed in Chapter 3) that is cast in 

terms of logged prices.  I will henceforth refer to this approach as the UPOL method.  

Using simulated and real data from Ruhm et al. (2012), I apply the UPOL method and 

compare the results with the corresponding elasticity estimates obtained using the UPO 

method and reported in Chapters 3.  I then evaluate how differences in the elasticity 

estimates (UPOL vs. UPO) translate to differences in revenue generation.  I find 

reasonable differences in estimates of alcohol price elasticity.  These differences are more 

pronounced when placed in the revenue generation policy making contexts.  

 This chapter is structured as follows. The next section will detail the UPOL 

method for elasticity specification and estimation.  In section 3, I will compare the UPOL 

with the UPO methods using simulated data and a real analysis sample from the Ruhm et 

al. (2012) study.  I also discuss the data and results in detail.  The comparison of elasticity 

estimates in the context of a change in beer tax revenues are also given therein.  The final 

section summarizes and concludes the chapter. 

 

2.  Unrestricted PO Elasticity Specification and Estimator with logged prices 

 In the previous section I point out that nearly all of the conceptual and empirical 

treatments of alcohol demand elasticity found in the literature use log-price rather than 

nominal price.  This is also true of TJD et al. in the development of their causally 

interpretable elasticity measure, 
POη̂ , the MBM model, and most studies using AGG-

LOG models.26  The origin of this practice traces to the convenience it affords via the 

log-log OLS (AGG-LOG) model discussed in the previous section.  There is, however, 

                                                 

26 TJD et al. specified their model using log price to conform to the extant literature. 
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no substantive reason for using log-price vs. nominal price and imposing this restriction 

on the model may lead to bias.  In Chapter 3, I develop the UPO model that takes explicit  

account of extensive margin, are causally interpretable, uses unrestricted version of two-

part model, and uses nominal prices in the own price elasticity of alcohol demand 

specification and estimation.  In this section, I introduce a version of UPO approach in 

which the prices are cast as logged prices (UPO approach).  I begin by specifying the 

following unrestricted version of the two part model cast in nominal prices given in (1) 

and (2).   

 
 
Extensive Margin 

 

    A > 0 iff EMLOG
P1 X1I(Pα Xα e 0)+ + >      (4-1) 

    

where P is logged price, 
EMLOG(e | P, X)  is a logistically distributed random error term 

and 1 P1 X1α = [α α ]′ ′  is the vector of parameters to be estimated. 

 

Intensive Margin 

 

 IMLOG
P2 X2(A | A 0) exp(Pα Xα e )> = + +      (4-2) 

 

where 2 P2 X2α = [α α ]′ ′  is the vector of parameters to be estimated and 
IMLOG(e | P, X)  

is the random error term, with unspecified distribution, defined such that 

 

 [ ] P2 X2E A | P, X, A > 0 exp(Pα Xα )= + .     (4-3) 
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Consistent estimates of 1α  and 2α  are obtained using the following unrestricted two-part 

protocol. 

 

Part 1:  Estimate 1α  by applying maximum likelihood logistic regression based on (4-1) 

to the full sample, with I(A > 0) as the dependent variable and [P     X] as the vector of 

regressors. 

 

Part 2:  Estimate 2α  by applying NLS to 

 

    LOG
P2 X2A = exp(Pα Xα ) + e+           (4-4) 

 
using the subsample of observations for whom A  >  0. 

 
Following the logic of TJD et al. in their derivation of the elasticity of alcohol demand in 

terms of log price, based on (4-1) through (4-3), I can express the unrestricted elasticity 

measure and estimator in terms of logged price [henceforth, unrestricted PO with logged 

prices (UPOL)] as: 

 

    [UPOL
P1 X1 P2 X 2 P1η E λ(P α Xα ) exp(P α Xα )α= + +     

      ]P1 X1 P2 X2 P2Λ(Pα Xα ) exp(Pα Xα )α+ + +     

       
[ ]P1 X1 P2 X2

1

E Λ(Pα Xα ) exp(Pα Xα )
×

+ +
    (4-5)  

and 
 
 

    {
n

UPOL
i P1 i X1 i P2 i X2 P1

i 1

1
ˆ ˆ ˆ ˆ ˆ ˆη λ(P  α X α )exp(P  α X α )α

n=
∑= + +     

      }i P1 i X1 i P2 i X2 P2
ˆ ˆ ˆ ˆ ˆΛ(P  α X α ) exp(P  α X α )α+ + +       
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n

i P1 i X1 i P2 i X2
i 1

1

1
ˆ ˆ ˆ ˆΛ(P  α X α ) exp(P  α X α )

n=
∑

 
 

×  
 + +
 

   (4-6)  

  
 

where 1 P1 X1
ˆ ˆ ˆα = [α α ]′ ′  and 2 P2 X2

ˆ ˆ ˆα = [α α ]′ ′  are the unrestricted two-part estimates 

described above. The correct asymptotic standard error of (4-6) is derived in Appendix H.  

Similar to the UPO elasticity specification and estimator, 
UPOLη  and 

UPOLη̂  are founded 

in a potential outcomes framework that is causally interpretable (see TJD et al. and 

Chapter 3), however, it uses logged prices instead of nominal prices.  Therefore, (4-6) 

produces elasticity estimates that are causally interpretable, but may be subjected to bias, 

hence may not be useful for policy analysis.  In the section 3, I use simulated and real 

data, to compare results obtained using 
UPOLη̂  to 

UPOη̂  (our preferred estimator obtained 

and discussed in Chapter 3). 

 

3. Bias from using the UPOL method and the UPO 

 In Appendix I, I show that the difference between 
UPOLη  and

UPOη (the bias from 

implementing 
UPOLη̂  instead of the 

UPOη̂ ) can be expressed as: 

 

 UPOL UPO
P1 P2 1 2

ω u
η η 1 α α 1 a a m

ν v

      
− = − + − − +      

      
P P P      (4-7) 

 
where27 

                                                 

27 The expected values are with respect to W for nominal prices and W
�

 for logged 
prices.   
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 1 2ν E[Λ(Wα ) exp(W α )]≡
� �

       (4-8) 

 2
1 2ω E[Λ(W α ) exp(W α )]≡

� �
       (4-9) 

 1 2v E[Λ(Wa )exp(Wa )]≡        (4-10) 

 2
1 2u E[Λ(Wa ) exp(Wa )]≡        (4-11) 

 [ ]W P    X=
�

  

 [ ]W     X= P   

 [ ]m E≡P P             (4-12) 

 

P is the nominal price of alcohol; P is the logged price of alcohol; P1α and P2α  are the 

coefficients of logged prices in the extensive and intensive margins, respectively, in the 

unrestricted two-part model with nominal prices defined in equations (4-1) and (4-2) of 

this chapter; and 1aP and 2aP  are the coefficients of nominal prices in the extensive and 

intensive margins, respectively, in the unrestricted two-part model with nominal prices 

defined in equations (3-5) and (3-6) of Chapter 3.  

 
 

3.1 A Simulation-Based Study of the Bias Between 
UPOLη̂  and 

UPOη̂  

 
 I focus on the relative influence of nominal price at the extensive margin in my 

simulation study of the divergence of 
UPOLη̂  and 

UPOη̂  as given in (4-7). To get a sense of 

the range of (4-7) and the extent of the influences of this important factor on it, I 

simulated values of u  and v  using the following pseudo population design: 
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 ~ U{.5,  .5}P   

 X [U{.5, .5} 1]=  

 2 2 X2 C2a [a a a ]′= P  

 1 2 X1 C1a [h a a a ]′= × P  

 IMNOM *
1 X1(A | , X) I( a Xa e 0) A= + + > ×PP P  

 
IMNOMe is logistically distributed 

 *
2 X2(A | , X) ~ gamma(exp( a Xa ),1)+PP P      (4-13) 

 

where U{m, v} denotes the uniform random variable with mean m and variance v, 

gamma(sh,sc) denotes the gamma random variable with shape parameter sh and scale 

parameter sc, 2aP  is the coefficient of nominal price in the second part of the unrestricted 

two-part model (intensive margin), Xja  and Cja  (j = 1 [extensive], 2 [intensive]) are the 

coefficient of the control variable and the constant term, respectively, for each of the 

parts of the model, and h is a factor representing the relative influence of nominal price 

on the extensive margin vs. the intensive margin (0  ≤  h  ≤  ∞).  A is assumed to be  a 

gamma random variable so that it does not conform to the restrictions imposed by the 

restricted two-part model.  The bigger is h, the greater the relative influence of nominal 

price on the extensive vs. the intensive margin.  The “true” values of v , u  and mP  for 

this simulated population design were obtained by generating a “super sample” of 2 

million values (n* = 2000K) for W and A based on the sampling design in (4-13) and 

then evaluating 
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 { }
n*

i* 1 i* 2
i* 1

1
v Λ(W a )exp(W a )

n *=
∑≡  

 

 { }
n*

2
i* 1 i* 2

i* 1

1
u Λ(W a ) exp(W a )

n *=
∑≡  

 
and 

 { }
n*

i
i* 1

1
m )

n *=
∑≡P P   

 
 

respectively.  To get the true value of ω  and ν , I  apply the two-part protocol discussed 

in (4-4) and obtain values for the unknown parameters 1α  and 2α .  I then evaluate   

 

 { }
n*

i* 1 i* 2
i* 1

1
ν Λ(W α ) exp(W α )

n *=
∑≡

� �
 

 
and 
 

 { }
n*

2
i* 1 i* 2

i* 1

1
ω Λ(W α ) exp(W α )

n *=
∑≡

� �
 

 

 To investigate the nature of the bias, I varied h and with 2aP , X2a  and X1a  all set 

equal to -1; C2a  is set equal to 1; and C1a is set equal to 3.  By increasing h, I increased 

the relative influence of nominal price at the extensive margin (vis-a-vis the intensive 

margin).  The values of the nominal bias (4-7) corresponding to a different values of h are 

given in Table 4.1 along with the bias as a percentage of UPOη  (in parentheses) -- a 

measure of relative bias.  In each cell I also report the fraction of drinkers in the 

population [in brackets].  

 I first note that the nominal values of bias in Table 4.1 are uniformly positive for 

different values of h.  It is also evident from the Table 4.1 that the absolute values of both 

nominal and percentage bias monotonically increases as h increases.  Note that the bias 
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can get quite large even for reasonable levels of h and the population proportion of 

drinkers – e.g. at h=1 and proportion of drinkers=58.53%, the bias is 44.87%.  

 

3.2 Comparison of UPOLη̂  and  UPOη̂  with Real Data  

 As a means of demonstrating the potential empirical consequences of ignoring the 

extensive margin, I estimate own price elasticity by applying both the 
UPOLη̂  and the 

UPOη̂  estimation protocols to the following demand specification  

 A = average daily volume of ethanol consumption from beer in ounces during the  

  past year 

 P = Nominal price of beer in $ per ounce of ethanol 

 X = [gender, marital status, age, race, household income, family size, education,  

  region of residence, and occupation] 

where variables and datasets are defined in section 3.2 of Chapter 2. 

 Our focus here is on the size and statistical significance of 
UPOLη̂ ,  

UPOη̂  and their 

difference 
UPOL UPOˆ ˆη η− .  The standard error of 

UPOη̂ is derived in Appendix H and that 

of the difference statistic for the bias, 
UPOL UPOˆ ˆη η− , is derived in Appendix J.  Table 4.2 

shows the comparison of the UPOL and UPO elasticity estimators for the price of beer.  

The first column presents the elasticity estimate 
UPOLη̂ , obtained using the parameter 

estimation protocol in equation (4-4).  The second column of Table 4.2 shows 
UPOη̂ , the 

elasticity estimate in equation (3-10) of chapter 3 obtained using the two-part protocol 

culminating in equation (3-8) of chapter 3.  I find the UPOL elasticity estimate is -0.4892 

and statistically significant at 5% level. Recall from Chapter 3 that the UPO estimate was 
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-0.5057 and statistically significant at 5% level.  The difference between the UPOL and 

the UPO estimates is 0.0165, but statistically insignificant.  Nevertheless, the absolute 

percentage discrepancy between the UPOL and UPO elasticity estimates is 3.26%.   

 In both the simulation data analyses, I find strong evidence of biased estimates 

from using logged prices instead of nominal prices.  However, in real data settings, with 

the demand specification used in Ruhm et al. (2012), I find suggestive evidence of bias.  

In the following section, I examine how such differences may translate to the assessment 

of potential revenue generation from changes in alcohol taxes. 

 

3.3 Revenue Generation from Tax Changes 

 Combining the Alcohol Justice model (discussed in section 3.3 of chapter 2) with 

the elasticities obtained by applying the UPOL method to the data from Ruhm et al. 

(2012), I forecast the change in revenue that would result from a proposal to increase the 

Federal excise tax on alcohol by Congressional Budget Office (CBO) [See section 3.3 of 

Chapter 2 for details].  Table 4.3 shows the results for the revenue generation forecasts 

based on both the UPOL and the UPO elasticity estimates obtained in section 4.2 (viz.,

UPOη̂ 0.4902= −  and UPOLη̂ 0.5057= − ).  The difference amount to a $8.4 million per 

year shortfall for the former. Such forecasting mistakes could result in reasonable errors 

in budget appropriation.  In this example, the discrepancy is equal to 2% of the budget for 

the National Institute of Alcohol Abuse and Alcoholism (NIAAA) in Fiscal Year 2015. 
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4.  Summary and Conclusion 

 In this chapter, I compare the estimator of the price elasticity of alcohol demand [

UPOη̂ in equation (3-10) of chapter 3] that uses nominal prices of alcohol instead of 

logged price (and is free from other biases discussed in Chapter 3) with an estimator that 

uses logged prices of alcohol in the demand specification  [
UPOLη̂ in equation (4-6) of this 

chapter].  To examine the extent of the bias between the UPOL vs. the UPO method, I 

performed a simulation study, where I varied the relative influence of nominal price at 

the extensive margin.  I found uniformly positive and substantial bias for almost all 

variations.  I also applied both methods to the dataset analyzed by Ruhm et al. (2012) and 

found suggestive evidence of smaller bias in the elasticity estimates (

UPOL UPOˆ ˆη η 0.0165− = , but insignificant).  Such differences are reasonable when placed 

in the context of revenue generation.  The difference between the approaches in terms of 

projected revenue for a recently proposed federal excise tax increase for beer was $8.4 

million per year, which is 2% of the yearly budget of the NIAAA. 
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Table 4.1:  Simulation Analysis of the Bias: 
UPOLη̂  vs. 

UPOη̂  

h 

0.5 1 2 3 5 10 
1.002 

(-45.75%) 
[77.11%] 

1.069 
(-44.87%) 
[58.53%] 

1.512 
(-49.04%) 
[35.20%] 

2.278 
(-54.47%) 
[22.57%] 

4.708 
(-62.04%) 
[9.42%] 

14.51 
(-69.38%) 
[0.79%] 

%-bias in parentheses, % of population for whom I(A > 0)=1 in square brackets. 
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Table 4.2: Comparing  UPOLη̂  vs. 
UPOη̂ Method Using Real Data 

 

UPOLη̂  
UPOη̂  

Difference, 
UPOL UPOˆ ˆη η−

 

% Difference 
UPOL UPO

UPO

ˆ ˆη η
100%

η̂

−
×

 

-0.4892** 
(-2.1284) 

-0.5057** 
(-2.1309) 

0.0165 
(0.0498) 

-3.26% 

T-statistics in parenthesis. 
* p<0.10, ** p<0.05, *** p<0.01 
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Table 4.3: Results of Changes in Tax Revenues from Federal Excise Tax Increase 

Description 

Change in tax 

revenues using 
UPOLˆη η=  

(a) 

 

Change in tax 

revenues using 
UPOˆη η=  

(b) 

 

Difference 

(a) – (b) 

nominal dollars 

 

Additional revenues 
from “proposed” 
federal excise tax 
increase 

$5.129 billion $5.121 billion $8.41 million 
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Chapter 5.   

Summary and Conclusion 

1. Introduction 

 Several state legislatures in the US have imposed, or are considering increasing, 

sumptuary or Pigouvian taxes (e.g., “sin taxes”) predominantly on alcohol and tobacco.  

Such pricing policies are set so as to reduce the consumption of alcohol abusers so as to 

minimize external costs to those harmed by them.  There also has been growing interest 

in raising alcohol excise taxes to increase government revenues to reduce budget deficits 

or to fund various state and federal programs.  The own-price elasticity of the demand for 

alcohol plays a vital role in determining optimal Pigouvian taxes (to reduce externalities) 

and in projecting revenues generated from proposed tax changes.28  Therefore, accurate 

estimation of alcohol price elasticity is important for policy analysis.   

 

2. Key Aspects of Policy Relevant Alcohol Elasticity Specification and Estimation 

 Many different approaches to specifying and estimating the price elasticity of 

demand for alcohol can be found in the literature.  There are four keys to policy-relevant 

specification and estimation of alcohol price elasticity.  First, the underlying demand 

model should take account of alcohol consumption decisions at the extensive margin – 

i.e., individuals’ decisions to drink or not – because the price of alcohol may impact the 

drinking initiation decision.  This is important because one’s decision to drink is likely to 

be structurally different from how much they drink if they decide to do so (the intensive 

                                                 

28 See Chapter 1 of dissertation for details on the role of elasticities in the context of 
revenue generation.  
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margin).  Secondly, the modeling of alcohol demand elasticity should yield both 

theoretical and empirical results that are causally interpretable and, therefore, useful for 

the analysis of potential changes in alcohol consumption that would result from 

exogenous (and ceteris paribus) changes in the price of alcohol (e.g., a change in tax 

policy).  Thirdly, the extant models that explicitly take extensive margins into account are 

unnecessarily restrictive and are merely imposed as a matter of convenience so that the 

parameters can be estimated using the Ordinary Least Squares (OLS) method.  Finally, 

almost all the conceptual and empirical treatments of alcohol demand elasticity found in 

the literature use log-price rather than nominal price.   

 There currently exists no specification and estimation method for alcohol price 

elasticity that accommodates the extensive margin, is causally interpretable, is less 

restrictive and uses nominal prices of alcohol.  One of the primary goals of this 

dissertation is to detail and evaluate a new approach to the specification and estimation of 

alcohol price elasticity that covers these four key requirements for policy relevance. 

 

2.1. Models that Account for the Extensive Margin 

 The vast majority of extant studies that I surveyed do not accommodate the 

possibility that one’s decision to drink or not [extensive margin] may require special 

attention in model design.  If the relevant population includes a nontrivial proportion of 

non-drinkers and the extensive margin is ignored in modeling then the resultant elasticity 

measure is likely to be biased.  The most widely implemented approach to estimation of 

the own-price elasticity of the demand for alcohol is applying the ordinary least squares 

(OLS) method to a linear demand model with log consumption as the dependent variable 
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and log price and other demand determinants as the independent variables [henceforth the 

aggregate LOG method (AGG-LOG)] on aggregate-level (e.g. state-level) models and 

data.  Unfortunately, nearly all of these studies incapable of taking explicit account of 

individual alcohol demand decisions at the extensive margin, therefore, elasticity 

estimates obtained using AGG-LOG is potentially biased for analyzing pricing policies 

aimed at modifying alcohol demand behavior at the individual level.29  The two-part 

model developed by Manning, Blumberg, Moulton (1995) [MBM henceforth] to estimate 

the own price elasticity of alcohol demand is indeed designed to account for the structural 

difference between the extensive and intensive margins.  Of all the alcohol elasticity 

studies I surveyed, only three alcohol elasticity studies take explicit account of the 

extensive margin by implementing the MBM approach (Manning et al., 1995; Farrell et 

al., 2003; Ruhm et al., 2012).   

 

2.2. Models that are Causally Interpretable 

Terza, Jones, Devaraj et al. (2015) [TJD et al. henceforth] show that the two-part 

model elasticity measure suggested by MBM is not causally interpretable.  TJD et al. 

propose an elasticity measure and estimator that follow from a well-defined potential 

outcomes (PO) framework placed in the two-part modeling context and argue, therefore, 

that their approach does indeed produce causally interpretable elasticity estimates. 

 In order to assess whether the lack of causal interpretability of the MBM approach 

has empirical consequences (e.g. potential bias), in Chapter 2 of my dissertation, I 

                                                 

29 Other models such as Tobit (Kenkel, 1996) and Finite Mixture Models (Ayyagari et al., 
2013) estimate own price elasticity of alcohol demand at an individual-level, however, 
they do not explicitly take extensive margins into account. 
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performed simulation analysis, estimate elasticities on a real world application using the 

TJD et al. method and compare the resultant elasticity estimates to those obtained via the 

MBM method.  In the simulation study, I varied: 1) the level of the relative price 

influence at the extensive vs. intensive margins; and 2) the fraction of the population who 

are drinkers.  I found that the former has a positive and monotonic effect on the bias, 

while the influence of the latter peaks when the fraction of drinkers is in the low to mid-

level range.  As a complement to the simulation study, I applied both methods to one of 

the models considered by Ruhm et al. (2012) using the same dataset as was analyzed by 

them.  I found the elasticity estimates to be statistically significant from zero and from 

each other ( MBM POˆ ˆη η 0.089− = − ; p-value = .0286).  These differences in the raw 

elasticity estimates could become even more evident when placed in the policy making 

context of revenue generation.  Drawing from a proposed change in federal excise tax on 

alcohol, I found the difference in tax revenue projections to be substantial; amounting to 

more than 10% of yearly budget of the NIAAA.30 

 
 
2.3. Models that Do Not Impose Unnecessary Modeling Restrictions  

 The two-part model underlying the MBM and TJD et al. is unnecessarily 

restrictive.  In the intensive margin of the two-part model, MBM and TJD et al. explicitly 

include an error term and also make conditional mean assumptions, neither of them are 

necessary.  The restrictions are imposed merely as a matter of convenience – so that the 

regression parameters can be estimated via OLS.  In Chapter 3 of this dissertation, I 

develop a new specification and estimation of alcohol price elasticity [henceforth UPO 

                                                 

30 See Chapter 2 for more details 
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method], which is an unrestricted version of two-part model, causally interpretable, and 

uses nominal prices of alcohol in their models.  To examine the extent of the bias 

between the widely used AGG-LOG method vs. the UPO method, in Chapter 3, I 

performed a simulation study, where I varied the relative influence of nominal price at 

the extensive margin and the fraction of drinkers in the population.  I found uniformly 

positive and substantial bias for almost all combinations and. for a given level of former, 

as latter increases the bias monotonically increases.  I also applied both methods to the 

dataset analyzed by Ruhm et al. (2012) and found the elasticity estimates to be 

statistically different from each other (
AL UPOˆ ˆη η 0.4064− = − ; p-value=0.0277) for a 

particular demand specification.  This difference when placed in the context of revenue 

forecast from a proposed federal excise tax increase for beer was $207.1 million per year 

(46.7% of the yearly budget of NIAAA).31  

 

 

2.4. Models that are Cast in terms of Nominal vs. Log Price  

 The existing studies using aggregate-level models/data and those studies applying 

the two-part model cast elasticity specifications and estimators in terms of log of prices 

instead of nominal prices.  Apart from the need to adhere to the extant literature, there 

appears to be no valid reasons to use log prices for specifying and estimating the own 

price elasticity of alcohol demand.  In Chapter 4, I investigate the empirical consequences 

of modeling alcohol demand in terms of log vs. nominal prices.  In that chapter, I 

developed a version of the UPO method for elasticity specification and estimation 

(detailed in Chapter 3) that is cast in terms of logged prices [henceforth UPOL method].  

                                                 

31 See Chapter 3 for more details. 
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I performed simulation and real data analysis by applying the UPOL method and 

comparing the results with the corresponding elasticity estimates obtained using the UPO 

method.  In the simulation study, I varied the relative influence of nominal price at the 

extensive margin and found uniformly positive and substantial bias.  However, using a 

dataset analyzed by Ruhm et al. (2012), I applied both methods and found suggestive 

evidence of smaller bias in the elasticity estimates (
UPOL UPOˆ ˆη η 0.0165− = , but 

insignificant).  This difference when placed in the context of revenue forecast from a 

proposed federal excise tax increases for beer was $8.4 million (a 2% yearly budget of 

NIAAA).32  

 

3. Future Research 

 My dissertation points to interesting avenues for future research.  The conceptual, 

empirical and policy differences in elasticity estimates between the newly introduced 

unbiased UPO method in my dissertation with other infrequently used alcohol demand 

models designed for individual-level data (such as Tobit models and Finite Mixture 

Models) is left for future research.  In my dissertation, I focused on just one context of 

the many policy relevant implications (viz., revenue generation) on using accurate 

elasticities.  I would like to investigate the policy implication of differences in elasticities 

obtained using the UPO vs. extant methods in the context of optimal alcohol taxation and 

use of fines as a means of modifying behavior.     

Further, alcohol prices can be increased in ‘chunks,’ and alcohol is also purchased 

in ‘chunks’.  Yet, almost all existing literature on own price elasticity of alcohol demand 

                                                 

32 See Chapter 4 for more details. 
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uses only point-instantaneous elasticity measure to estimate the response of 

infinitesimally small change in price of alcohol to change in alcohol consumption.  This 

point-instantaneous elasticity measure may not be able to identify the effects of specific 

incremental change in alcohol price (through excise taxes) on alcohol consumption.  

Other two forms of alcohol elasticity measures such as point-incremental elasticity and 

arc elasticity using nominal price of alcohol could be helpful for policy purposes.  

Specifying and estimating elasticity that is policy relevant with specific incremental 

change in alcohol price on consumption of alcohol (point-incremental elasticity) or 

demand response to change in price between two points (arc elasticity) in an unrestricted 

causally interpretable two-part modeling context using nominal prices is left for future 

research.   
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Appendix A:  

Asymptotic Distribution (and Standard Error) of MBMη̂  in Eqn (2-5) 

We may write MBMη̂  as 

 

 MBM
P1 P2

ˆ ˆ ˆη̂ (1 ζ)β β= − +  

 

where 

 
n

1 i
i 1

1ˆ ˆζ = (β , W )
n=

∑ Z  

 1(β, W) Λ(Wβ )=Z  

 1 2
ˆ ˆ ˆβ [β β ]'′ ′=  (with 1 P1 X1

ˆ ˆ ˆβ = [β β ]′ ′  and 2 P2 X2
ˆ ˆ ˆβ = [β β ]′ ′ ) is the consistent  

  estimate of the parameter vector 1 2β [β β ]'′ ′=  (with 1 P1 X1β = [β β ]′ ′  and  

 2 P2 X2β = [β β ])′ ′ )  [the parameters of equations (2-1) and (2-2)] obtained via the  

  two-part protocol culminating in (2-3) 

 
and  

 i i iW [P X ]=  denotes the observation on W [P X]=  for the ith individual in  

  the sample (i = 1, ..., n).  Let P1 P2
ˆ ˆ ˆτ̂ = [β β ζ]′  and P1 P2τ = [β β ζ]′ ,  

  where ˆplim[τ] = τ .   

If we could show that 

 

 

1 d
2ˆ ˆAVAR(τ) n (τ τ) N(0, I)

−

− →  
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where the formulation of ˆAVAR(τ)  is known, then we could apply the δ-method to 

obtain the asymptotic variance of MBMη̂  as 

 

 MBM MBMˆ ˆavar(η η ) c(τ) AVAR(τ) c(τ) '− =  

 

where P1c(τ) [(1 ζ) 1 β ]= − − .  Moreover, if we have a consistent estimator for 

ˆAVAR(τ) , say �̂AVAR(τ)  [i.e. �̂ ˆp lim AVAR(τ) AVAR(τ)  =
 

],  then we could 

consistently estimate MBMˆavar(η ) as 

 

 
� �MBMˆ ˆ ˆ ˆavar(η ) c(τ) AVAR(τ) c(τ) '= .      (A-1) 

 

We focus, therefore, on finding the asymptotic distribution of τ̂  and, in particular, the 

formulation of its asymptotic covariance matrix. 

 First note that we can write τ as  

 

 τ Ξ θ=           (A-2) 

 

where θ = [δ γ]′ ′ , 1 2δ [β β ]'′ ′= , γ ζ=  (recall, 1 P1 X1β = [β β ]′ ′  and 2 P2 X2β = [β β ]′ ′ ) 

 

 

P1

P2

β

β

ζ

Ξ

 
 
− − − − − − − − 
 =
 
 − − − − − − − −
 
  

�

�

�
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and a� is the unit row vector with the value “1” in the element position corresponding to 

the element position of a in the vector θ.  Clearly then  

 

  ˆˆAVAR(τ) Ξ AVAR(θ) Ξ′=        (A-3) 

 

where θ̂  is the estimator of θ obtained from the following two-stage protocol. 

 
First Stage 

Consistently estimate δ =β  via the following optimization estimator 

 

 

n

1 i
i 1

δ

q (δ, S )
δ̂ = arg max

n
=
∑

�

�

       (A-4) 

where  

 1 i 11 1 i 12 2 iq (δ, S ) q (β , S ) q (β , S )= +� � �  

 11 1 i i i 1 i i 1q (β , S ) I(A 0) ln[Λ(W β )] [1 I(A 0)] ln[1 Λ(W β )]= > + − > −� � �  

 2
12 2 i i i i 2q (β , S ) I(A 0)(ln(A ) W β )= − > −� �  

 i i i iS [A X P ]=
 

 
 

1 22δ [β β ]'′ ′=� � � , 1 P1 X1β = [β β ]′ ′� � � and 2 P2 X2β = [β β ]′ ′� � �  and  1 22
ˆ ˆ ˆδ [β β ]'′ ′= . 

 

Second Stage 

Consistently estimate γ via the following optimization estimator 

 

 

n

i
i 1

γ

ˆq(δ, γ,  S )
γ̂ = arg max

n
=

∑

�

�

       (A-5) 



80 

where 

 2
i i

ˆ ˆq(δ, γ,  S ) ( (β, W ) ζ)= − − �� Z  

  

1 2
ˆ ˆ ˆδ [β β ] '′ ′=  is the first stage estimator of β, 1 P1 X1

ˆ ˆ ˆβ = [β β ]′ ′  and 2 P2 X2
ˆ ˆ ˆβ = [β β ]′ ′ .  Use 

1q  as shorthand notation for 

  

 1 11 1 12 2q (δ, S) q (β , S) q (β , S)= +  

 
with 

 

 11 1 1 1q (β , S) I(A 0) ln[Λ(Wβ )] [1 I(A 0)]ln[1 Λ(Wβ )]= > + − > −  

 2
12 2 2q (β , S) I(A 0)(ln(A) W β )= − > −  

 S [A X P]=  

 

and use q as shorthand notation for  

 

 2
2q(δ, γ,  S) ( (β , W) ζ)= − −� Z  

 

and let ˆAVAR(δ)  denote the asymptotic covariance matrix of the first stage estimator.33  

Using well known results from asymptotic theory for two-stage estimators, we can show 

that34 

1 d
2ˆ ˆAVAR(θ) n (θ θ) N(0, I)

−

− →       (A-6) 

                                                 

33 Note that a consistent estimate ˆAVAR(δ)  can be obtained from the packaged output 

for the first stage estimator because the first stage estimator is unaffected by the fact that 
it is a component of a two-stage estimator.  
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where ˆˆ ˆθ = [δ γ]′ ′ ,  ˆplim(θ) = θ  

 

 
11 12

12 22

D D

D D
ˆAVAR(θ)

 
=  ′ 

       (A-7) 

 

 11
ˆAVAD R(δ)=         (A-8) 

  2K×2K 

 [ ]12 δδ 1 δ 1 γ γγ

11
E ED q q ' q E q

−−
= ∇ ∇ ∇      ∇  

  
[ ] [ ] [ ]δδ 1 δ 1 δ 1 δδ 1 γ

1

γ

1

δ

1

γE q q ' q q q qE E E E
−− −

∇ ∇
′   − ∇ ∇   ∇ ∇  (A-9) 

and 

 

 22 γγ γδ γ

1

δ
ˆˆAVAR (γ) E E AVD q q qAR(β)E '

−
  =   =     ∇ ∇ ∇  

  [ ]γ δ 1 δδ 1 γδ

1
q q qE E E q

−
∇ ∇

′  −   ∇  ∇  

   [ ]γδ δδ 1 δ

1

γ γγ

1

1q qE E E ' Eq q q
−−

∇ ∇ ∇ ∇      −   ∇   
   

    21

γγ γγ

1

γE E qEq q
− −

    +   ∇ ∇  ∇    (A-10) 

 
Fortunately, (A-9) and (A-10) can be simplified in a number of ways.  First note that we 

can write 

 

 γ δ 1 γ δ 1q q qE[ W]E |E q   =∇ ∇ ∇   ∇   

but 

                                                                                                                                                 

34Discussions of asymptotic theory for two-stage optimization estimators can be found in 
Newey & McFadden (1994), White (1994, Chapter 6), and Wooldridge (2010, Chapter 
12).    
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 δ 1 δ 11 δ 12q = q q∇ ∇ +∇  

with 

 
1δ 11 βq [ ln f (I(A 0) | W) 0 0]∇ = ∇ >  

 

 ( )2δ 12q 0 2 ln(A)I(A 0) W β W 0= −>∇     

where 

 I(A 0) [1 I(A 0)]
1 1Λ(W β ) [1 Λ(W β )f (I( | W ]A 0) ) > − >= −>  . 

 
Therefore 

 
 

( )
11 β 2δE[ q | W] E[ ln f (I(A 0) | W)] 2E ln(A)I(A 0) Wβ | W W ∇ = ∇ > −   >   

 
   = [ 0     0] 

 

because 
1β

E[ ln f (I(A 0) | W )] 0∇ > =  [see (13.20) on p. 477 of Wooldridge (2010)] and,  

( )2E ln(A)I( 0 0A ) W β | W− =  >  by design.  Finally, then we get 

 

 γ δ 1E 0q q∇  = ∇  

 
so 

 
[ ] [ ] [ ]12 δδ 1 δ 1 δ 1 δδ 1 γδ γγ

11 1
E E E ED q q ' q q q qE

−− − ′   −   = ∇ ∇ ∇ ∇ ∇ ∇  (A-11) 

      2K×2K           2K×2K        2K×2K    2K×1   1×1 
      
and 
 

 22 γγ γδ γδ γγ

1 1ˆˆAVAR(γ) E E AVAR(β) E 'ED q q q q
− −

       =      ∇ ∇ ∇ = ∇  

                           1×1        1×2K      2K×2K     2K×1        1×1 
 

    21

γγ γγ

1

γE E qEq q
− −

    +   ∇ ∇  ∇ .   (A-12) 

             1×1            1×1          1×1 
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so 

 

11 1

(2K 1) (2K

2

12 21) 2

D D

2K 2K 2K 1

D D

1 2K

ˆAVAR(

1 1

θ)
+ × +

 
 

× × =
 ′
 

× × 

. 

 
Let’s consider each of the individual components of (A-11) and (A-12) in turn. 

δ
1

δ 1qE[ ]−−−−∇∇∇∇  

 2K×2K 

 Written out explicitly we have 

 
1 1

2 2

1
β β 11

ββ 1 1
β 12

1

β

E[ q ] 0
q ]

0 E
[

[
E

q ]−

−

−
 ∇
 ∇ =
 ∇ 

.    (A-13) 

Now 

 
1 1

1
1 1β β 1E ˆAV[ ] )q AR(β− = −∇         (A-14) 

  =  the negative of the asymptotic covariance matrix for first   

   stage, first part, logit estimation in the two-stage estimation  

   protocol for θ.  We get an estimate of this directly from the Stata  

   output. 

 

A consistent estimator of 
1 1β β 11

1E[ q ]−∇  is 

 

 �
1 1

1
β 1 1β 1

ˆ ˆnAVAR *(βE q ] )[ − = −∇       (A-15) 

 

where � 1
ˆAVAR * (β )  is the estimated variance-covariance matrix output by the Stata logit 

procedure.  Also 

 

 
2β 12 2I(A 0) Aq 2 )ln( β )W( W> −∇ =  
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and 
 

 
2 2β β 12q 2 I(A 0)W W′>∇ = − . 

 
Therefore 

 [ ]
2 2β β 12E[ q ] I( )2E A 0 W W∇ = − ′> . 

A consistent estimator of 
2 2

1
β β 12E[ q ]−∇  is 

 

 { }
2 2 i

1
n

1
β β 12 1

i 1
i iÊ[ q ] n 2 I(A 0)W W

−
−

=

∑ ′>
 

∇ = −  
    (A-17) 

 

where 1n  is the size of the subsample for whom I(A 0) 1> = , so 

 

 
1 1

2 2

β β 11

δδ 1 ββ 1 1
β

1

1

β

1

12

[ qÊ
ˆ ˆE[ E[

Ê

] 0
q ] q ]

0 [ q ]−

−

− −
 ∇
 ∇ = ∇ =
 ∇ 

.  (A-18) 

   

δ 1 δ 1q ' qE ∇ ∇∇ ∇∇ ∇∇ ∇          

        2K×2K 
 
 Written out explicitly we have 
 

 
1 1 1 2

2 1 2 2

β 11 β 11 β 11 β 12

β 1 β 1
β 12 β 11 β 12 β 12

E[ q ' q ] E[ q ' q ]
q ' q

E[ q ' q ] E[ q '
E

q ]
  =

∇ ∇ ∇ ∇ 
∇ ∇  

∇ ∇ ∇ ∇


 
.   (A-19) 

Because the first stage, first part, estimator of 1β  is MLE we can write 

 

 
1 1 1 1β 11 β 11 β β 11

1

1E[ q ' q ] E[ q ˆA (] VAR β )
−

∇  = ∇ = ∇ −  

   =  the inverse of the asymptotic covariance matrix for first stage,  
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first part, logit estimation in the two-stage estimation 

 protocol for θ.  We get an estimate of this directly from the Stata  

output. 

 

A consistent estimator of 
1 1β 11 β 11E[ q ' q ]∇ ∇  is 

 

 �
1 1β 11 β 1

1

1 1

1 ˆAVARÊ[ q ' *(β )
n

q ]
−

 =
 

∇ ∇      (A-20) 

where � 1
ˆAVAR * (β )  is the estimated variance-covariance matrix output by the Stata logit 

procedure.  The remaining block elements follow from 

 
 

[ ]
1 1β 11 β 1 1q ln f (I(A 0) | W) I(A 0) W β )] [1[1 Λ( I(A 0)] W β ) WΛ(−∇ = ∇ > = > − − >  

           (A-21) 
 

 ( )
2 2β 12q 2 ln(A |I A(A 0) W β W0)∇ = > −> .    (A-22) 

 

where the formulation of 
1β 11q∇  comes from equation (16.4.8) on p. 350 of Fomby et al. 

(1984) and Λ(  ) denotes the logistic cdf.  The remaining required consistent matrix 

estimators are 

 

 
1 2 1 2

n

β 11 β 12 β 11i β 12i
i 11

1ˆ ˆ ˆE[ q ' q ] q ' q
n =

∑∇ ∇ = ∇ ∇      (A-23) 

 

 
2 2 2 2

n

β 12 β 12 β 12i β 12i
i 11

1ˆ ˆ ˆE[ q ' q ] q ' q
n =

∑∇ ∇ = ∇ ∇      (A-24) 

 
where 
 

 
1β 11i i i 1 1i i i

ˆ ˆW β )]q̂ I(A 0)[1 Λ( I(A 0)]Λ([1 W β ) W∇ = > − > − −    (A-25) 
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and 
 

 ( )
2β 12i i i i i i2q̂ 2 A ln(A | A 0 ˆI( 0) W β) W> −>∇ =     (A-26) 

so 

 [ ] 1 1 1 2

2 1 2 2

β 11 β 11 β 11 β 12

δ 1 δ 1 β 1 β 1

β 12 β 11 β 12 β 12

ˆ ˆE E
ˆ ˆE E

ˆ

[ q ' q ] [ q ' q ]
q ' q q ' q

[ q ˆE ' q ] [ q ' q ]E

 ∇ ∇ ∇ ∇
 ∇ ∇ ∇ ∇
 ∇ ∇

 = =
∇





∇

 .(A-27) 

 
 
 

γδqE ∇∇∇∇    
      

   1×2K 
 
 Written out explicitly we have 
 
 

 ( )γ ζ cq = q 2 (β, S) ζ=∇ ∇ −Z       (A-28) 

 
and 

 
1γδ ζβE[ q] = E[ q] 0 ∇ ∇    

  
1β

= 2 E[ ] 0 ∇ Z        (A-29) 

where 

 

 
1 1β λ(Wβ ) W∇ =Z .        (A-30) 

 
The requisite consistent matrix estimator is 

 

 �
1 1

n

β β ii 1

Ê[ ] =
=
∑∇ ∇Z Z         (A-31) 

 
where  

 �
1β i ii 1

ˆλ(W β W= )∇ Z         (A-32) 
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so 

 
1γδ β

ˆ ˆE[ q] = 2 E[ ] 0 ∇ ∇ Z .       (A-33) 

 
 

γγ
1E[ q]−−−−∇∇∇∇   

    1×1 

 γγ ζζ

1 1

cq q
1

E E
2

− −
  ∇ ∇ = = −    .       (A-34) 

 

2
γE q∇∇∇∇    

      

        1×1 

 Given that 

 

 ( )γ 2 (β, W ζq )∇ = −Z .       (A-35) 

we have 

 

 2 2
γE 4E[( (β, Sq ) ζ) ]  = − ∇ Z       (A-36) 

 
The corresponding consistent estimator is 

 

 
n

2

1
γ iγ

i

1 ˆ ˆÊ 4 ( ζ) .
n

q ' q
=
∑∇  − ∇ = Z       (A-37) 

 

Based on (A-8), (A-11) and (A-12) and using the two-stage estimator θ̂  we can 

consistently estimate (A-7) as 
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� 11 12

12 22

ˆ ˆD D

ˆ ˆD D

ˆAVAR(θ)
 

=  
′  

 

where 

 � �
�

�

1

2

11

1

ˆnAVAR * 0(β )ˆ ˆAVAR(δ) AVAR(β)
ˆn AVA

D̂
R *(β )0

 
= 



=


= 


 

 [ ]12 γγ δ 1 δ 1 γγ γδ γ

1 1

γ

1ˆ ˆ ˆ ˆ ˆE E E E ED q q ' q q q q
− − −′   = ∇ ∇ ∇ ∇ ∇ ∇   −          

 

 � �
22 γγ γδ

1 1

γδ γγ
ˆˆ ˆ ˆ ˆˆAVAR(γ) E E AVAR(β) E 'D q Eq q q

− −
       =       ∇ ∇ ∇ = ∇  

     2
γ γγ

1

γ γ

1
q q qˆ ˆ ˆE E E

− −
    +     ∇ ∇ ∇  

 

and using well known results from asymptotic theory for two-stage estimators, we can 

show that35  

 

 
�

1 11
d

2
1 2 2

ˆn(β β )

ˆ ˆˆAVAR(θ) n (β β ) N(0, I)

ˆn (ζ ζ)

−

 −
 

− → 
 

−  

.      (A-38) 

 

************************************************************************ 

ASIDE: 

                                                 

35Discussions of asymptotic theory for two-stage optimization estimators can be found in 
Newey & McFadden (1994), White (1994, Chapter 6), and Wooldridge (2010, Chapter 
12).    
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Notice that the “ n  blow up” is a bit tricky here.  It implements n  for 1β̂  and ζ̂ ; but 

uses 1n  for 2β̂ .  We had to do this because we had to use the correct sample size (viz., 

1n ) for a number of the components of 
�̂
AVAR(θ)  [viz., those that pertained to the 

estimation of 2β̂ ]; in particular (A-17), (A-23) and (A-24).  For this reason we had to be 

explicit about the denominators in all of the averages for the components of 
�̂
AVAR(θ) .  

This meant that in the construction of the requisite asymptotic t-stats we had to explicitly 

include the “blow-up” in the numerator (i.e., we had to multiply by the square-root of the 

appropriate sample size).  I refer to this as “tricky” because one typically does not have to 

do this.  In the usual asymptotic t-stat construction the denominators of the averages (“n”) 

need not be included in the construction of the asymptotic covariance matrix because it 

typically manifests as a multiplicative factor and, after pulling the diagonal and taking the 

square root to get the standard errors, this multiplicative n  cancels with the “blow-up” 

factor in the numerator.  For example, the asymptotic t-stat of the OLS estimator is 

 

 
� ( ) ( )

k k k k k k k k

1 1 12 2
2 kk kk

kk

ˆ ˆ ˆ ˆn (ρ ρ ) n (ρ ρ ) n (ρ ρ ) (ρ ρ )

ˆAVAR(ρ) ˆ ˆn σ σ1
σ̂

n

− − −

− − − −
= = =

′ ′ 
′ 

 

XX XX
XX

  

where 

 n is the sample size 

 kρ  is the coefficient of the kth regressor in the linear regression 

 kρ̂  is its OLS estimator 

 
2
σ  is the regression error variance estimator 
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 X is the matrix of regressors 

 

and kk
′XX  is the kth diagonal element of ′XX .  Note how the “ n s” simply cancel. 

Note also that what we typically refer to as the “asymptotic standard error” can actually 

be written as the square root of the diagonal element of the consistent estimator of the 

asymptotic covariance matrix divided by n; in other words 

 asy std err =   
�̂AVAR(ρ)

n
.  

************************************************************************   

Now back to the issue at hand.  Moreover 

 

 �
P1 P11 d

2
1 P2 P2

ˆn(β β )

ˆ ˆˆAVAR(τ) n n (β β ) N(0, I)

ˆn (ζ ζ)

−

 −
 

− → 
 

−  

.     (A-39)  

 

where 

 

 �
�̂

ˆAVAR(τ) ΞAVAR(θ) Ξ '=         (A-40) 

 
and τ and Ξ are defined as in (A-2).  Now combining (A-1) with (A-38) and (A-39) we 

get 

 

 
�

1
d

MBM MBM MBM2ˆ ˆavar(η ) n (η η ) N(0, I)
−

− →     (A-41) 
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where 

 

 
� �MBMˆ ˆ ˆ ˆavar(η ) c(τ) AVAR(τ) c(τ) '=   

and 

 P1c(τ) [(1 ζ) 1 β ]= − − . 
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Appendix B:  

Asymptotic Distribution (and Standard Error) of POη̂ in Eqn (2-7) 

We may write POη̂  as 

 

 PO κ̂
η̂

ν̂
=  

where 

 
n

i
i 1

1 ˆκ̂ (β, W )
n=

∑= K  

 
n

i
i 1

1 ˆν̂ = (β, W )
n=

∑ V  

 1 2 P1 1 2 P2(β, W) λ(Wβ )exp(Wβ )β Λ(Wβ )exp(Wβ )β+=K  

 1 2(β, W) Λ(W β ) exp(W β )=V   

 1 2
ˆ ˆ ˆβ [β β ]'′ ′=  (with 1 P1 X1

ˆ ˆ ˆβ = [β β ]′ ′  and 2 P2 X2
ˆ ˆ ˆβ = [β β ]′ ′ ) is the consistent  

  estimate of the parameter vector 1 2β [β β ]'′ ′=  (with 1 P1 X1β = [β β ]′ ′  and  

  2 P2 X2β = [β β ])′ ′ )  [the parameters of equations (2-1) and (2-2)] obtained  

  via the two-part protocol culminating in (2-3) 

 
and  

 i i iW [P X ]=  denotes the observation on W [P X]=  for the ith individual in  

 the sample (i = 1, ..., n).  Let ˆ ˆγ̂ = [κ ν]′  and γ = [κ ν]′ , where ˆplim[γ] = γ .   

If we could show that 
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1 d
2ˆ ˆAVAR(γ) n (γ γ) N(0, I)

−

− →  

 
where the formulation of ˆAVAR(γ)  is known, then we could apply the δ-method to 

obtain the asymptotic variance of POη̂  as 

 

 POˆ ˆavar(η ) c(γ) AVAR(γ) c(γ) '=  

 

where 
2c(τ) [1/ ν κ / ν ]= − .  Moreover, if we have a consistent estimator for ˆAVAR(γ)

, say �̂AVAR(γ)  [i.e. �̂ ˆp lim AVAR(γ) AVAR(γ)  =
 

],  then we could consistently 

estimate POˆavar(η ) as 

 

 
� �POˆ ˆ ˆ ˆavar(η ) c(γ) AVAR(γ) c(γ) '= .      (B-1) 

 
We focus, therefore, on finding the asymptotic distribution of γ̂  and, in particular, the 

formulation of its asymptotic covariance matrix. 

 First, let θ = [δ γ ]′ ′ ′  where 1 2δ [β β ]'′ ′= , γ [κ ν]′ =  (recall, 1 P1 X1β = [β β ]′ ′  

and 2 P2 X2β = [β β ]′ ′ ), and note that γ̂  can be viewed as the second stage estimator in the 

following two-stage protocol  

 
First Stage 

Consistently estimate δ via the following optimization estimator 

 

 

n

1 i
i 1

δ

q (δ, S )
δ̂ = arg max

n
=
∑

�

�

       (B-2) 
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where  

 1 i 11 1 i 12 2 iq (δ, S ) q (β , S ) q (β , S )= +� � �  

 11 1 i i i 1 i i 1q (β , S ) I(A 0) ln[Λ(W β )] [1 I(A 0)] ln[1 Λ(W β )]= > + − > −� � �  

 2
12 2 i i i i 2q (β , S ) I(A 0)(ln(A ) W β )= − > −� �  

 i i i iS [A X P ]=
 

 
 

1 22δ [β β ]'′ ′=� � � , 1 P1 X1β = [β β ]′ ′� � � and 2 P2 X2β = [β β ]′ ′� � �  and  1 22
ˆ ˆ ˆδ [β β ]'′ ′=  

 

Second Stage 

Consistently estimate γ via the following optimization estimator 

 

 

n

i
i 1

γ

ˆq(δ, γ,  S )
γ̂ = arg max

n
=
∑

�

�

       (B-3) 

where 

 i a i b i
ˆ ˆ ˆq(δ, γ,  S ) q (δ, κ,  S ) q (δ, ν,  S )= +� ��  

 2
a i i

ˆ ˆq (δ, κ,  S ) ( (β, W ) κ)= − −� �K  

 2
b i i

ˆ ˆq (δ, ν,  S ) ( (β, W ) ν)= − −� �V  

  

1 2
ˆ ˆ ˆδ [β β ] '′ ′=  is the first stage estimator of δ, 1 P1 X1

ˆ ˆ ˆβ = [β β ]′ ′  and 2 P2 X2
ˆ ˆ ˆβ = [β β ]′ ′ .  Use 

1q  as shorthand notation for 

  

 1 11 1 12 2q (δ, S) q (β , S) q (β , S)= +  

 
with 
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 11 1 1 1q (β , S) I(A 0) ln[Λ(Wβ )] [1 I(A 0)]ln[1 Λ(Wβ )]= > + − > −  

 2
12 2 2q (β , S) I(A 0)(ln(A) W β )= − > −  

 S [A X P]=  

 

and use q as shorthand notation for  

 

 a bq(δ, γ,  S) q (δ, κ,  S) q (δ, ν,  S)= +�  

with 

 2
aq (δ, κ,  S) ( (β, W) κ)= − −K  

 2
bq (δ, ν,  S) ( (β, W) ν)= − −V  

  

and let ˆAVAR(δ)  denote the asymptotic covariance matrix of the first stage estimator.36  

Using well known results from asymptotic theory for two-stage estimators, we can show 

that37 

 

1 d
2ˆ ˆAVAR(γ) n (γ γ) N(0, I)

−

− →       (B-4) 

 
where,  ˆplim(γ) = γ  

 

 
γ γδ γδ

1

γq q ˆˆAVAR (γ) E E AVAR (β)E q '
−

∇ ∇ ∇     =        

                                                 

36 Note that a consistent estimate ˆAVAR(δ)  can be obtained from the packaged output 

for the first stage estimator because the first stage estimator is unaffected by the fact that 
it is a component of a two-stage estimator.  
37Discussions of asymptotic theory for two-stage optimization estimators can be found in 
Newey & McFadden (1994), White (1994, Chapter 6), and Wooldridge (2010, Chapter 
12).    
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  [ ]γ δ 1 δδ 1 γδ

1
q ' q qE E E q

−
∇ ∇

′  −   ∇  ∇  

   [ ]γδ δδ 1 γ δ 1 γ

1

γ

1
q q q ' q qE E E ' E

−−      −    ∇ ∇
∇ ∇ ∇    

    
1 1

γγ γ γ γγq q ' q qE E E
− −

∇ ∇ ∇     +      ∇   (B-5) 

 
Fortunately, (B-5) can be simplified in a number of ways.  Note that we can write 

 

 γ δ 1 γ δ 1q ' q q 'E E[ q | W]E∇ ∇ ∇ ∇   =     

but 

 δ 1 δ 11 δ 12q = q q∇ ∇ +∇  

with 

 
1δ 11 βq [ ln f (I(A 0) | W) 0 0]∇ = ∇ >  

 

 ( )2δ 12q 0 2 ln(A)I(A 0) W β W 0= −>∇     

where 

 I(A 0) [1 I(A 0)]
1 1Λ(W β ) [1 Λ(W β )f (I( | W ]A 0) ) > − >= −>  . 

 
Therefore 

 

( )
11 β 2δE[ q | W] E[ ln f (I(A 0) | W)] 2E ln(A)I(A 0) Wβ | W W ∇ = ∇ > −   >   

 
   = [ 0     0] 

 
because 

1β
E[ ln f (I(A 0) | W )] 0∇ > =  [see (13.20) on p. 477 of Wooldridge (2010)] and,  

( )2E ln(A)I( 0 0A ) W β | W− =  >  by design.  Finally, then we get 
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 γ δ 1q ' qE 0  = ∇ ∇  

 
so 
 

 γγ γδ γδ γγ

1 1ˆˆAVAR(γ) E E AVAR(β) E 'Eq q q q
− −

∇ ∇ ∇ ∇      =          

                 2×2        2×2K      2K×2K     2K×2        2×2 
 

    
1 1

γγ γ γ γγq q ' q qE E E
− −

∇ ∇ ∇     +      ∇ .  (B-6) 

             2×2            2×2          2×2 
 
 
Let’s consider each of the individual components of (B-6) in turn. 

 

δ
1

δ 1qE[ ]−−−−∇∇∇∇  

 2K×2K 

 Written out explicitly we have 

 
1 1

2 2

1
β β 11

ββ 1 1
β 12

1

β

E[ q ] 0
q ]

0 E
[

[
E

q ]−

−

−
 ∇
 ∇ =
 ∇ 

.    (B-7) 

Now 

 
1 1

1
1 1β β 1E ˆAV[ ] )q AR(β− = −∇         (B-8) 

  =  the negative of the asymptotic covariance matrix for first   

   stage, first part, logit estimation in the two-stage estimation  

    protocol for θ.  We get an estimate of this directly from the 

Stata      output. 

 

A consistent estimator of 
1 1β β 11

1E[ q ]−∇  is 

 

 �
1 1

1
β 1 1β 1

ˆ ˆnAVAR *(βE q ] )[ − = −∇       (B-9) 
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where � 1
ˆAVAR * (β )  is the estimated variance-covariance matrix output by the Stata logit 

procedure.  Also 

 

 
2β 12 2I(A 0) Aq 2 )ln( β )W( W> −∇ =  

 
and 
 

 
2 2β β 12q 2 I(A 0)W W′>∇ = − . 

 
Therefore 

 

 [ ]
2 2β β 12E[ q ] I( )2E A 0 W W∇ = − ′> .      (B-10) 

 

A consistent estimator of 
2 2

1
β β 12E[ q ]−∇  is 

 

 { }
2 2 i

1
n

1
β β 12 1

i 1
i iÊ[ q ] n 2 I(A 0)W W

−
−

=
∑ ′>

 
∇ = −  

    (B-11) 

 

where 1n  is the size of the subsample for whom I(A 0) 1> = , so 

 

 
1 1

2 2

β β 11

δδ 1 ββ 1 1
β

1

1

β

1

12

[ qÊ
ˆ ˆE[ E[

Ê

] 0
q ] q ]

0 [ q ]−

−

− −
 ∇
 ∇ = ∇ =
 ∇ 

.  (B-12) 

   

δ 1 δ 1q ' qE ∇ ∇∇ ∇∇ ∇∇ ∇          

        2K×2K 
 
 Written out explicitly we have 
 

 
1 1 1 2

2 1 2 2

β 11 β 11 β 11 β 12

β 1 β 1
β 12 β 11 β 12 β 12

E[ q ' q ] E[ q ' q ]
q ' q

E[ q ' q ] E[ q '
E

q ]
  =

∇ ∇ ∇ ∇ 
∇ ∇  

∇ ∇ ∇ ∇


 
.   (B-13) 
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Because the first stage, first part, estimator of 1β  is MLE we can write 

 

 
1 1 1 1β 11 β 11 β β 11

1

1E[ q ' q ] E[ q ˆA (] VAR β )
−

∇  = ∇ = ∇ −  

   =  the inverse of the asymptotic covariance matrix for first stage,  

first part, logit estimation in the two-stage estimation 

 protocol for θ.  We get an estimate of this directly from the  

Stata output. 

 

A consistent estimator of 
1 1β 11 β 11E[ q ' q ]∇ ∇  is 

 

 �
1 1β 11 β 1

1

1 1

1 ˆAVARÊ[ q ' *(β )
n

q ]
−

 =
 

∇ ∇      (B-14) 

 

where � 1
ˆAVAR * (β )  is the estimated variance-covariance matrix output by the Stata logit 

procedure.  The remainder of the block elements follow from 

 

 
1 1β 11 βq ln f (I(A 0) | W)∇ = ∇ >   

 

[ ]1 1Wβ )I( ] [1 Wβ )A 0)[1 Λ( I W(A 0)]Λ(− >−= > −   

        (B-15) 
         
  

 ( )
2 2β 12q 2 ln(A |I A(A 0) W β W0)∇ = > −> .    (B-16) 

 

where the formulation of 
1β 11q∇  comes from equation (16.4.8) on p. 350 of Fomby et al. 

(1984) and Λ(  ) denotes the logistic cdf.  The remaining required consistent matrix 

estimators are: 

 



100 

 
1 2 1 2

n

β 11 β 12 β 11i β 12i
i 11

1ˆ ˆ ˆE[ q ' q ] q ' q
n =

∑∇ ∇ = ∇ ∇      (B-17) 

 
2 2 2 2

n

β 12 β 12 β 12i β 12i
i 11

1ˆ ˆ ˆE[ q ' q ] q ' q
n =

∑∇ ∇ = ∇ ∇      (B-18) 

 
where 
 

 
1β 11i i i 1 1i i i

ˆ ˆW β )]q̂ I(A 0)[1 Λ( I(A 0)]Λ([1 W β ) W∇ = > − > − −    (B-19) 

 
and 
 

 ( )
2β 12i i i i i i2q̂ 2 A ln(A | A 0 ˆI( 0) W β) W> −>∇ =     (B-20) 

so 

 [ ] 1 1 1 2

2 1 2 2

β 11 β 11 β 11 β 12

δ 1 δ 1 β 1 β 1

β 12 β 11 β 12 β 12

ˆ ˆE E
ˆ ˆE E

ˆ

[ q ' q ] [ q ' q ]
q ' q q ' q

[ q ˆE ' q ] [ q ' q ]E

 ∇ ∇ ∇ ∇
 ∇ ∇ ∇ ∇
 ∇ ∇

 = =
∇





∇

 .(B-21) 

 

γδqE ∇∇∇∇    
      

   2×2K 
 
 Written out explicitly we have 
 
 

 γ κ a ν bq = [( q 0) (0 q )]∇ ∇ + +∇   

 

  κ a ν b[ q q ] ∇ ∇=       

 

  ( ) ( )2 (β, S) κ  (β, S) ν = − − K V      (B-22) 

 
and 
 

 1 2

1 2

κβ a κβ a

γδ

νβ b νβ b

E[ q ] E[ q ]
E[ q] =

E[ q ] E[ q ]

∇ ∇ 
∇  

∇ ∇  
  

  
1 2

1 2

β β

β β

E[ ] E[ ]
= 2

E[ ] E[ ]

∇ ∇ 
 

∇ ∇  

K K

V V
      (B-23) 
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where 

 
1 1 1 P1 1 2β {λ(Wβ )[1 2Λ(Wβ )]β W λ(Wβ )[1 0 ... 0]}exp(Wβ )− +∇ =K  

        1 2 P2λ(Wβ )exp(Wβ )β W+  

  [ ]1 2 1 P1 P2λ(Wβ ) exp(Wβ ) {[1 2Λ(Wβ )]β + β }W [1 0 ... 0]= − +  (B-24) 

 

2 1 2 P1 1 2 P 2β 2λ(Wβ ) exp(Wβ )β W+ Λ(Wβ ){exp(Wβ )β W exp(Wβ )[1 0 ... 0]}=∇ +K  

  [ ]2 1 P1 1 P2 1exp(Wβ ) {λ(Wβ )β + Λ(Wβ )β }W Λ(Wβ )[1 0 ... 0]= + . (B-25) 

 
1 1β 2λ(W β ) exp(W β ) W∇ =V       (B-26)  

and 

 
2 1β 2Λ(W β ) exp(W β ) W∇ =V .      (B-27) 

 
The following equalities were used in deriving the above results 

 

 aΛ(a) λ(a) Λ(a)[1 Λ(a)]∇ = = −  

 aλ(a) λ(a)[1 2Λ(a)]∇ = − . 

 
The requisite consistent matrix estimators are 

 

 �
1 1

n

β β ii 1

Ê[ ] =
=
∑∇ ∇K K         (B-28) 

 �
2 2

n

β β ii 1

Ê[ ] =
=
∑∇ ∇K K        (B-29) 

 �
1 1

n

β β ii 1

Ê[ ] =
=
∑∇ ∇V V         (B-30) 

and 
 

 �
2 2

n

β β ii 1

Ê[ ] =
=
∑∇ ∇V V         (B-31) 

 
where  
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 �
1 1 2 1 P1 P2β i i i ii

ˆ ˆ ˆ ˆ ˆλ(W β ) exp(W β ) {[1 2Λ(W β )]β + β }W [1 0 ... 0] = − + ∇ K  (B-32) 

 �
2β i i i i ii 2 1 P1 1 P2 1

ˆ ˆ ˆ ˆ ˆ ˆexp(W β ) {λ(W β )β + Λ(W β )β }W Λ(W β )[1 0 ... 0]∇  = + K (B-33) 

 �
1 1 2β i i ii

ˆ ˆλ(W β ) exp(W β W= )∇ V       (B-34) 

and 

 �
1 1 2β i i ii

ˆ ˆΛ(W β ) exp(W β W= )∇ V .      (B-35) 

so 
 

 
1 2

1 2

β β

γδ

β β

ˆ ˆE[ ] E[ ]
Ê[ q] = 2

ˆ ˆE[ ] E[ ]

 ∇ ∇
 ∇
 ∇ ∇ 

K K

V V
.      (B-37) 

 
 
 

γγ
1E[ q]−−−−∇∇∇∇   

    2×2 

 
[ ]

[ ]

1

κκ a

γγ

νν

1

b

1 E 0
E

q
q

q0 E

−
−

−

 
 

∇
∇

∇
 =   

 

      (B-38) 

because κν a νκ bq q 0∇ = ∇ = .  Now 

 

 κκ a νν bq q 2∇ = ∇ = −   

 
therefore 

 
1

γγ

1
0

2
E

1
0

q

2

−

 
− 

  =   

 

∇
−


.       (B-39) 

 
 

γ γq' qE ∇ ∇∇ ∇∇ ∇∇ ∇    
      
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        2×2 

 Given that 

 

 ( ) ( )γ 2 (β, W) κ  (β, W) νq  = − − ∇  K V .     (B-40) 

 
we have 

 

γ 2γ

2E[( (β, S) κ) ] E[( (β, S) κ)( (β, S) ν)]
E 4

E[( (β, S) κ)( (β, S) ν)] E[( (β, S) ν)
' q

]
q

 − − −
  =   

− − −  
∇ ∇

K K V

K V V
. 

           (B-41) 
 
The corresponding consistent estimator is 

 

 

n n
2

i i i
i 1 i 1

n n
2

i i i
i

γ

1

γ

i 1

1 1 ˆˆ ˆˆ ˆ ˆ( κ) ( κ)( ν)
n n

Ê 4
1 1ˆ ˆˆ ˆ ˆ ˆ( κ)( ν

q ' q

) ( ν)
n n

= =

= =

∑ ∑

∑ ∑

 
− − − 

  =   
 − − −
  

∇ ∇

K K V

K V V

.  (B-42) 

 
 
Based on the above results, we can consistently estimate (B-5) as 
 
 

 �
�

γγ γδ δ γγ

1 1

γ
ˆˆ ˆ ˆ ˆˆAVAR(γ) E E Aq q qVAR(β) E q'E

− −
    ∇   =     ∇ ∇ ∇   

     γγ γ γ γγ

1 1
q q ' q qˆ ˆ ˆE E E

− −
∇ ∇ ∇     +      ∇  

 
and using well known results from asymptotic theory for two-stage estimators, we can 

show that38 

 

                                                 

38Discussions of asymptotic theory for two-stage optimization estimators can be found in 
Newey & McFadden (1994), White (1994, Chapter 6), and Wooldridge (2010, Chapter 
12).    
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 �
1 d
2ˆ ˆAVAR(γ) n (γ γ) N(0, I)

−

− → .       (B-43) 

 
Combining (B-43) with (B-1) we also have that 

 

 
�

1
d

PO PO PO2ˆ ˆavar(η ) n (η η ) N(0, I)
−

− →      (B-44) 

 

where 
�POˆavar(η )  is given in (B-1). 
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Appendix C.   

Bias from Using MBMη̂ Instead of POη̂  in a Two-Part Model 

 

If we define 

 

 1 2ν E[Λ(Wβ )exp(Wβ )]≡  

 1ζ E[Λ(Wβ )]≡  

and 

 2
1 2ω E[Λ(Wβ ) exp(Wβ )]≡  

 
we can write the bias from using the MBM approach vs. the correct PO method as the 

following rendition of the difference between (2-5) and (2-7) 

 

 MBM PO P1 1 2 P2
P1 P2

β E[λ(Wβ ) exp(Wβ )] β ν
η η [ (1 ζ)β β ]

ν

+ 
− = − + −  

 
 

  
[P1 1 1 2 P2

P1 P2

β E Λ(Wβ )[1 Λ(Wβ )]exp(Wβ ) β ν
[ (1 ζ)β β ]

ν

 − +
= − + −  

 
 

   
2

P1 P1 1 2 P2
P1 P2

β ν β E[Λ(Wβ ) exp(Wβ )] β ν
[ (1 ζ)β β ]

ν̂

 − +
= − + −  

 
 

    P1 P1 P2 P1 P1 P2

ω
β ζβ β  β β β

ν
= − + − + −    

     P1 P1

ω ˆβ β ζ
ν

= −  

  P1

ω
β ζ

ν

 
= − 

 
.  
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Appendix D.   

Asymptotic Distribution (and Standard Error) of MBM POˆ ˆη η−  

 

In Appendix C we showed that 

 

 MBM PO
P1

ω
η η β ζ

ν

 
− = − 

 
 

where 

 1 2ν E[Λ(Wβ )exp(Wβ )]≡  

 1ζ E[Λ(Wβ )]≡  

and 

 2
1 2ω E[Λ(Wβ ) exp(Wβ )]≡ . 

 
Using the corresponding consistent estimators for ω, ν and ζ we can write 

 

 MBM PO
P1

ω̂ˆ ˆˆ ˆη η β ζ
ν̂

 
− = − 

 
 

where 

 
n

i
i 1

1 ˆω̂ Ω(β, W )
n=

∑=  

 
n

i
i 1

1 ˆν̂ = (β, W )
n=

∑ V  

 
n

1 i
i 1

1ˆ ˆζ = (β , W )
n=

∑ Z  

 2
1 2Ω(β, W) Λ(Wβ ) exp(Wβ )=  
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 1 2(β, W) Λ(W β ) exp(W β )=V   

 1(β, W) Λ(Wβ )=Z  

 1 2
ˆ ˆ ˆβ [β β ]'′ ′=  (with 1 P1 X1

ˆ ˆ ˆβ = [β β ]′ ′  and 2 P2 X2
ˆ ˆ ˆβ = [β β ]′ ′ ) is the consistent  

  estimate of the parameter vector 1 2β [β β ]'′ ′=  (with 1 P1 X1β = [β β ]′ ′  and  

  2 P2 X2β = [β β ])′ ′ )  [the parameters of equations (2-1) and (2-2)] obtained  

  via the two-part protocol culminating in (2-3) 

 
and  

  i i iW [P X ]=  denotes the observation on W [P X]=  for the ith  

  individual in the sample (i = 1, ..., n).   

Let P1
ˆ ˆˆ ˆτ̂ = [β ω ν ζ]′  and P1τ = [β ω ν ζ]′ , where ˆplim[τ] = τ .  If we could 

show that 

 

 

1 d
2ˆ ˆAVAR(τ) n (τ τ) N(0, I)

−

− →  

 
where the formulation of ˆAVAR(τ)  is known, then we could apply the δ-method to 

obtain the asymptotic variance of MBM POˆ ˆη η−  as 

 

 MBM POˆ ˆ ˆavar(η η ) c(τ) AVAR(τ) c(τ) '− =  
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where 2
P1

ω
c(τ) ζ 1/ ν ω / ν β

ν

  
= − − −  

  
.  Moreover, if we have a consistent 

estimator for ˆAVAR(τ) , say �̂AVAR(τ)  [i.e. �̂ ˆp lim AVAR(τ) AVAR(τ)  =
 

],  then we 

could consistently estimate MBM POˆ ˆavar(η η )− as 

 

 
� �MBM POˆ ˆ ˆ ˆ ˆavar(η η ) c(τ) AVAR(τ) c(τ) '− = .     (D-1) 

 
We focus, therefore, on finding the asymptotic distribution of τ̂  and, in particular, the 

formulation of its asymptotic covariance matrix. 

 First note that we can write τ as  

 
 τ Ξ θ=           (D-2) 

 

where θ = [δ γ ]′ ′ ′ , 1 2δ [β β ]'′ ′= , γ [ω ν ζ]′ =  (recall, 1 P1 X1β = [β β ]′ ′  and 

2 P2 X2β = [β β ]′ ′ ) 

 

 

P1β

3,2K 3

Ξ

0 I

 
 

= − − − − − − − − 
 
 

�

  

 

a� is the unit row vector with the value “1” in the element position corresponding to the 

element position of a in the vector θ, b,c0  is the matrix of zeros whose row and column 

dimensions are b and c, respectively, dI  is the identity matrix of order d, and K is the 



109 

column dimension of W.  For future reference, let’s set the following vector/matrix 

dimensions: 

 

 1β is K×1 

 2β is K×1 

 W is 1×K 

 τ is 4×1 

 c(τ) is 1×4 

 δ is 2K×1 

 γ is 3×1 

 θ is (2K+3)×1 

 Ξ  is 4×(2K+3) 

 
P1β
� is 1×(2K+3) 

   
Clearly then  

 

  ˆˆAVAR(τ) Ξ AVAR(θ) Ξ′=        (D-3) 

 

where θ̂  is the estimator of θ obtained from the following two-stage protocol. 

 
First Stage 

Consistently estimate β  via the following optimization estimator 

 

 

n

1 i
i 1

δ

q (δ, S )
δ̂ = arg max

n
=
∑

�

�

       (D-4) 
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where  

 1 i 11 1 i 12 2 iq (δ, S ) q (β , S ) q (β , S )= +� � �  

 11 1 i i i 1 i i 1q (β , S ) I(A 0) ln[Λ(W β )] [1 I(A 0)] ln[1 Λ(W β )]= > + − > −� � �  

 2
12 2 i i i i 2q (β , S ) I(A 0)(ln(A ) W β )= − > −� �  

 i i i iS [A X P ]=
 

 
 

1 22δ [β β ]'′ ′=� � � , 1 P1 X1β = [β β ]′ ′� � � and 2 P2 X2β = [β β ]′ ′� � �  and  1 22
ˆ ˆ ˆδ [β β ]'′ ′=  

 

Second Stage 

Consistently estimate γ via the following optimization estimator 

 

 

n

i
i 1

γ

ˆq(δ, γ,  S )
γ̂ = arg max

n
=
∑

�

�

       (D-5) 

where 

 i a i b i c i
ˆ ˆ ˆ ˆq(δ, γ,  S ) q (δ, ω,  S ) q (δ, ν,  S ) q (δ, ζ,  S )= + + �� ��  

 2
a i i

ˆ ˆq (δ, ω,  S ) (Ω(β, W ) ω)= − −� �  

 2
b i i

ˆ ˆq (δ, ν,  S ) ( (β, W ) ν)= − −� �V  

 2
c i i

ˆ ˆq (δ, ζ,  S ) ( (β, W ) ζ)= − −� �Z  

  

1 2
ˆ ˆ ˆδ [β β ] '′ ′=  is the first stage estimator of β, 1 P1 X1

ˆ ˆ ˆβ = [β β ]′ ′  and 2 P2 X2
ˆ ˆ ˆβ = [β β ]′ ′ .  Use 

1q  as shorthand notation for 

  

 1 11 1 12 2q (δ, S) q (β , S) q (β , S)= +  
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with 
 

 11 1 1 1q (β , S) I(A 0) ln[Λ(Wβ )] [1 I(A 0)]ln[1 Λ(Wβ )]= > + − > −  

 2
12 2 2q (β , S) I(A 0)(ln(A) W β )= − > −  

 S [A X P]=  

 

and use q as shorthand notation for  

 

 a b cq(δ,γ,  S) q (δ, ω,  S) q (δ, ν,  S) q (δ, ζ,  S)= + +�  

with 

 2
aq (δ, ω,  S) (Ω(β, W) ω)= − −  

 2
bq (δ, ν,  S) ( (β, W) ν)= − −V  

 2
c 2q (δ, ζ,  S) ( (β , W) ζ)= − −Z  

 

and let ˆAVAR(δ)  denote the asymptotic covariance matrix of the first stage estimator.39  

Using well known results from asymptotic theory for two-stage estimators, we can show 

that40 

 

 

1 d
2ˆ ˆAVAR(θ) n (θ θ) N(0, I)

−

− →       (D-6) 

 

where ˆˆ ˆθ = [δ γ ]′ ′ ′ ,  ˆplim(θ) = θ  

                                                 

39 Note that a consistent estimate ˆAVAR(δ)  can be obtained from the packaged output 

for the first stage estimator because the first stage estimator is unaffected by the fact that 
it is a component of a two-stage estimator.  
40Discussions of asymptotic theory for two-stage optimization estimators can be found in 
Newey & McFadden (1994), White (1994, Chapter 6), and Wooldridge (2010, Chapter 
12).    
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11 12

12 22

D D

D D
ˆAVAR(θ)

 
=  ′ 

       (D-7) 

 

 11
ˆAVAD R(δ)=         (D-8) 

  2K×2K 

 [ ]12 δδ 1 δ 1 γ γγ

11
E ED q q ' q E q

−−
= ∇ ∇ ∇      ∇  

  
[ ] [ ] [ ]δδ 1 δ 1 δ 1 δδ 1 γ

1

γ

1

δ

1

γE q q ' q q q qE E E E
−− −

∇ ∇
′   − ∇ ∇   ∇ ∇  (D-9) 

 

 22 γγ γδ γ

1

δ
ˆˆAVAR (γ) E E AVD q q qAR (β)E '

−
  =   =     ∇ ∇ ∇  

  [ ]γ δ 1 δδ 1 γδ

1
q ' q qE E E q

−
∇ ∇

′  −   ∇  ∇  

   [ ]γδ δδ 1 γ δ 1 γ

1

γ

1
q q q ' q qE E E ' E

−−      −    ∇ ∇
∇ ∇ ∇    

    
1 1

γγ γ γ γγq q ' q qE E E
− −

∇ ∇ ∇     +      ∇ .  (D-10) 

 
Fortunately, (D-9) and (D-10) can be simplified in a number of ways.  First note that we 

can write 

 

 γ δ 1 γ δ 1q ' q q 'E E[ q | W]E∇ ∇ ∇ ∇   =     

but 

 δ 1 δ 11 δ 12q = q q∇ ∇ +∇  

with 

 
1δ 11 βq [ ln f (I(A 0) | W) 0 0]∇ = ∇ >  

 

 [ ]δ 2 21 I(A 0)q 0 2 ln(A( W β) )W 0∇ = −>  

where 
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 I(A 0) [1 I(A 0)]
1 1Λ(W β ) [1 Λ(W β )f (I( | W ]A 0) ) > − >= −>  . 

 
Therefore 

 [ ]
11 β 2δE[ q | W] E[ ln f (I(A 0) | W)] 2E ln(AI(A 0)( Wβ ) | W) W ∇ = ∇ > − >   

 
   = [ 0     0] 

 

because 
1β

E[ ln f (I(A 0) | W )] 0∇ > =  [see (13.20) on p. 477 of Wooldridge (2010)] and,  

[ ]2E ln(AI(A 0)( W β )) W 0|> − =  by design.  Finally, then we get 

 

 γ δ 1q ' qE 0  = ∇ ∇  

 
so 

 
[ ] [ ] [ ]12 δδ 1 δ 1 δ 1 δδ 1 γδ γγ

11 1
E E E ED q q ' q q q qE

−− − ′   −   = ∇ ∇ ∇ ∇ ∇ ∇  (D-11) 

      2K×2K           2K×2K        2K×2K    2K×3   3×3 
     2K×3 
 
and 
 

 22 γγ γδ γδ γγ

1 1ˆˆAVAR(γ) E E AVAR(β) E 'ED q q q q
− −

       =      ∇ ∇ ∇ = ∇  

                           3×3        3×2K      2K×2K     2K×3        3×3 
 

    
1 1

γγ γ γ γγq q ' q qE E E
− −

∇ ∇ ∇     +      ∇ .  (D-12) 

             3×3            3×3          3×3 
           3×3 
so 

 

11 1

(2K 3) (2K

2

12 23) 2

D D

2K 2K 2K 3

D D

3 2K

ˆAVAR(

3 3

θ)
+ × +

 
 

× × =
 ′
 

× × 

. 

Let’s consider each of the individual components of (D-6) and (D-7) in turn. 
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δ
1

δ 1qE[ ]−−−−∇∇∇∇  

 2K×2K 

 Written out explicitly we have 

 
1 1

2 2

1
β β 11

ββ 1 1
β 12

1

β

E[ q ] 0
q ]

0 E
[

[
E

q ]−

−

−
 ∇
 ∇ =
 ∇ 

.    (D-13) 

Now 

 
1 1

1
1 1β β 1E ˆAV[ ] )q AR(β− = −∇         (D-14) 

  =  the negative of the asymptotic covariance matrix for first   

   stage, first part, logit estimation in the two-stage estimation  

   protocol for θ.  We get an estimate of this directly from the Stata  

   output. 

 

A consistent estimator of 
1 1β β 11

1E[ q ]−∇  is 

 

 �
1 1

1
β 1 1β 1

ˆ ˆnAVAR *(βE q ] )[ − = −∇       (D-15) 

 

where � 1
ˆAVAR * (β )  is the estimated variance-covariance matrix output by the Stata logit 

procedure.  Also 

 

 
2β 1 22 I(A 0)q 2 ln(A( W W) β )∇ = −>  

 
and 
 

 
2 2β β 12q 2 I(A 0)W W′>∇ = − . 

 
Therefore 
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 [ ]
2 2β β 12E[ q ] I( )2E A 0 W W∇ = − ′> .      (D-16) 

 

A consistent estimator of 
2 2

1
β β 12E[ q ]−∇  is 

 

 { }
2 2

1
n

1
β β 12

i1
i i

1
iI(A

1
Ê[ q ] 0)W W2

n

−

−

=

∑
 

∇ −


>= 


′  

   { }i

1
n

1
1

i
i

iI(A 0)W Wn 2
−

=
∑

 
= −  

′> .    (D-17) 

 

where 2β̂  is the first stage, second part, estimator of 2β  and 1n  is the size of the 

subsample for whom I(A 0) 1> = , so 

 

 
1 1

2 2

β β 11

δδ 1 ββ 1 1
β

1

1

β

1

12

[ qÊ
ˆ ˆE[ E[

Ê

] 0
q ] q ]

0 [ q ]−

−

− −
 ∇
 ∇ = ∇ =
 ∇ 

.  (D-18) 

 

δ 1 δ 1q ' qE ∇ ∇∇ ∇∇ ∇∇ ∇          

        2K×2K 
 
 Written out explicitly we have 
 
 

 
1 1 1 2

2 1 2 2

β 11 β 11 β 11 β 12

β 1 β 1
β 12 β 11 β 12 β 12

E[ q ' q ] E[ q ' q ]
q ' q

E[ q ' q ] E[ q '
E

q ]
  =

∇ ∇ ∇ ∇ 
∇ ∇  

∇ ∇ ∇ ∇


 
.   (D-19) 

 

Because the first stage, first part, estimator of 1β  is MLE we can write 

 

 
1 1 1 1β 11 β 11 β β 11

1

1E[ q ' q ] E[ q ˆA (] VAR β )
−

∇  = ∇ = ∇ −  

   =  the inverse of the asymptotic covariance matrix for first stage,  
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first part, logit estimation in the two-stage estimation 

 protocol for θ.  We get an estimate of this directly from the  

Stata output. 

 

A consistent estimator of 
1 1β 11 β 11E[ q ' q ]∇ ∇  is 

 

 �
1 1β 11 β 1

1

1 1

1 ˆAVARÊ[ q ' *(β )
n

q ]
−

 =
 

∇ ∇      (D-20) 

 

where � 1
ˆAVAR * (β )  is the estimated variance-covariance matrix output by the Stata logit 

procedure.  The remainder of the block elements follow from 

 
 

[ ]
1 1β 11 β 1 1q ln f (I(A 0) | W) I(A 0) W β )] [1[1 Λ( I(A 0)] W β ) WΛ(−∇ = ∇ > = > − − >  

           (D-21) 
 

 
2β 1 22 I(A 0)q 2 ln(A( W W) β )∇ = −> .     (D-22) 

where the formulation of 
1β 11q∇  comes from equation (16.4.8) on p. 350 of Fomby et al. 

(1984) and Λ(  ) denotes the logistic cdf.  The remaining required consistent matrix 

estimators are 

 

 
1 2 1 2

n

β 11 β 12 β 11i β 12i
i 11

1ˆ ˆ ˆE[ q ' q ] q ' q
n =

∑∇ ∇ = ∇ ∇      (D-23) 

 

 
2 2 2 2

n

β 12 β 12 β 12i β 12i
i 11

1ˆ ˆ ˆE[ q ' q ] q ' q
n =

∑∇ ∇ = ∇ ∇      (D-24) 

 
where 
 

 
1β 11i i i 1 1i i i

ˆ ˆW β )]q̂ I(A 0)[1 Λ( I(A 0)]Λ([1 W β ) W∇ = > − > − −    (D-25) 
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and 
 

 
2β 12i i i i i2

ˆI( 0)q̂ 2 A ln(A )( W β ) W∇ = −>      (D-26) 

so 

 [ ] 1 1 1 2

2 1 2 2

β 11 β 11 β 11 β 12

δ 1 δ 1 β 1 β 1

β 12 β 11 β 12 β 12

ˆ ˆE E
ˆ ˆE E

ˆ

[ q ' q ] [ q ' q ]
q ' q q ' q

[ q ˆE ' q ] [ q ' q ]E

 ∇ ∇ ∇ ∇
 ∇ ∇ ∇ ∇
 ∇ ∇

 = =
∇





∇

 . 

           (D-27) 

 

γδqE ∇∇∇∇    
      

   3×2K 
 
 Written out explicitly we have 
 
 

 γ ω a ν b ζ cq = [( q 0 0) (0 q +0)    (0 0 q )]∇ ∇ + + +∇ + +∇   

 

  ω a ν b ζ c[ q q q ] = ∇ ∇ ∇       

 

  ( ) ( ) ( )2 Ω(β, W) ω  (β, W) ν  (β, W) ζ = − − − V Z    (D-28) 

 
and 

 

1 2

1 2

1

ωβ a ωβ a

γδ νβ b νβ b

ζβ c

E[ q ] E[ q ]

E[ q] = E[ q ] E[ q ]

E[ q ] 0

 ∇ ∇
 

∇ ∇ ∇ 
 

∇  

  

  

1 2

1 2

1

β β

β β

β

E[ Ω] E[ Ω]

= 2 E[ ] E[ ]

E[ ] 0

 ∇ ∇
 

∇ ∇ 
 

∇  

V V

Z

      (D-29) 

 
where 

 
1 1β 1 22Λ(Wβ )λ(Wβ ) exp(Wβ ) WΩ =∇      (D-30) 
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2

2
β 1 2Λ(Wβ ) exp(Wβ )WΩ=∇       (D-31) 

 
1 1β 2λ(W β ) exp(W β ) W∇ =V       (D-32)  

 
2 1β 2Λ(W β ) exp(W β ) W∇ =V       (D-33) 

and  

 
1 1β λ(Wβ ) W∇ =Z .        (D-34) 

Note that 

 aΛ(a) λ(a) Λ(a)[1 Λ(a)]∇ = = −  

 aλ(a) λ(a)[1 2Λ(a)]∇ = − . 

 
The requisite consistent matrix estimators are 

 

 �
1 1

n

β β ii 1

Ê[ Ω] = Ω
=
∑∇ ∇         (D-35) 

 

 �
2 2

n

β β ii 1

Ê[ Ω] = Ω
=
∑∇ ∇         (D-36) 

 

 �
1 1

n

β β ii 1

Ê[ ] =
=
∑∇ ∇V V         (D-37) 

 

 �
2 2

n

β β ii 1

Ê[ ] =
=
∑∇ ∇V V         (D-38) 

 
and 
 

 �
1 1

n

β β ii 1

Ê[ ] =
=
∑∇ ∇Z Z         (D-39) 

 
where  

 �
1β i 1 1 2i i ii

ˆ ˆ ˆ2Λ(W β )λ(W β ) exp(W β ) WΩ∇ =      (D-40) 
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 �
2β i ii

2
1 2

ˆ ˆΛ(W β ) exp(W β ) WΩ∇ =       (D-41) 

 �
1 1 2β i i ii

ˆ ˆλ(W β ) exp(W β W= )∇ V       (D-42) 

 �
1 1 2β i i ii

ˆ ˆΛ(W β ) exp(W β W= )∇ V       (D-43) 

and 

 �
1β i ii 1

ˆλ(W β W= )∇ Z         (D-44) 

so 

 

1 2

1 2

1

β β

γδ β β

β

ˆ ˆE[ Ω] E[ Ω]

ˆ ˆ ˆE[ q] = 2 E[ ] E[ ]

Ê[ ] 0

 ∇ ∇
 
 ∇ ∇ ∇
 
 ∇ 

V V

Z

.      (D-45) 

 
 
 

γγ
1E[ q]−−−−∇∇∇∇   

    3×3 

 

[ ]

[ ]

ωω a

γγ νν b

ζζ

1

c

1

1

1

qE 0 0

E 0 Eq 0

0 0 E

q

q

−

− −

−

∇

∇

 
 
   =   
    

∇

∇

    (D-46) 

because ων a ωζ a νω b νζ b ζω c ζν cq q q q q q 0∇ = ∇ = ∇ = ∇ = ∇ = ∇ = .  Now 

 ωω a νν b ζζ cq q q 2∇ = ∇ = ∇ = −  

  
therefore 

  
1

γγ

1
0 0

2

1
E 0 0

2

1
0

q

0
2

−

 
− 
 
   = −   


∇


 −
  

.     (D-47) 
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γ γq' qE ∇ ∇∇ ∇∇ ∇∇ ∇    
      

        3×3 

 Given that 

 ( ) ( ) ( )γ 2 Ω(β, W) ω  (β, W) ν  (β, W) ζq  = − − ∇ − V Z .   (D-48) 

we have 

 

γ γq ' qE ∇ ∇  =   

 

2

2

2

E[(Ω(β, W) ω) E[(Ω(β, W) ω)
E[(Ω(β, W) ω) ]

( (β, S) ζ)]( (β, S) ν)]

E[(Ω(β, W) ω) E[( (β, S) ν)
4 E[( (β, S) ν) ]

( (β, S) ν)] ( (β, S) ζ)]

E[(Ω(β, W) ω) E[( (β, S) ν)
E[( (β, S) ζ) ]

( (β, S) ζ)] ( (β, S) ζ)]

− − 
− 

−− 
 − −

− 
− − 

 − −
 −

− − 

ZV

V
V

V Z

V
Z

Z Z

.



  (D-49) 

 
The corresponding consistent estimator is 

 
 

n n n
2

i i i i i
i 1 i 1 i 1

n n n
2

i i i i i
i 1 i 1 i 1

n n n

i i i i i
i 1 i 1

γ γ

i 1

1 1 1ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ(Ω ω) (Ω ω)( ν) (Ω ω)( ζ)
n n n

1 1 1ˆ ˆ ˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆE 4 (Ω ω)( ν) ( ν) ( ν)( ζ)
n n n

1 1 1ˆˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ(Ω ω)( ζ) ( ν)( ζ) ( ζ)

q ' q

n n n

= = =

= = =

= = =

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∇ ∇

− − − − −

  = − − − − − 

− − − − −

V Z

V V V Z

Z V Z Z
2

.

 
 
 
 
 
 
 
  

 

            
           (D-50) 
 

Based on (D-8), (D-11) and (D-12) and using the two-stage estimator θ̂  we can 

consistently estimate (D-7) as 

 

 
� 11 12

12 22

ˆ ˆD D

ˆ ˆD D

ˆAVAR(θ)
 

=  
′  
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where 

 � �
�

�

1

2

11

1

ˆnAVAR * 0(β )ˆ ˆAVAR(δ) AVAR(β)
ˆn AVA

D̂
R *(β )0

 
= 



=


= 


 

 [ ]12 γγ δ 1 δ 1 γγ γδ γ

1 1

γ

1ˆ ˆ ˆ ˆ ˆE E E E ED q q ' q q q q
− − −′   = ∇ ∇ ∇ ∇ ∇ ∇   −          

 

 � �
22 γγ γδ

1 1

γδ γγ
ˆˆ ˆ ˆ ˆˆAVAR(γ) E E AVAR(β) E 'D q Eq q q

− −
       =       ∇ ∇ ∇ = ∇  

     γγ γ γ γγ

1 1
q q ' q qˆ ˆ ˆE E E

− −
∇ ∇ ∇     +      ∇  

 
and using well known results from asymptotic theory for two-stage estimators, we can 

show that41 

 

 
�

1 1

1 1 2 2
d

2

ˆn (β β )

ˆ ˆn (β β )

ˆAVAR(θ) N(0, I)ˆn (ω ω)

ˆn (ν ν)

ˆn (ζ ζ)

−

 −
 

− 
 

→− 
 

− 
 − 

.      (D-51) 

 
 
************************************************************************ 
ASIDE: 

Notice that the “ n  blow up” is a bit tricky here.  It implements n  for 1β̂ , ω̂ , ν̂  and ζ̂

; but uses 1n  for 2β̂ .  We had to do this because we had to use the correct sample size 

                                                 

41Discussions of asymptotic theory for two-stage optimization estimators can be found in 
Newey & McFadden (1994), White (1994, Chapter 6), and Wooldridge (2010, Chapter 
12).    
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(viz., 1n ) for a number of the components of 
�̂
AVAR(θ)  [viz., those that pertained to the 

estimation of 2β̂ ]; in particular (D-17), (D-23) and (D-24).  For this reason we had to be 

explicit about the denominators in all of the averages for the components of 
�̂
AVAR(θ) .  

This meant that in the construction of the requisite asymptotic t-stats we had to explicitly 

include the “blow-up” in the numerator (i.e., we had to multiply by the square-root of the 

appropriate sample size).  I refer to this as “tricky” because one typically does not have to 

do this.  In the usual asymptotic t-stat construction the denominators of the averages (“n”) 

need not be included in the construction of the asymptotic covariance matrix because it 

typically manifests as a multiplicative factor and, after pulling the diagonal and taking the 

square root to get the standard errors, this multiplicative n  cancels with the “blow-up” 

factor in the numerator.  For example, the asymptotic t-stat of the OLS estimator is 

 

 
� ( ) ( )

k k k k k k k k

1 1 12 2
2 kk kk

kk

ˆ ˆ ˆ ˆn (ρ ρ ) n (ρ ρ ) n (ρ ρ ) (ρ ρ )

ˆAVAR(ρ) ˆ ˆn σ σ1
σ̂

n

− − −

− − − −
= = =

′ ′ 
′ 

 

XX X X
X X

  

where 

 n is the sample size 

 kρ  is the coefficient of the kth regressor in the linear regression 

 kρ̂  is its OLS estimator 

 
2
σ  is the regression error variance estimator 

 X is the matrix of regressors 
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and kk
′XX  is the kth diagonal element of ′XX .  Note how the “ n s” simply cancel. 

Note also that what we typically refer to as the “asymptotic standard error” can actually 

be written as the square root of the diagonal element of the consistent estimator of the 

asymptotic covariance matrix divided by n; in other words 

 asy std err =   
�̂AVAR(ρ)

n
.  

************************************************************************   

Now back to the issue at hand.  Moreover 

 

 �

P1 P1

1 P2 P21 d
2

ˆn (β β )

ˆ ˆn (β β )

ˆAVAR(τ) n N(0, I)ˆn(ω ω)

ˆn(ν ν)

ˆn (ζ ζ)

−

 −
 

− 
 

→− 
 

− 
 − 

.     (D-52)  

 
where 

 

 �
�̂

ˆAVAR(τ) ΞAVAR(θ) Ξ '=         (D-53) 

 
and τ and Ξ are defined as in (D-2).  Now combining (D-1) with (D-52) and (D-53) we 

get 

 

 
� ( ) ( )

1
d

MBM PO MBM PO MBM PO2ˆ ˆ ˆ ˆavar(η η ) n η η η η N(0, I)
−

 − − − − →
 

 (D-54) 

 
where 

 

 
� �MBM POˆ ˆ ˆ ˆ ˆavar(η η ) c(τ) AVAR(τ) c(τ) '− =   
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and 

 
2

P1

ω
c(τ) ζ 1/ ν ω / ν β

ν

  
= − − −  

  
. 
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Appendix E.   

Asymptotic Distribution (and Standard Error) of UPOη̂ in Eqn (3-10) 

 

We may write UPOη̂  as 

 

 
UPO k̂

ˆ ˆη m
v̂

= × P  

where 

 
n

i
i 1

1ˆ ˆk K(a , W )
n=

∑=  

 
n

i
i 1

1
ˆv̂ = V(a , W )

n=
∑  

 
n

i
i 1

1
m̂

n=
∑=P P  

 

Using the corresponding consistent estimators for k , v  and  mP say 

 

 1 2 1 1 2 2K(a , W) λ(Wa )exp(Wa )a Λ(Wa )exp(Wa )a= +P P  

 1 2V(a , W) Λ(Wa ) exp(Wa )=   

 
[ ]m E=P P

 

 P is the nominal prices of alcohol 

 1 2
ˆ ˆ ˆa [a a ]'′ ′=  (with 1 1 X1

ˆ ˆ ˆa = [a a ]′ ′
P  and 2 2 X2

ˆ ˆ ˆa = [a a ]′ ′
P ) is the consistent  

  estimate of the parameter vector 1 2a [a a ]'′ ′=  (with 1 1 X1a = [a a ]′ ′
P  and  

  2 2 X2a = [a a ])′ ′
P )  [the parameters of equation (3-10)] obtained via the  

  two-part protocol culminating in (3-8) using nominal prices of alcohol]  
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and  

 i i iW [ X ]= P  denotes the observation on W [ X]= P  for the ith individual in  

 the sample (i = 1, ..., n).   

Let ˆ ˆˆ ˆγ = [k v   m ]′P  and γ = [k v   m ]′P , where  

 ˆplim[γ] = γ .  If we could show that 

 

 

1 d
2ˆ ˆAVAR(γ) n (γ γ) N(0, I)

−

− →  

 

where the formulation of ˆAVAR(γ)  is known, then we could apply the δ-method to 

obtain the asymptotic variance of UPOη̂  as 

 

 UPOˆ ˆavar(η ) c(γ) AVAR(γ) c(γ) '=  

 

where 2c(γ) [m / v km / v      k / v  ]= −P P .  Moreover, if we have a consistent 

estimator for ˆAVAR(γ) , say �̂AVAR(γ)  [i.e. �̂ ˆp lim AVAR(γ) AVAR(γ)  =
 

],  then we 

could consistently estimate UPOˆavar(η ) as 

 

 
� �UPOˆ ˆ ˆ ˆavar(η ) c(γ) AVAR(γ) c(γ) '= .      (E-1) 

 

We focus, therefore, on finding the asymptotic distribution of γ̂  and, in particular, the 

formulation of its asymptotic covariance matrix. 
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 First, let θ = [δ γ ]′ ′ ′  where 1 2δ [a a ]'′ ′= , γ [k v    m ]′ = P  (recall, 

1 1 X1a = [a a ]′ ′
P  and 2 2 X2a = [a a ]′ ′

P ), and note that γ̂  can be viewed as the second 

stage estimator in the following two-stage protocol  

 

First Stage 

Consistently estimate δ  via the following optimization estimator 

 

 

n

1 i
i 1

δ

q (δ, S )
δ̂ = arg max

n
=
∑

�

�

       (E-2) 

where  

 1 i 11 1 i 12 2 iq (δ, S ) q (a , S ) q (a , S )= +� � �  

 11 1 i i i 1 i i 1q (a , S ) I(A 0) ln[Λ(W a )] [1 I(A 0)] ln[1 Λ(W a )]= > + − > −� � �  

 ( )( )
2

12 2 i i i i 2q (a , S ) I(A 0) A exp W a= − > −� �  

 i i i iS [A X ]= P
 

 
 

1 22δ [a a ]'′ ′=� � � , 1 1 X1δ = [a a ]′ ′� � �
P and 2 2 X2a = [a a ]′ ′� � �

P ,  1 2
ˆ ˆ ˆδ [a a ]'′= , 1 1 X1

ˆ ˆ ˆa = [a a ]′ ′
P  and 

2 2 X2
ˆ ˆ ˆa = [a a ]′ ′

P . 

 

Second Stage 

Consistently estimate γ   via the following optimization estimator 

 

 

n

i
i 1

γ

ˆq(δ, γ,  S )
γ̂ = arg max

n
=
∑

�

�

       (E-3) 

where 
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 i a i b i c i
ˆ ˆ ˆ ˆq(δ, γ,  S ) q (δ, k,  S ) q (δ, v,  S ) q (δ, m ,  S )= + +� �� �

P
 

 2
a i i

ˆ ˆq (δ, k,  S ) (K(a, W ) k)= − −� �  

 2
b i i

ˆ ˆq (δ, v,  S ) (V(α, W ) v)= − −� �  

 2
c i i

ˆq (δ, m ,  S ) ( m )= − −� �
P PP    

 

and δ̂  is the first stage estimator of δ .  Use 1q  as shorthand notation for 

  

 1 11 1 12 2q (δ, S) q (a , S) q (a , S)= +  

 
with 

 

 11 1 1 1q (a , S) I(A 0) ln[Λ(Wa )] [1 I(A 0)]ln[1 Λ(Wa )]= > + − > −  

 ( )( )
2

12 2 2q (a , S) I(A 0) A exp W a= − > −  

 S [A X ]= P . 

 

Moreover, use q as shorthand notation for  

 

 a b cq(δ,γ,  S) q (δ, k,  S) q (δ, v,  S) q (δ,m ,  S)= + +�
P  

with 

 2
aq (δ, k,  S) (K(α, W) k)= − −  

 2
bq (δ, v,  S) (V(a , W) v)= − −  

 2
cq (δ, m ,  S) ( m )= − −P PP   
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and let ˆAVAR(δ)  denote the asymptotic covariance matrix of the first stage estimator.42  

Using well known results from asymptotic theory for two-stage estimators, we can show 

that43 

 

1 d
2ˆ ˆAVAR(γ) n (γ γ) N(0, I)

−

− →       (E-4) 

 

where,  ˆplim(γ) = γ  

 

 
δ δ

1

γγ γ γq q qˆˆAVAR (γ) E E AVAR (a)E
−  ′     =     ∇ ∇ ∇  

  [ ]δ 1 δδγ 1 δ

1

γq ' q qE E E q
−

∇ ∇
′  −   ∇  ∇  

   [ ]δ δδ 1

11

γ γ 1 γδ γqE E E Eq q ' q q
−−

∇ ∇ ∇ ∇
′     −      

∇    

    
1 1

γγ γ γ γγq q ' q qE E E
− −

∇ ∇ ∇     +      ∇ .  (E-5) 

 
Fortunately, (E-5) can be simplified in a number of ways.  Note that we can write 

 

 δ 1 γγ δ 1q ' q qE E | WE ' [ q ]∇ ∇ ∇ ∇   =     

but 

 δ 1 δ 11 δ 12q = q q∇ ∇ +∇  

with 

                                                 

42 Note that a consistent estimate ˆAVAR(δ)  can be obtained from the packaged output 

for the first stage estimator because the first stage estimator is unaffected by the fact that 
it is a component of a two-stage estimator.  
43Discussions of asymptotic theory for two-stage optimization estimators can be found in 
Newey & McFadden (1994), White (1994, Chapter 6), and Wooldridge (2010, Chapter 
12).    
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1δ 11 aq [ ln f (I(A 0) | W) 0 ]∇ = ∇ >  

 

 ( )( ) ( )2δ 212 I(A 0) A exp Wa exp Waq W0 2 ∇ = > −   

where 

 I(A 0) [1 I(A 0)]
1 1Λ(Wa ) [1 Λ(Wa )f (I( | W ]A 0) ) > − >= −>  . 

 
Therefore 

 

( )( ) ( )
1a 2 2δ 1 IE[ q | W] E[ ln f (I(A 0) | W) (A 0) A exp Wa exp Wa | W2E W] >  ∇ = ∇ >   − 

 
 
   = [ 0     0] 

 

because 
1aE[ ln f (I(A 0) | W )] 0∇ > =  [see (13.20) on p. 477 of Wooldridge (2010)] and,  

( )( ) ( )2 2I(A 0) A exp Wa exp Wa | WE 0  = > −  by design.  Finally, then we get 

 

 γ δ 1q ' qE 0  = ∇ ∇  

 
so 
 

 γγ γδ γδ γ

1

γ

1
ˆAVAR( ) E E Aγ̂ q VAR(a) Eq q 'E q

− −
∇ ∇ ∇ ∇       =          

                 3×3        3×2K      2K×2K     2K×3        3×3 
 

    
1 1

γγ γ γ γγq q ' q qE E E
− −

∇ ∇ ∇     +      ∇ .  (E-6) 

             3×3            3×3          3×3 
 
 
Let’s consider each of the individual components of (E-6) in turn. 

 

δ
1

δ 1qE[ ]−−−−∇∇∇∇  

 2K×2K 



131 

 Written out explicitly we have 

 
1 1

2 2

1
a a 11

aa 1 1
a 12

1

a

E[ q ] 0
q ]

0 E
[

[
E

q ]−

−

−
 ∇
 ∇ =
 ∇ 

.    (E-7) 

Now 

 
1 1

1
1 1a a 1E ˆAV[ ] )q AR(a− = −∇         (E-8) 

  =  the negative of the asymptotic covariance matrix for first   

   stage, first part, logit estimation in the two-stage estimation  

   protocol for θ.  We get an estimate of this directly from the Stata  

   output. 

 

A consistent estimator of 
1 1a a 11

1E[ q ]−∇  is 

 

 �
1 1

1
a 1 1a 1

ˆ ˆnAVAR *(aE q ] )[ − = −∇       (E-9) 

 

where � 1
ˆAVAR * (a )  is the estimated variance-covariance matrix output by the Stata logit 

procedure.  Also 

 

 ( )( ) ( )
2a 12 2 2I(A 0) A exp Wa expq 2 Wa W∇ > −=  

 
and 
 

 ( )( ) ( ) ( )
2 2 2a a 212 2I(A 0) A exp Wa exp Wa exp Wa Wq W2   ′> − − ∇ = . 

 
Therefore 

 

 ( )( ) ( ) ( )
2 2a a 12 2 2 2I(A 0) A exp Wa exp Wa exp Wa W[ 2E WE q ]   ′> − − 

 ∇ =   .   

           (E-10) 
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A consistent estimator of 
2 2

1
a a 12E[ q ]−∇  is 

 

2 2

1
a a 12Ê[ q ]−∇           

 ( )( ) ( ) ( ){ }i i i 2 i 2 i 2 i i

1
n

1
i 1

ˆ ˆ ˆI(A 0) A exp W a exp Wn a exp W a W W2
−

=
∑   

=  
′− 

> −    

           (E-11) 

where 1n  is the size of the subsample for whom I(A 0) 1> = , so 

 

 
1 1

2 2

1
a1 1

aa

a

a 11

δδ 1 1 1
a 12

[ qÊ
ˆ ˆE[ E[

Ê

] 0
q ] q ]

0 [ q ]−

−

− −
 ∇
 ∇ = ∇ =
 ∇ 

.   (E-12) 

  

 δ 1 δ 1q ' qE ∇ ∇∇ ∇∇ ∇∇ ∇          

        2K×2K 
 
 Written out explicitly we have 
 
 

 [ ] 1 1 1 2

2 1 2 2

a 11 a 11 a 11 a 12

a 1 a 1
a 12 a 11 a 1 2a2 1

E[ q ' q ] E[ q ' q ]
q ' q

E[ q ' q ] E[ q ' q ]
E =

∇ ∇ ∇ ∇ 
∇ ∇  

∇ ∇ ∇ ∇  
.             (E-13) 

 

Because the first stage, first part, estimator of 1α  is MLE we can write 

 

 [ ]
1 1 1 1a 11 a 11 a a

1

111E[ q ' q ] E[ ˆAVARq ] (a )
−

∇ ∇ − ∇ ==  

   =  the inverse of the asymptotic covariance matrix for first stage,  

   first part, logit estimation in the two-stage estimation protocol for  

   θ.  We  get an estimate of this directly from the Stata output. 
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A consistent estimator of 
1 1a 11 a 11E[ q ' q ]∇ ∇  is 

 

 �
1 1a 11 a 1

1

1 1

1
ˆAVARÊ[ q ' *(a )

n
q ]

−
 =
 

∇ ∇                (E-14) 

 

where � 1
ˆAVAR * (a )  is the estimated variance-covariance matrix output by the Stata logit 

procedure.  The remainder of the block elements follow from 

 
 

[ ]
1 1a 11 a 1 1q ln f (I(A 0) | W) I(A 0) Wa )] [1[1 Λ( I(A 0)] Wa ) WΛ(−∇ = ∇ > = > − − >  

                       
           (E-15) 
 

 ( )( ) ( )
2a 12 2 2I(A 0) A exp Wa expq 2 Wa W∇ > −= .                (E-16) 

 

where the formulation of 
1 1a 1q∇  comes from equation (16.4.8) on p. 350 of Fomby et al. 

(1984) and Λ(  ) denotes the logistic cdf.  The remaining required consistent matrix 

estimators are: 

 

 
1 2 1 2

n

11 12 11i 12i
i 11

a a a a

1ˆ ˆ ˆE[ q ' q ] q ' q
n =

∑∇ ∇ = ∇ ∇                (E-17) 

 
2 2 2 2

n

12 12 12i 12i
i 11

a a a a

1ˆ ˆ ˆE[ q ' q ] q ' q
n =

∑∇ ∇ = ∇ ∇                (E-18) 

 
where 
 

 [ ]
1a 1 111i i i i i i

ˆ ˆW a )q̂ I(A 0)[1 Λ( I(A 0)]Λ] [1 W a W( )∇ = > − >−−    (E-19) 

 
and 
 

 ( )( ) ( )
2 i i 2a 12i i ii 2

ˆ ˆI( 0) Aq̂ 2 exp W a exp W WA a> −∇ =     (E-20) 

so 
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 [ ] [ ] 1 1 1 2

2 1 2 2

a 11 a 11 a 11 a 12

δ 1 δ 1 a 1 a 1

a 12 a 11 a 12 12a

[ q ' q ] [ q ' q ]
q ' q q ' q

[ q ' q ]

ˆ ˆE E

[ q ' q ]

ˆ ˆE E
ˆ ˆE E

=
 ∇ ∇ ∇ ∇
 ∇ ∇ ∇ ∇
 ∇ ∇

=
∇ ∇ 

. (E-21) 

 

γδqE ∇∇∇∇    
      

   3×2K 
 
 Written out explicitly we have 
 
 

 γ k a v b m cq = [( q 0 0) (0 q +0) (0 0 q )]∇ ∇ + + +∇ + + ∇
P

  

 

  k a v b m c[ q q q ] = ∇ ∇ ∇
P

      

 

  ( ) ( ) i2 K(a, W) k   V(a, W) v    ( m )= − − −  PP     (E-22) 

 
and 
 

 

1 2

1 2

1 2

ka a ka a

γδ va b va b

m a c cam

E[ q ] E[ q ]

E[ q] = E[ q ] E[ q ]

E[ q ] E[ q ]

 ∇ ∇
 

∇ ∇ ∇ 
 

∇ ∇  P P

  

  

1 2

1 2

a

a

a

a

E[ K] E[ K]

= 2 E[ V] E[ V]

0 0

∇ ∇ 
 

∇ ∇ 
 
 

                (E-23) 

where 

 
1 1 1 1a 1 2{λ(Wa )[1 2Λ(Wa )]a W λ(Wa )[1 0 ... 0]}exp(WaK )= − +∇ P  

        1 2 2λ(Wa )exp(Wa )a W+ P  

  [ ]1 2 1 1 2λ(Wa )exp(Wa ) {[1 2Λ(Wa )]a + a }W [1 0 ... 0]= − +P P   (E-24) 

 

2 1 2 1 1 2 2 2a λ(Wa ) exp(Wa ) a W + Λ(Wa ){exp(Wa )a W exp(Wa )[1 0 .K .. 0]}= +∇ P P  

  [ ]2 1 1 1 2 1exp(Wa ) {λ(Wa )a + Λ(Wa )a }W Λ(Wa )[1 0 ... 0]= +P P .    (E-25) 
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1 1a 2λ(Wa )exp(Wa ) WV∇ =                   (E-26)  

and 

 
2 1a 2Λ(Wa )exp(Wa ) WV∇ = .                 (E-27) 

 
The following equalities were used in deriving the above results 

 

 aΛ(a) λ(a) Λ(a)[1 Λ(a)]∇ = = −  

 aλ(a) λ(a)[1 2Λ(a)]∇ = − . 

 
The requisite consistent matrix estimators are 

 

 �
1 1

n

a a ii 1

Ê[ K] = K
=
∑∇ ∇            (E-28) 

 �
2 2

n

a a ii 1

Ê[ K] = K
=
∑∇ ∇                   (E-29) 

 �
1 1

n

a a ii 1

Ê[ V] = V
=
∑∇ ∇                   (E-30) 

and 
 

 �
2 2

n

a a ii 1

Ê[ V] = V
=
∑∇ ∇                   (E-31) 

 
where  

 � [ ]
1 1a i i i i2 1i 1 2

ˆ ˆ ˆ ˆ ˆλ(W a )exp(W a ) {[1 2Λ(W a )]a + a }W [1 0 ...K 0]= +∇ − P P   (E-32) 

 � [ ]
2 2a i i i i1 1 i1 2 1i

ˆ ˆ ˆ ˆ ˆ ˆexp(W a ) {λ(W a )a + Λ(W a )a }W Λ(W a )[1 0 ... 0]= +∇ P PK (E-33) 

 �
1 1 2a i i ii

ˆ ˆλ(W a )exp(WV a= ) W∇       (E-34) 

and 

 �
1 1 2a i i ii

ˆ ˆΛ(W a )exp(WV a= ) W∇                 (E-35) 
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so 
 

 

1 2

1 2

a a

γδ a a

ˆ ˆE[ K] E[ K]

ˆ ˆ ˆE[ q] = 2 E[ V] E[ V]

0 0

 ∇ ∇
 
 ∇ ∇ ∇
 
 
 

.                (E-36) 

 
 
 

γγ
1E[ q]−−−−∇∇∇∇   

    3×3 

 

[ ]

[ ]

1

1 1

kk a

γγ vv b

m m c

1

E 0 0

E 0 E 0

q0

q

q

E

q

0

−

− −

−

 
 
 

∇

∇ ∇

∇

 =   
  

  P P

             (E-37) 

because kv a vk b km a vm b m k c m v cq q q q q q 0∇ = ∇ = ∇ = ∇ = ∇ = ∇ =
P P P P

.  Now 

 

 kk a vv b m m cq q q 2∇ = ∇ = ∇ = −
P P

  

therefore 

 
1

γγ

1
0 0

2

1
E 0 0

2

1
0

q

0
2

−

 
− 
 
   = −   


∇


 −
  

.                (E-38) 

 
 

γ γq' qE ∇ ∇∇ ∇∇ ∇∇ ∇    
      

        3×3 

 Given that 

 

 [ ]iγ 2 (K(a, W) k) (V(a, W) v) ( m )q∇ = − − − PP .             (E-39) 
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we have 

γ γq ' qE ∇ ∇  =   

2

2

2

E[(K(a, W) k)E[(K(a, W) k)
E[(K(a, W) k) ]

( m ))](V(a, W) v)]

E[(V(a, W) v)E[(K(a, W) k)
4 E[(V(a, W) v) ]

( m )](V(a, W) v)]

E[(K(a, W) k) E[(V(a, W) ν)
E[( m ) ]

( m )] ( m )]

−− 
− 

−− 
 −−

− 
−− 

 − −
 −

− −  

P

P

P

P P

P

P

P
P P

.  

                             (E-40) 

 
The corresponding consistent estimator is 

 

 

n n ni2 i
i

i 1 i 1 i 1
ii

n n ni 2 i
γ γ i

i 1 i 1 i 1
ii

n
i

i 1
i

ˆˆ ˆˆ(K k) (K k)1 1 1ˆˆ(K k)
ˆn n n ˆ( m )ˆ(V v)

ˆˆ ˆ(K k) ˆ(V v)1 1 1ˆ ˆ ˆE 4 (V vq ' )
ˆn n n ˆ( m )ˆ(V v)

ˆˆ(K k)1

n ˆ( )

q

m

= = =

= = =

=

∑ ∑ ∑

∑ ∑ ∑

∑

   − −
−       −−   

   − −
  = −        −−   

 −

 − 

∇




∇

P

P

P

P

P

P

n n
2i

i
i 1 i 1

i

ˆ ˆ(V v)1 1
ˆ( m )

n nˆ( m )= =
∑ ∑

 
 
 
 
 
 
 
 

 − 
−     −   

P

P

P
P

. 

                       
           (E-41) 
 
 
Based on the above results, we can consistently estimate (E-5) as 
 
 

 � �1 1

γγ γ γ γδ δ γ
ˆ ˆ ˆ ˆˆˆAVAR(γ) E E Aq q qVAR(a) qE E

− −′    ∇   =     ∇ ∇ ∇   

     
1 1

γγ γ γ γγq q ' q qˆ ˆ ˆE E E
− −

∇ ∇ ∇     +      ∇  
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and using well known results from asymptotic theory for two-stage estimators, we can 

show that44 

 

 �
1 d
2ˆ ˆAVAR(γ) n (γ γ) N(0, I)

−

− → .                 (E-42) 

 
Combining (E-42) with (E-1) we also have that 

 

 
�

1
d

UPO UPO UPO2ˆ ˆavar(η ) n (η η ) N(0, I)
−

− →                 (E-43) 

 

where 
�UPOˆavar(η )  is given in (E-1). 

 

 

  

                                                 

44Discussions of asymptotic theory for two-stage optimization estimators can be found in 
Newey & McFadden (1994), White (1994, Chapter 6), and Wooldridge (2010, Chapter 
12).    
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Appendix F.   

Bias from Using 
ALη̂ Instead of 

UPOη̂  in a Model of Alcohol Demand 

 

As we saw in section 2.2 of Chapter 3, in the AGG-LOG framework the elasticity 

measure is defined as AL
Pη π= in equation (3-4) rewritten here for convenience  

  P Xln(A) Pπ Xπ ξ= + +          (F-1) 

where A  is the average per-capita consumption of alcohol from aggregated data, P  is 

log of average price of alcohol from aggregated data and X  is the vector of average 

values of observable confounders.  The corresponding consistent elasticity estimator, Pπ̂ , 

is the OLS estimator of Pπ  in (F-1).  Using (3-10), we can then write the difference 

between ALη  and UPOη  as 

    [AL UPO
P 1 X1 2 X 2 1η η π E λ( a Xa ) exp( a Xa ) a− = − + +P P PP P     

      ]1 X1 2 X2 2Λ( a Xa )exp( a Xa )a+ + +P P PP P     

       
[ ]

[ ]1 X1 2 X2

E

E Λ( a Xa ) exp( a Xa )
×

+ +P P

P

P P
 

   
     

 [P 1 X1 1 X1 2 X2 1π E Λ( a Xa )[1 Λ( a Xa )]exp( a Xa )a= − + − + +P P P PP P P     

       ]1 X1 2 X2 2Λ( a Xa ) exp( a Xa )a+ + +P P PP P     

        
[ ]

[ ]1 X1 2 X2

E

E Λ( a Xa ) exp( a Xa )
×

+ +P P

P

P P
. (F-2) 
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If we define 

 1 2v E[Λ(Wa )exp(Wa )]≡        (F-3) 

 2
1 2u E[Λ(W a ) exp(W a )]≡        (F-4) 

 [ ]m E=P P  

and 

 [ ]W     X= P   

 
then (F-2) can be written 
   

 AL UPO 1
P

[(v u) a va ]m
η η π

v

− +
− = − P P2 P     

   P 1

u
π 1 a a m

v

  
= − − +  

  
P P2 P  .  
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Appendix G.   

Asymptotic Distribution (and Standard Error) of 
AL UPOˆ ˆη η−   

 

In Appendix F we showed that 

 

 AL UPO
P 1

u
η η π 1 a a m

v

  
− = − − +  

  
P P2 P  

 

 1 2v E[Λ(Wa )exp(Wa )]≡  

 2
1 2u E[Λ(Wa ) exp(Wa )]≡  

 [ ]m E=P P  

and 

 [ ]W     X= P .  

 

Using the corresponding consistent estimators for u ,  v  and  mP  say 

 
n

i
i 1

1
ˆv̂ = V(a , W )

n=
∑  

 
n

i
i 1

1
ˆû U(a , W )

n=
∑=  

and 

 
n

i
i 1

1
m̂

n=
∑=P P  

where 

 1 2V(a , W) Λ(Wa )exp(Wa )=    
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 2
1 2U(a , W) Λ(Wa ) exp(Wa )=  

 1 2ˆ ˆ ˆa [a a ]'′ ′=  (with 1 1 X1ˆ ˆ ˆa = [a a ]′ ′
P  and 2 2 X2ˆ ˆ ˆa = [a a ]′ ′

P ) is the consistent  

  estimate of the parameter vector 1 2a [a a ]'′ ′=  (with 1 1 X1a = [a a ]′ ′
P  and  

  2 2 X2a = [a a ])′ ′
P ) [the parameters of equations (3-6) and (3-7),  

  respectively] obtained via the unrestricted two-part protocol culminating  

  in (3-8) . 

 
 and  

 i i iW [ X ]= P  denotes the observation on W [ X]= P  for the ith individual in  

 the sample (i = 1, ..., n) 

we can write 

 

 AL UPO
P 1

û
ˆ ˆ ˆ ˆ ˆˆη η π 1 a a m

v̂

  
− = − − +  

  
P P2 P  

with 

 ˆ ˆπ [π ]'′=  ( P Xˆ ˆ ˆπ = [π π ]′ ′ ) is the OLS estimate of the parameter vector    

  π [π ]'′=  ( P Xπ = [π π ]′ ′ ) – the vector of parameters in (3-3)]. 

  

Let P 1 2
ˆ ˆ ˆˆ ˆ ˆ ˆτ = [π a a u v m ]′P P P  and P 1 2τ = [π a a u v m ]′P P P , where 

ˆplim[τ] = τ .  If we could show that 

 

 

1 d
2ˆ ˆAVAR(τ) n (τ τ) N(0, I)

−

− →  
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where the formulation of ˆAVAR(τ)  is known, then we could apply the δ-method to 

obtain the asymptotic variance of 
AL UPOˆ ˆη η−  as 

 

 
AL UPOˆ ˆ ˆavar(η η ) c(τ) AVAR(τ) c(τ) '− =  

 
with 

 
2

1 1 1 2

u u
c(τ) 1 m 1 m  m a / v m a u / v    1 a a  

v v

     
= − − − − − − +     

     
P P P P P P P P    .  

Moreover, if we have a consistent estimator for ˆAVAR(τ) , say �̂AVAR(τ)  [i.e. 

�̂ ˆp lim AVAR(τ) AVAR(τ)  =
 

],  then we could consistently estimate 
AL UPOˆ ˆavar(η η )− as 

 

 
� �AL UPOˆ ˆ ˆ ˆ ˆavar(η η ) c(τ) AVAR(τ) c(τ) '− = .     (G-1) 

 
We focus, therefore, on finding the asymptotic distribution of τ̂  and, in particular, the 

formulation of its asymptotic covariance matrix. 

 First note that we can write τ as  

 

 τ Ξ θ=           (G-2) 

 

where θ = [δ γ ]′ ′ ′ , 1 2δ [π    a a ]'′ ′ ′= , γ [u v   m ]′ = P  (recall, P Xπ = [π π ]′ ′ , 

1 1 X1a = [a a ],′ ′
P   and  2 2 X2a = [a a ]′ ′

P .  
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P

1

2

π

a

a

3,3K 3

Ξ

0 I

 
 
− − − − − − − − 
 
 
 = − − − − − − − −
 
 
 − − − − − − − −
 
  

�

�

�

P

P

  

 

a� is the unit row vector with the value “1” in the element position corresponding to the 

element position of a in the vector θ, b,c0  is the matrix of zeros whose row and column 

dimensions are b and c, respectively, dI  is the identity matrix of order d, and K is the 

column dimension of W.  For future reference, let’s set the following vector/matrix 

dimensions: 

 

 1a is K×1 

 2a is K×1 

 π is K×1 

 W  is 1×K 

 τ is 6×1 

 c(τ) is 1×6 

 δ  is 3K×1 

 γ is 3×1 

 θ is (3K+3)×1 

 Ξ  is 6×(3K+3) 
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1a� P

is 1×(3K+3) 

   
Clearly then  

 

  ˆˆAVAR(τ) Ξ AVAR(θ) Ξ′=        (G-3) 

 

where θ̂  is the estimator of θ obtained from the following two-stage protocol. 

 
First Stage 

Consistently estimate δ via the following optimization estimator 

 

 

n

1 i
i 1

δ

q (δ, S )
δ̂ = arg max

n
=

∑

�

�

       (G-4) 

where  

 1 i 11 i 12 1 i 13 2 iq (δ, S ) q (π, S ) q (a , S ) q (a , S )= + +
� �

� � ��  

 
2

11 i i iq (π, S ) (ln(A ) W π)= − −� �    

 

 12 1 i i i 1 i i 1q (a , S ) I(A 0) ln[Λ(W a )] [1 I(A 0)]ln[1 Λ(W a )]= > + − > −
�

� � �  

 ( )( )
2

13 2 i i i i 2q (a , S ) I(A 0) A exp W a= − > −
�

� �  

 

 W P    X =       

 

 i i i iS [A X P ]=  for 11q , and i i i iS [A X ]=
�

P  for 12q  and 13q   

 

1 22δ [π    a a ] '′ ′ ′=� � �� , 1 1 X1a = [a a ]′ ′� � �
P , 2 2 X2a = [a a ]′ ′� � �

P  and  

 

 1P Xπ [π π ]′=� � �
 
and 1 22

ˆ ˆ ˆˆδ [π    a a ]'′ ′ ′=� � �� .  
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Second Stage 

Consistently estimate γ via the following optimization estimator 

 

 

n

i
i 1

γ

ˆq(δ, γ,  S )
γ̂ = arg max

n
=

∑

�

�

       (G-5) 

where 

 i a i b i c i
ˆ ˆ ˆ ˆq(δ, γ,  S ) q (δ, u,  S ) q (δ, v,  S ) q (δ, m ,  S )= + + �� � �

P  

 2
a i i

ˆ ˆq (δ, u,  S ) (U(δ, W ) u)= − −� �  

 2
b i i

ˆ ˆq (δ, v,  S ) (V(δ, W ) v)= − −� �  

 2
c i i

ˆq (δ, m ,  S ) ( m )= − −� �
P PP    

1 2
ˆ ˆ ˆˆδ [π    a a ]'′ ′ ′=  is the first stage estimator of δ  , 1 1 X1ˆ ˆ ˆa = [a a ]′ ′

P  and 

 2 2 X2ˆ ˆ ˆa = [a a ]′ ′
P .  Use 1q  as shorthand notation for 

  

 1 11 12 1 13 2q (δ, S) q (π, S) q (a , S) q (a , S) = + +
� �

 

 
where 
 

 
2

11q (π, S) (ln(A) Wπ)= − −    

 

 12 1 1 1q (a , S) I(A 0)ln[Λ(Wa )] [1 I(A 0)]ln[1 Λ(Wa )]= > + − > −
�

 

 ( )( )
2

13 2 2q (a , S) I(A 0) A exp Wa= − > −
�

 

 S [A X P]=  for 11q  , and S [A X ]=
�

P  for 12q  and 13q ,  

 
and use q as shorthand notation for  
 

 a b cq(δ,γ,  S) q (δ, u,  S) q (δ, v,  S) q (δ,m ,  S)= + +�
P  
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where 

 2
aq (δ, u,  S) (U(a , W) u)= − −  

 2
bq (δ, v,  S) (V(a , W) v)= − −  

 2
cq (δ, m ,  S) ( m )= − −P PP    

 

with ˆAVAR(δ)  being the asymptotic covariance matrix of the first stage estimator.45  

Using well known results from asymptotic theory for two-stage estimators, we can show 

that46 

 

 

1 d
2ˆ ˆAVAR(θ) n (θ θ) N(0, I)

−

− →       (G-6) 

 

where ˆˆ ˆθ = [δ γ ]′ ′ ′ ,  ˆplim(θ) = θ  

 

 
11 12

12 22

D D

D D
ˆAVAR(θ)

 
=  ′ 

       (G-7) 

 

 11
ˆAVAD R(δ)=         (G-8) 

  3K×3K 

 [ ]12 δδ 1 δ 1 γ γγ

11
E ED q q ' q E q

−−
= ∇ ∇ ∇      ∇  

  
[ ] [ ] [ ]δδ 1 δ 1 δ 1 δδ 1 γ

1

γ

1

δ

1

γE q q ' q q q qE E E E
−− −

∇ ∇
′   − ∇ ∇   ∇ ∇  (G-9) 

                                                 

45 Note that a consistent estimate ˆAVAR(δ)  can be obtained from the packaged output 

for the first stage estimator because the first stage estimator is unaffected by the fact that 
it is a component of a two-stage estimator.  
46Discussions of asymptotic theory for two-stage optimization estimators can be found in 
Newey & McFadden (1994), White (1994, Chapter 6), and Wooldridge (2010, Chapter 
12).    
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 22 γγ γδ γ

1

δ
ˆAVAR(γ) E E AVAR( )E 'ˆD q q δ q

−
  =   =     ∇ ∇ ∇  

  [ ]γ δ 1 δδ 1 γδ

1
q ' q qE E E q

−
∇ ∇

′  −   ∇  ∇  

   [ ]γδ δδ 1 γ δ 1 γ

1

γ

1
q q q ' q qE E E ' E

−−      −    ∇ ∇
∇ ∇ ∇    

    
1 1

γγ γ γ γγq q ' q qE E E
− −

∇ ∇ ∇     +      ∇ .            (G-10) 

 
Fortunately, (G-9) and (G-10) can be simplified in a number of ways.  First note that we 

can write 

 

 γ δ 1 γ δ 1q ' q q 'E E[ q | W]E∇ ∇ ∇ ∇   =     

but 

 δ 1 δ 11 δ 12 δ 13q = q q q∇ ∇ + ∇ + ∇  

with 

 δ 11 ( W π)Wq 2 ln(A )      0 0 ∇ = −    

 
1δ 12 aq [0 ln f (I(A 0) | W) 0]∇ = ∇ >  

 

 ( )( ) ( )2δ 213 0 I(A 0) A exp Wa exp Waq W0 2 ∇ = > −   

where 

 I(A 0) [1 I(A 0)]
1 1Λ(W a ) [1 Λ(Wa )f (I( | W ]A 0) ) > − >= −>  . 

 
Therefore 



149 

 

( )( ) ( )

1a

2

δ

2

1

2E ln(A )

E[ q | W,W] E[ ln f (I(A 0) |

( W π) | W W

I(A 0) A exp Wa exp Wa

W)]

E | W W2

′  −  
 ∇ = ∇ >
 
    > −

 

 
   = [ 0     0     0] 

 

because 
1aE[ ln f (I(A 0) | W)] 0∇ > =  [see (13.20) on p. 477 of Wooldridge (2010)],  

( )( ) ( )2 2I(A 0) A exp Wa exp Wa | WE 0  = > −  , and ( W π) | WE ln(A ) 0 − =    by 

design.47  Finally, then we get 

 

 γ δ 1q ' qE 0  = ∇ ∇  

 
so 

 
[ ] [ ] [ ]12 δδ 1 δ 1 δ 1 δδ 1 γδ γγ

11 1
E E E ED q q ' q q q qE

−− − ′   −   = ∇ ∇ ∇ ∇ ∇ ∇           (G-11) 

      3K×3K           3K×3K        3K×3K    3K×3          3×3 
     3K×3 
 
and 
 

 22 γγ γδ γδ γγ

1 1ˆˆAVAR(γ) E E AVAR(δ) E 'ED q q q q
− −

       =      ∇ ∇ ∇ = ∇  

                           3×3        3×3K      3K×3K     3K×3        3×3 
 

    
1 1

γγ γ γ γγq q ' q qE E E
− −

∇ ∇ ∇     +      ∇ .            (G-12) 

             3×3            3×3          3×3 
           3×3 
so 

                                                 

47 The last result warrants some discussion.  We are assuming here that the correct model 
specification is the unrestricted two-part model detailed in (3-5) through (3-7).  We also 
assume that, although (3-4) is not correctly specified in a causal sense, it can, nonetheless 
be viewed as a “best predictor” model in which the best predictor (the conditional mean 

of (ln(A) | P, X) is assumed to be equal to p XW π Pπ Xπ= + .  This implies that 

( W π) | WE ln(A ) 0 − =  . 
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11 1

(3K 3) (3K

2

12 23) 2

D D

3K 3K 3K 3

D D

3 3K

ˆAVAR(

3 3

θ)
+ × +

 
 

× × =
 ′
 

× × 

. 

Let’s consider each of the individual components of (G-9) and (G-10) in turn. 

 
 
 
 

1
δ 1δ qE[ ]−−−−∇∇∇∇  

 3K×3K 

 Written out explicitly we have 

 
1 1

2 2

1
ππ 11

δδ 1 a 1
1 1

a 2

1
a a 13

E[ q ] 0 0

q ] 0 E[ q ] 0

0 0

[

E[ q ]

E

−

−

− −

 ∇
 
 ∇ = ∇
 
 ∇ 

.             (G-13) 

Now 
 

 π 11q 2 ln(A)( Wπ)W∇ = −  

 
and 
 

 ππ 11q W2 W∇ = ′− . 

Therefore 

 

 ππ 11E[ q ] E W W2  ∇ = −  ′  .                 (G-14) 

 
 

A consistent estimator of 1
ππ 11E[ q ]−∇  is 

 

 { }
1

n
1

ππ 11
i 12

i i

1
Ê[ ] 2

n
Wq W

−

−

=

∑ ′
 

∇ = − 
 
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   { }i

1
n

2
i

i
1

W Wn 2
−

=

∑
 

=   
′− .               (G-15) 

 

where π̂  is the OLS estimator of  π  in the AGG-LOG model and 2n  is the size of the 

aggregated sample.  Similarly, 

  

 
1 1

1
1 1aa 2E ˆAV[ ] )q AR(a− = −∇                   (G-16) 

  =  the negative of the asymptotic covariance matrix for first stage, first  

   part, logit estimation of  1α  in the unrestricted two-part estimation  

   protocol culminating in (14).  We get an estimate of this directly  

   from the Stata output. 

 

A consistent estimator of 
1 1 2a a 1

1E[ q ]−∇  is 

 

 �
1 1

1
1a 1a 2

ˆ ˆnAVAR *(aE q ] )[ − = −∇                 (G-17) 

 

where � 1
ˆAVAR *(a )  is the estimated variance-covariance matrix output by the Stata logit 

procedure.  Also 

 

 ( )( ) ( )
2 13a 2 2I(A 0) A exp Wa expq 2 Wa W∇ > −=  

 
and 
 

 ( )( ) ( ) ( )
2 2a 2a 213 2I(A 0) A exp Wa exp Wa exp Wa W Wq 2   ′> − − ∇ = −  . 

 
Therefore 
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 ( )( ) ( ) ( )
2 2a 13a 2 2 2I(A 0) A exp Wa exp Wa exp Wa W[ 2E WE q ]   ′> − − 

 ∇ =   .  

           (G-18) 

 

A consistent estimator of 
2 2 3a

1
a 1E[ q ]−∇  is 

 

( )( ) ( )

( )
2 2

1

n
1

a 13
i 11

i i i 2 i 2

a

i 2 i i

I(A 0) A exp W a exp W a1
Ê[ q ] 2

exp W a W Wn

−

−

=
∑

    ∇ =  
    

 > − − 

′
 

   
( )( ) ( )

( )

i i i 2 i 2

i 2 i

1

n

1
i 1

i

I(A 0) A exp W a exp W a

exp W a W
n 2

W

−

=
∑

    > − − 

′
 =  
    

.  

           (G-19) 
 
 

where 2â  is the first stage, second part, estimator of 2a  , and 1n  is the size of the 

subsample for whom I(A 0) 1> =   

so 

 
1 1

2 2

1
ππ 11

δδ 1 a a 12

1
a 1

1

3

1

a

[ q ] 0 0

q ] 0 [ q ] 0

0

Ê

ˆ ˆE[ E

ˆ ]E0 [ q

−

−

−

− ∇
 
 ∇ = ∇
 
 ∇ 

.   (G-20) 

 
 

δ 1 δ 1q ' qE ∇ ∇∇ ∇∇ ∇∇ ∇          

        3K×3K 
 
 Written out explicitly we have 
 
 

 [ ]
1 2

1 1 1 1 2

2 2 1 2 2

π 11 π 11 π 11 a 12 π 11 a 13

δ 1 δ 1 a 12 π 11 a 12 a 12 12 13

a 13 π 11 a 1

a a

a3 a 12 a 13 13

E[ q ' q ] E[ q ' q ] E[ q ' q ]

q ' q E[ q ' q ] E[ q ' q ] E[ q ' q ]

E[ q ' q ] E[ q ' q ] E[ q ' q ]

E

 ∇ ∇ ∇ ∇ ∇ ∇
 

∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ 
 

∇ ∇ ∇ ∇ ∇ ∇ 

=



.         
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           (G-21) 

 

Because the first stage, first part, estimator of 1a  is MLE we can write 

 

 [ ]
1 1 1 1a 12 12 a

1

a 112aE[ q ' q ] E[ ˆAVARq ] (a )
−

∇ ∇ − ∇ ==  

 

where 1
ˆAVAR(a )  is defined as in (G-16).  We get an estimate of this directly from the 

Stata output. 

 

A consistent estimator of 
1 1a 12a12E[ q ' q ]∇ ∇  is 

 

 �
1 1

1

aa 12 12 1

1
ˆAVARÊ[ q ' *(a )

n
q ]

−
 =
 

∇ ∇                (G-22) 

 

where � 1
ˆAVAR *(a )  is the estimated variance-covariance matrix output by the Stata logit 

procedure.  The remaining block elements follow from 

 

 π 11q 2 ln(A)( Wπ)W∇ = − .                 (G-23) 

 

[ ]
1 112a a 1 1q ln f (I(A 0) | W) I(A 0) Wa )] [1[1 Λ( I(A 0)] Wa ) WΛ(−∇ = ∇ > = > − − >  

                       
           (G-24) 
 
and 

 ( )( ) ( )
2 13a 2 2I(A 0) A exp Wa expq 2 Wa W∇ > −= .              (G-25) 
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where the formulation of 
1 2a 1q∇  comes from equation (16.4.8) on p. 350 of Fomby et al. 

(1984) and Λ(  ) denotes the logistic cdf.  The remaining required consistent matrix 

estimators are 

 

 
2n

π 11 π 11 π 11j π 11j
j 12

1ˆ ˆ ˆE[ q ' q ] q ' q
n =

∑∇ ∇ = ∇ ∇                (G-26) 

 

 
1 1

n
* *

π 11 12 π 11i
1

a i
i

a 12

1ˆ ˆ ˆE[ q ' q ] q ' q
n =
∑∇ ∇ = ∇ ∇                (G-27) 

 

 
2 2

n
* *

π 11 13 π 11i 13i
i 11

a a

1ˆ ˆ ˆE[ q ' q ] q ' q
n =

∑∇ ∇ = ∇ ∇                (G-28) 

 

 
1 2 1 2

n

a 12 a 13 12i 13i
i 11

a a

1ˆ ˆ ˆE[ q ' q ] q ' q
n =

∑∇ ∇ = ∇ ∇                (G-29) 

 

 
2 2 2 2

n

a 13 a 13 a 13i a 13i
i 11

1ˆ ˆ ˆE[ q ' q ] q ' q
n =

∑∇ ∇ = ∇ ∇                (G-30) 

 
where 
 

 π 11i i i iq̂ 2 ln( ˆ( W ) WA ) π∇ = −                   (G-31) 

 [ ]
1 1a 12i i i i i 1 i

ˆ ˆW a )q̂ I(A 0)[1 Λ( I(A 0)]Λ] [1 W a W( )∇ = −> >−−              (G-32) 

 
and 

 ( )( ) ( )
2 i i 2a 13i i ii 2

ˆ ˆI( 0) Aq̂ 2 exp W a exp W WA a> −∇ =    (G-33) 

The components of equations (G-27) and (G-28) are obtained using  

 * *
i i

*
π 11i iq 2 ln(( W πA W) )∇ = − .        

where 

 *
i i iW [P X ]=  denotes the observation on W [P X]=  that pertains to the ith  

  individual in the sample (i = 1, ..., n) for the relevant aggregation unit  

  (j = 1, ..., 2n )  
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so 

 [ ]

1 2

1 1 1 1 2

2 2 1 2 2

π 11 π 11 π 11 a 12 π 11 a 13

δ 1 δ 1 a 12 π 11 a 12 a 12 a 12 a 13

a 13 π 11 a 13 a 12 a 13 a 13

[ q ' q ] [ q ' q ] [ q ' q ]

q ' q [ q ' q ] [ q ' q ] [ q ' q ]

[ q ' q ] [ q

ˆ ˆ ˆE E E

' q ] [ q ' q ]

ˆ ˆ ˆ ˆE E E E

ˆ ˆ ˆE E E

 ∇ ∇ ∇ ∇ ∇ ∇
 
 ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇
 
 ∇ ∇ ∇ ∇ ∇ 

=

∇

.       

           (G-34) 

 

γδqE ∇∇∇∇    
      

   3×3K 
 
 Written out explicitly we have 
 
 

 γ u a v b m cq = [( q 0 0) (0 q +0)     (0 0 q )]∇ ∇ + + +∇ + +∇
P

  

 

  v mu a b c[ q q     q ] ∇ ∇ ∇=
P

      

 

  ( ) ( ) i2 U(a, W) u V(a, W) v ( m )= − − −  PP               (G-35) 

 
and 

 
1 2

1 2

1 2

uα αuπ a a u a

γδ vπ b v b vα α

m

b

π c cm cα m α

E[ q ] E[ q ] E[ q ]

E[ q] = E[ q ] E[ q ] E[ q ]

E[ q ] E[ q ] E[ q ]

 ∇ ∇ ∇
 

∇ ∇ ∇ ∇ 
 

∇ ∇ ∇  P P P

  

  

1 2

1 2

π a a

π a a

E[ U] E[ U] E[ U]

= 2 E[ V] E[ V] E[ V]

0 0 0

∇ ∇ ∇ 
 

∇ ∇ ∇ 
 
 

                      (G-36) 

 
where 

 π π 0U V∇ = ∇ = .                  (G-37) 

 
1 1a 1 22Λ(Wa )λ(Wa )exp(Wa ) WU =∇                (G-38) 

 

 
2

2
a 1 2Λ(Wa ) exp(Wa )WU =∇      .  (G-39) 
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1a 1 2λ(Wa ) exp(Wa ) WV∇ =                   (G-40) 

and  

 
2a 1 2Λ(Wa )exp(Wa ) WV∇ = .                 (G-41) 

 
Note that 

 

 aΛ(a) λ(a) Λ(a)[1 Λ(a)]∇ = = −  

 aλ(a) λ(a)[1 2Λ(a)]∇ = − . 

 
The requisite consistent matrix estimators are 

 

 π π
ˆ ˆE[ U] E[ V] = 0∇ = ∇        (G-42) 

 

 �
1 1

n

a
i 1

a i
Ê[ U] = U

=
∑∇ ∇         (G-43) 

 

 �
2 2a

n

i 1
a i

Ê[ U] = U
=
∑∇ ∇         (G-44) 

 

 �
1 1a

n

i 1
a i

Ê[ V] = V
=
∑∇ ∇         (G-45) 

and 

 �
2 2

n

a
i 1

a i
Ê[ V] = V

=
∑∇ ∇         (G-46) 

 
where  

 � �
π πi i
U V = 0∇ = ∇         (G-47) 

 �
1a 1 1 2i i i ii

2Λ(W )λ(W ) exp(ˆ ˆ ˆU a a aW ) W∇ =      (G-48) 

 �
2a i ii

2
1 2Λ(W ) exp(Wˆ ˆa ) WU a=∇       (G-49) 

 �
1a 1 2i i ii

λ(W )ˆ ˆV = a aexp(W ) W∇       (G-50) 
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and 

 �
2a 1 2i i ii

Λ (W )ˆ ˆV = a aexp(W ) W∇       (G-51) 

so 

 

1 2

1 2

a a

γδ a a

ˆ ˆ0 E[ U] E[ U]

ˆ ˆ ˆE[ q] = 2 0 E[ V] E[ V]

0 0 0

 ∇ ∇
 
 ∇ ∇ ∇
 
 
 

.     (G-52) 

 
 
 
 

γγ
1E[ q]−−−−∇∇∇∇   

    3×3 

 

[ ]

[ ]

1

1 1

uu a

γ

m

γ

cm

vv b

1

E 0 0

E 0 E 0

q0

q

q

E

q

0

−

− −

−

 
 
 

∇

∇ ∇

∇

 =   
  

  P P

   (G-53) 

because uv a vu b um a vm m u mb c cvq q q q q q 0∇ = ∇ =∇ =∇ =∇ =∇ =
P P P P

.  Now 

 

 uu a vv b m m cq q q 2∇ = ∇ = ∇ = −
P P

 

 

therefore 

  
1

γγ

1
0 0

2

1
E 0 0

2

1
0

q

0
2

−

 
− 
 
   = −   


∇


 −
  

.                (G-54) 

 

γ γq' qE ∇ ∇∇ ∇∇ ∇∇ ∇    
      

        3×3 

 Given that 
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 ( ) ( ) iγ 2 U(a, W) u V(a,q W) v ( m )= −∇ − −  PP .   (G-55) 

we have 

 

γ γq ' qE ∇ ∇  =   

  

2

2

2

E[(U(a, W) u)E[(U(a, W) u)
E[(U(a, W) u) ]

( m )](V(a, S) v)]

E[(V(a, S) v)E[(U(a, W) u)
4 E[(V(a, S) v) ] .

( m )](V(a, S) v)]

E[(U(a, W) u) E[(V(a, S) v)
E[( m ) ]

( m )] ( m )]

−− 
− 

−− 
 −−

− 
−− 

 − −
 −

− −  

P

P

P

P P

P

P

P
P P

 (G-56) 

 
The corresponding consistent estimator is 

 

 

n n ni2 i
i

i 1 i 1 i 1
ii

n n ni 2 i
i

i 1 i 1 i 1
ii

γ

i

γ

n

i 1
i

ˆ ˆˆ(U u) ˆ(U u)1 1 1ˆ ˆ(U u)
ˆn n n ˆ( m )ˆ(V v)

ˆ ˆˆ(U u) ˆ(V v)1 1 1ˆ ˆ ˆE 4 (V v)
ˆn n n ˆ( m )ˆ(V v)

ˆ ˆ(U u)1

n ˆ( m )

q ' q

= = =

= = =

=

∑ ∑ ∑

∑ ∑ ∑

∑

   − −
−       −−   

   − −
  = −        −−   

 −
 − 

∇ ∇

P

P

P

P

P

P

n n
2i

i
i 1 i 1

i

.

ˆ ˆ(V v)1 1
ˆ( m )

n nˆ( m )= =
∑ ∑

 
 
 
 
 
 
 
 

 − −     −  
P

P

P
P

 

            
           (G-57) 

Based on (G-8), (G-11) and (G-12) and using the two-stage estimator θ̂  we can 

consistently estimate (G-7) as 

 

 
� 11 12

12 22

ˆ ˆD D

ˆ ˆD D

ˆAVAR(θ)
 

=  
′  

 

where 

 �

�

�

�

2

111

1 2

ˆn AVAR *(π)

ˆ ˆAVAR(δ) nAVAR *(a )

ˆn AVAR *(a )

0 0

D̂ 0 0

0 0

 
 
 =
 
  

=  
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 [ ]12 γγ δ 1 δ 1 γγ γδ γ

1 1

γ

1ˆ ˆ ˆ ˆ ˆE E E E ED q q ' q q q q
− − −′   = ∇ ∇ ∇ ∇ ∇ ∇   −          

 � �
22 γγ γδ γδ γ

1

γ

1ˆ ˆ ˆ ˆˆAVAR(γ) E E AVAR( ) EˆD q q δ q q'E
− −

       =       ∇ ∇ ∇ = ∇  

 

     γγ γ γ γγ

1 1
q q ' q qˆ ˆ ˆE E E

− −
∇ ∇ ∇     +      ∇  

 
and using well known results from asymptotic theory for two-stage estimators, we can 

show that48 

 

 
�

2

1 1

1
d

1 2 22

ˆn (π π)

ˆn (a a )

ˆn (a a )ˆAVAR(θ) N(0, I)
ˆn (u u)

ˆn (v v)

ˆn (m m )

−

 −
 

− 
 

− 
→ 

− 
 −
 
 − P P

.     (G-58) 

*********************************************************************** 
ASIDE: 

Notice that the “ n  blow up” is a bit tricky here.  It implements n  for 1â , û,  v̂ and 

m̂P ; but uses 1n  for 2â and 2n  for π̂  .  We had to do this because we had to use the 

correct sample sizes (viz., 2n  and 1n ) for a number of the components of 
�̂
AVAR(θ)  [viz., 

those that pertained to the estimation of π̂ , and 2â , respectively ]; in particular (G-15), 

(G-19) (G-26) through (G-30).  For this reason we had to be explicit about the 

denominators in all of the averages for the components of 
�̂
AVAR(θ) .  This meant that in 

                                                 

48Discussions of asymptotic theory for two-stage optimization estimators can be found in 
Newey & McFadden (1994), White (1994, Chapter 6), and Wooldridge (2010, Chapter 
12).    
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the construction of the requisite asymptotic t-stats we had to explicitly include the “blow-

up” in the numerator (i.e., we had to multiply by the square-root of the appropriate 

sample size).  I refer to this as “tricky” because one typically does not have to do this.  In 

the usual asymptotic t-stat construction the denominators of the averages (“n”) need not 

be included in the construction of the asymptotic covariance matrix because it typically 

manifests as a multiplicative factor and, after pulling the diagonal and taking the square 

root to get the standard errors, this multiplicative n  cancels with the “blow-up” factor in 

the numerator.  For example, the asymptotic t-stat of the OLS estimator is 

 

 
� ( ) ( )

k k k k k k k k

1 1 12 2
2 kk kk

kk

ˆ ˆ ˆ ˆn (ρ ρ ) n (ρ ρ ) n (ρ ρ ) (ρ ρ )

ˆAVAR(ρ) ˆ ˆn σ σ1
σ̂

n

− − −

− − − −
= = =

′ ′ 
′ 

 

XX XX
XX

  

where 

 n is the sample size 

 kρ  is the coefficient of the kth regressor in the linear regression 

 kρ̂  is its OLS estimator 

 2σ  is the regression error variance estimator 

 X is the matrix of regressors 

and kk
′XX  is the kth diagonal element of ′XX .  Note how the “ n s” simply cancel. 

Note also that what we typically refer to as the “asymptotic standard error” can actually 

be written as the square root of the diagonal element of the consistent estimator of the 

asymptotic covariance matrix divided by n; in other words 
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 asy std err =   
�̂AVAR(ρ)

n
.  

************************************************************************   

Now back to the issue at hand.  Moreover 

 

 �

2 P P

1 1

1 d
1 2 22

ˆn (π π )

ˆn(a a )

ˆn (a a )
ˆAVAR(τ) N(0, I)

ˆn(u u)

ˆn(v v)

ˆn (m m )

−

 −
 

− 
 

− 
→ 

− 
 −
 
 − 

P P

P P

P P

.                 (G-59)  

 
where 
 

 �
�̂

ˆAVAR(τ) ΞAVAR(θ) Ξ '=                   (G-60) 

 
and τ and Ξ are defined as in (G-2).  Now combining (G-1) with (G-59) and (G-60) we 

get 

 

 
� ( ) ( )

1
d

AL UPO AL UPO AL UPO2ˆ ˆ ˆ ˆavar(η η ) n η η η η N(0, I)
−

 − − − − →
    (G-61) 

where 

 
� �AL UPOˆ ˆ ˆ ˆ ˆavar(η η ) c(τ) AVAR(τ) c(τ) '− =   

and 

 

2
1 1 1 2

ˆ ˆu u
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆc(τ) 1 m 1   m m a / v m a u/ v   1 a a

ˆ ˆv v

     
= − − − − − − +     

     
P P P P P P P P     . 

  



162 

Appendix H.   

Asymptotic Distribution (and Standard Error) of UPOLη̂ in Eqn (4-6) 

 

We may write UPOLη̂  as 

 

 UPOL κ̂
η̂

ν̂
=  

where 

 
n

i
i 1

1
ˆ ˆκ (α, W )

n=
∑=

�
K  

 
n

i
i 1

1
ˆ ˆν = (α, W )

n=
∑

�
V  

Using the corresponding consistent estimators for k , and v  say 

 1 2 P1 1 2 P2(α, W) λ(Wα ) exp(Wα )α Λ(Wα ) exp(Wα )α+=
� � � � �

K  

 1 2(α, W) Λ(Wα ) exp(Wα )=
� � �

V   

 P is the logged prices of alcohol 

 1 2
ˆ ˆ ˆα [α α ]'′ ′=  (with 1 P1 X1

ˆ ˆ ˆα = [α α ]′ ′  and 2 P2 X 2
ˆ ˆ ˆα = [α α ]′ ′ ) is the consistent  

  estimate of the parameter vector 1 2α [α α ]'′ ′=  (with 1 P1 X1α = [α α ]′ ′  and  

  2 P2 X2α = [α α ])′ ′ )  [the parameters of equation (4-6)] obtained via the  

  two-part protocol culminating in (4-4) using logged prices of alcohol  

 

and i i iW [P X ]=
�

 denotes the observation on W [P X]=
�

 for the ith individual in the 

sample  
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(i = 1, ..., n).  Let ˆ ˆγ̂ = [κ ν ]′  and γ = [κ ν ]′ , where ˆplim[γ] = γ .  If we could show 

that 

 

 

1 d
2ˆ ˆAVAR(γ) n (γ γ) N(0, I)

−

− →  

 

where the formulation of ˆAVAR(γ)  is known, then we could apply the δ-method to 

obtain the asymptotic variance of UPOLη̂  as 

 

 UPOLˆ ˆavar(η ) c(γ) AVAR(γ) c(γ) '=  

 

where 
2c(γ) [1/ ν κ / ν  ]= − .  Moreover, if we have a consistent estimator for 

ˆAVAR(γ) , say �̂AVAR(γ)  [i.e. �̂ ˆp lim AVAR(γ) AVAR(γ)  =
 

],  then we could 

consistently estimate UPOLˆavar(η ) as 

 

 
� �UPOLˆ ˆ ˆ ˆavar(η ) c(γ) AVAR(γ) c(γ) '= .      (H-1) 

 

We focus, therefore, on finding the asymptotic distribution of γ̂  and, in particular, the 

formulation of its asymptotic covariance matrix. 

 First, let θ = [δ γ ]′ ′ ′  where 1 2δ [α α ]'′ ′= , γ [κ ν ]′ =  (recall, 1 P1 X1α = [α α ]′ ′  

and 2 P2 X2α = [α α ]′ ′ ), and note that γ̂  can be viewed as the second stage estimator in the 

following two-stage protocol  

 
First Stage 

Consistently estimate δ  via the following optimization estimator 
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n

1 i
i 1

δ

q (δ, S )
δ = arg max

n
=
∑

�

�

�        (H-2) 

where  

 1 i 11 1 i 12 2 iq (δ, S ) q (α , S ) q (α , S )= +� � �  

 11 1 i i i 1 i i 1q (α , S ) I(A 0) ln[Λ(W α )] [1 I(A 0)] ln[1 Λ(W α )]= > + − > −
� �

� � �  

 ( )( )
2

12 2 i i i i 2q (α , S ) I(A 0) A exp W α= − > −
�

� �  

 i i iS [A X ]=
 

 
 

1 22δ [α α ]'′ ′=� � � , 1 P1 X1ρ = [ρ ρ ]′ ′� � � and 2 P2 X2ρ = [ρ ρ ]′ ′� � �  and  1 22

ˆ ˆ ˆδ [ρ ρ ]'′ ′=�� � �  

 

Second Stage 

Consistently estimate γ   via the following optimization estimator 

 

 

n

i
i 1

γ

ˆq(δ, γ,  S )
γ̂ = arg max

n
=

∑

�

�

       (H-3) 

where 

 i a i b i
ˆ ˆ ˆq(δ, γ,  S ) q (δ, κ,  S ) q (δ, ν,  S )= +� ��  

 2
a i i

ˆ ˆq (δ, κ,  S ) ( (α, W ) κ)= − −
�

� �K  

 2
b i i

ˆ ˆq (δ, ν,  S ) ( (α, W ) ν)= − −
�

� �V  

 

δ̂  is the first stage estimator of δ .  Use 1q  as shorthand notation for 

  

 1 11 1 12 2q (δ, S) q (α , S) q (α , S)= +  
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with 

 

 11 1 1 1q (α , S) I(A 0) ln[Λ(W α )] [1 I(A 0)]ln[1 Λ(W α )]= > + − > −
� �

 

 ( )( )
2

12 2 2q (α , S) I(A 0) A exp W α= − > −  

 S [A X ]=  

 

and use q as shorthand notation for  

 

 a bq(δ,γ,  S) q (δ, κ,  S) q (δ, ν,  S)= +�  

with 

 2
aq (δ, κ,  S) ( (α, W) κ)= − −

�
K  

 2
bq (δ, ν,  S) ( (α, W) ν)= − −

�
V  

and let ˆAVAR(δ)  denote the asymptotic covariance matrix of the first stage estimator.49  

Using well known results from asymptotic theory for two-stage estimators, we can show 

that50 

 

1 d
2ˆ ˆAVAR(γ) n (γ γ) N(0, I)

−

− →       (H-4) 

where,  ˆplim(γ) = γ  

 

                                                 

49 Note that a consistent estimate ˆAVAR(ρ)  can be obtained from the packaged output 

for the first stage estimator because the first stage estimator is unaffected by the fact that 
it is a component of a two-stage estimator.  
50Discussions of asymptotic theory for two-stage optimization estimators can be found in 
Newey & McFadden (1994), White (1994, Chapter 6), and Wooldridge (2010, Chapter 
12).    
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δ δ

1

γγ γ γq q qˆˆAVAR(γ) E E AVAR(α)E
−  ′     =     ∇ ∇ ∇  

   [ ]δ 1 δδγ 1 δ

1

γq ' q qE E E q
−

∇ ∇
′  −   ∇  ∇  

    δ δ 1 δ 1

1 1

γ γ γ γγq q qE q qE'E E
− −′       −       ∇ 

∇ ∇ ∇ ∇    

    
1 1

γγ γ γ γγq q ' q qE E E
− −

∇ ∇ ∇     +      ∇   (H-5) 

 
Fortunately, (H-5) can be simplified in a number of ways.  Note that we can write 

 

 γ γδ 1 δ 1q ' q qE 'E[ q | W]E∇ ∇ ∇ ∇   =   

�
 

but 

 1 11 12δ δ δ
q = q q∇ ∇ +∇�� �� ��  

with 

 
1δ 11 αq [ ln f (I(A 0) | W) 0 ]∇ = ∇ >

�
 

 

 ( )( ) ( )2δ 212 I(A 0) A exp W α expq 0 W α2 W ∇ =  
>


−

� � �
 

where 

 I(A 0) [1 I(A 0)]
1 1Λ(W α ) [1 Λ(f (I( W αA ) | W) )]0 > − >> = −

� ��
 . 

 
Therefore 

 
( )( ) ( )

1α

2

δ

2

1

                 E[ ln f (I(A 0) | W)]

W
I(A 0) A exp Wα ex

E[
p Wα | W

q | ]
2 WE

′ ∇ >
 ∇ =
  

    
> −

�
� � � �

�

 

 
   = [ 0     0] 
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because 
1α

E[ ln f (I(A 0) | )] 0W∇ > =
�

 [see (13.20) on p. 477 of Wooldridge (2010)] and,  

( )( ) ( )2 2I(A 0) A exp W α exp W α | WE 0  =>
−



� � �
 by design.  Finally, then we get 

 

 γ δ 1q ' qE 0  = ∇ ∇  

 
so 
 

 γγ γδ γδ γ

1

γ

1
ˆAVAR( ) E E Aγ̂ q VAR(α) Eq q 'E q

− −
∇ ∇ ∇ ∇       =          

                 3×3        3×2K      2K×2K     2K×3        3×3 
 

    
1 1

γγ γ γ γγq q ' q qE E E
− −

∇ ∇ ∇     +      ∇ .  (H-6) 

             3×3            3×3          3×3 
 
 
Let’s consider each of the individual components of (H-6) in turn. 

 

δ
1

δ 1qE[ ]−−−−∇∇∇∇  

 2K×2K 

 Written out explicitly we have 

 
1 1

2 2

1

1
αα

α α 11

1 1
α 12α

E[ q ] 0
q ]

0 E
[

[
E

q ]−

−

−
 ∇
 ∇ =
 ∇ 

.    (H-7) 

Now 

 
1 1

1
1 1αα 1E ˆAV[ ] )q AR(α− = −∇         (H-8) 

  =  the negative of the asymptotic covariance matrix for first   

   stage, first part, logit estimation in the two-stage estimation  

   protocol for θ.  We get an estimate of this directly from the Stata  

   output. 
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A consistent estimator of 
1 1 1α α 1

1E[ q ]−∇  is 

 

 �
1 1

1
1α 1α 1

ˆ ˆnAVAR *(αE q ] )[ − = −∇       (H-9) 

 

where � 1
ˆAVAR * (α )  is the estimated variance-covariance matrix output by the Stata logit 

procedure.  Also 

 

 ( )( ) ( )
2 2α 212 I(A 0) A eq xp Wα W W2 exp α∇ = > −

� � �
 

 
and 
 

 ( )( ) ( ) ( )
2 2α 2 2 2α 12 I(A 0) A exp Wα exp Wαq exp Wα W W2   ′> − −∇


=  

� � � � �
. 

 
Therefore 

 

 ( )( ) ( ) ( )
2 2α 12α 2 2 2I(A 0) A exp Wα exp WαE[ exp WE αq W2 W]   ′> − −  

 ∇ =
  

� � � � �
.   

(H-10) 

 

A consistent estimator of 
2 2 2α

1
α 1E[ q ]−∇  is 

 
 

( )( ) ( ) ( ){ }2 2 i i i 2 i 2

1
n

1
α α 12 1

i 1
i 2 i iI(A 0) A exp W α exp W α exp W α WÊ[ q ] n 2 W

−
−

=

∑   ′> − − 
 

∇ =    

� � � � �

           (H-11) 

 

where 1n  is the size of the subsample for whom I(A 0) 1> = , so 
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1 1

2 2

1
α1 1

αα

α

α 11

δδ 1 1 1
α 12

[ qÊ
ˆ ˆE[ E[

Ê

] 0
q ] q ]

0 [ q ]−

−

− −
 ∇
 ∇ = ∇ =
 ∇ 

.  (H-12) 

  

 

  

δ 1 δ 1q ' qE ∇ ∇∇ ∇∇ ∇∇ ∇          

        2K×2K 
 
 Written out explicitly we have 
 

 [ ] 1 1 1 2

2 1 2 2

α 11 α 11 α 11 α 12

α 1 α 1
α 12 α 11 α 12 α 12

E[ q ' q ] E[ q ' q ]
q ' q

E[ q ' q ] E[ q ' q ]
E =

∇ ∇ ∇ ∇ 
∇ ∇  

∇ ∇ ∇ ∇  
.             (H-13) 

Because the first stage, first part, estimator of 1ρ  is MLE we can write 

 

 [ ]
1 1 1 1α 11 α 11 α α

1

111E[ q ' q ] E[ ˆAVARq ] (α )
−

∇ ∇ − ∇ ==  

   =  the inverse of the asymptotic covariance matrix for first stage,  

first part, logit estimation in the two-stage estimation 

 protocol for θ.  We get an estimate of this directly from the Stata  

output. 

 

A consistent estimator of 
1 1α 11 α 11E[ q ' q ]∇ ∇  is 

 

 �
1 1

1

α α11 11 1

1
ˆAVARÊ[ q ' *(α )

n
q ]

−
 =
 

∇ ∇                (H-14) 

 

where � 1
ˆAVAR * (α )  is the estimated variance-covariance matrix output by the Stata logit 

procedure.  The remainder of the block elements follow from 
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1 111α α 1 1q ln f (I(A 0) | W) I(A W0)[1 Λ( I(A 0α )] [1 Wα ) W)]Λ(∇ = ∇ > = > − − − >
� � ��

 

           (H-15) 
 

 ( )( ) ( )
2α 2 212 I(A 0) A eq xp Wα W W2 exp α∇ = > −

� � �
.              (H-16) 

 

where the formulation of 
1 1α 1q∇  comes from equation (16.4.8) on p. 350 of Fomby et al. 

(1984) and Λ(  ) denotes the logistic cdf.  The remaining required consistent matrix 

estimators are: 

 

 
1 2 1 2

n

α 11 α 12 α 11i α 12i
i 11

1ˆ ˆ ˆE[ q ' q ] q ' q
n =

∑∇ ∇ = ∇ ∇                (H-17) 

 
2 2 2 2

n

α 12 α 12 α 12i α 12i
i 11

1ˆ ˆ ˆE[ q ' q ] q ' q
n =

∑∇ ∇ = ∇ ∇                (H-18) 

 
where 
 

 
1α 11i i i i i 1 i1W )]ˆ ˆ ˆq I(A 0)[1 Λ( α I(A 0[1 W ) W)]Λ( α∇ =  − − > − > 

� � �
            (H-19) 

 
and 
 

 ( )( ) ( )
2 i i 2 iα 12i i i2

ˆ ˆI( 0) A exp W α exp Wq̂ 2 α WA > −∇ =
� � �

             (H-20) 

so 

 
1 1 1 2

2 1 2 2

11 11 11 12

1 1 1 1δ δ

12 11

ρ ρ ρ ρ

ρ ρ

ρ 12 1ρ ρ 2ρ

[ q ' q ] [ q ' q ]
q ' q q ' q

[ q ' q ] [ q

ˆ ˆE E
ˆ ˆ

'
E E

ˆ ˆE E q ]

 ∇ ∇ ∇ ∇
 ∇ ∇ ∇ ∇
 ∇ ∇ ∇ ∇

   = =





 �� �� .    

            (H-21) 

γδqE ∇∇∇∇    
      

   2×2K 
 
 Written out explicitly we have 
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 γ κ a ν bq = [( q 0) (0 q ) ]∇ ∇ + +∇   

 

  κ a ν b[ q q ] ∇ ∇=       

 

  ( ) ( )2 (α, W) κ   (α, W) ν   = − −
 

� �
K V               (H-22) 

 
and 
 

 1 2

1 2

κα a κα a

γδ

να b να b

E[ q ] E[ q ]
E[ q] =

E[ q ] E[ q ]

∇ ∇ 
∇  

∇ ∇  
  

  
1 2

1 2

α α

α α

E[ ] E[ ]
= 2

E[ ] E[ ]

∇ ∇ 
 

∇ ∇  

K K

V V
                (H-23) 

where 

 
1α 1 1 P1 1 2{λ(W α )[1 2Λ(W α )]α W λ(W α )[1 0 ... 0]}exp(W α )∇ = − +

� � � � �
K  

        1 2 P2λ(W α ) exp(W α )α W+
� � �

 

  1 2 1 P1 P2λ(Wα )exp(Wα ) {[1 2Λ(Wα )]α + α }W [1 0 ... 0] = − + 

� � � �
  (H-24) 

 

2α 1 2 P1 1 2 P2 2λ(W α ) exp(W α )α W + Λ(W α ){exp(W α )α W exp(W α )[1 0 ... 0]}=∇ +
� � � � � � �

K  

  2 1 P1 1 P2 1exp(Wα ) {λ(Wα )α + Λ(Wα )α }W Λ(Wα )[1 0 ... 0] = + 

� � � � �
.   

           (H-25) 

 
1α 1 2λ(Wα )exp(Wα ) W∇ =

� � �
V                 (H-26)  

and 

 
2 1α 2Λ(Wα )exp(Wα ) W∇ =

� � �
V .                (H-27) 

 
The following equalities were used in deriving the above results 
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 aΛ(a) λ(a) Λ(a)[1 Λ(a)]∇ = = −  

 aλ(a) λ(a)[1 2Λ(a)]∇ = − . 

 
The requisite consistent matrix estimators are 

 

 �
1 1

n

iα
i

α
1

Ê[ ] =
=
∑∇ ∇K K                        (H-28) 

 

 �
2 2

n

iα
i

α
1

Ê[ ] =
=
∑∇ ∇K K                  (H-29) 

 

 �
1 1

n

iα
i

α
1

Ê[ ] =
=
∑∇ ∇V V                   (H-30) 

 
and 
 

 �
2 2

n

iα
i

α
1

Ê[ ] =
=
∑∇ ∇V V                   (H-31) 

 
where  

 �
1 iα 1 2 1 P1 Pi i i2i

ˆ ˆλ(W )exp(W ) {[1 2Λ(W )]α + α }ˆ ˆ ˆα α W [1 0 ...α 0] = − + ∇
� � � �

K              

           (H-32) 

 �
2 2 1 P1 1 Pα i 2i ii 1i i

ˆ ˆexp(W ) {λ(W )α + Λ(W )α }W Λ(W )[1 0 ..ˆ ˆ . 0ˆ ˆα ]α α α =  ∇ +
� � � � �

K           

           (H-33) 

 �
1 1 2α i i ii

λ(W )exp(Wˆ ˆ= α α ) W∇
� � �

V                 (H-34) 

and 

 �
1 1 2α i i ii

Λ(W )exp(Wˆ ˆ= α α ) W∇
� � �

V .                (H-35) 

so 
 



173 

 
1 2

1 2

α α

γδ

α α

ˆ ˆE[ ] E[ ]
Ê[ q] = 2

ˆ ˆE[ ] E[ ]

 ∇ ∇
 ∇
 ∇ ∇ 

K K

V V
.                (H-36) 

 
 
 

γγ
1E[ q]−−−−∇∇∇∇   

    2×2 

 
[ ]

[ ]

1

κκ a
γγ

νν

1

b

1 E 0
E

q
q

q0 E

−
−

−

 
 

∇
∇

∇
 =   

 

                       (H-37) 

because κν a νκ bq q 0∇ = ∇ = .  Now 

 

 κκ a νν bq q 2∇ = ∇ = −   

 
therefore 

 
1

γγ

1
0

2
E

1
0

q

2

−

 
− 

  =   

 

∇
−


.                  (H-38) 

 
 

γ γq' qE ∇ ∇∇ ∇∇ ∇∇ ∇    
      

        2×2 

 Given that 

 

 ( ) ( )γ 2 (α, W) κ  (α, Wq ) ν   = − −
 

∇
� �

K V .                (H-39) 

 
we have 

 

γ 2γ

2E[( (α, W) κ) ] E[( (α, W) κ)( (α, W) ν)]
E 4

E[( (α, W) κ)( (α, W) ν)] E[( (α, W) ν)
q ' q

]

 − − −
  =   

− − −
∇

 
∇



� � �

� � �
K K V

K V V
. 
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           (H-40) 
 
The corresponding consistent estimator is 

 

 

n n
2

i i i
i 1 i 1

γ γ
n n

2
i i i

i 1 i 1

1 1 ˆˆ ˆˆ ˆ ˆ( κ) ( κ)( ν)
n n

Ê 4
1 1ˆ ˆˆ ˆ ˆ ˆ( κ)( ν

q ' q

) ( ν)
n n

= =

= =

∑ ∑

∑ ∑

 
− − − 

  =   
 − − −
  

∇ ∇

K K V

K V V

.              (H-41) 

 
 
Based on the above results, we can consistently estimate (H-5) as 
 
 

 � �1 1

γγ γ γ γδ δ γ
ˆ ˆ ˆ ˆˆˆAVAR(γ) E E Aq q qVAR(α) qE E

− −′    ∇   =     ∇ ∇ ∇   

     
1 1

γγ γ γ γγq q ' q qˆ ˆ ˆE E E
− −

∇ ∇ ∇     +      ∇  

 
and using well known results from asymptotic theory for two-stage estimators, we can 

show that51 

 �
1 d
2ˆ ˆAVAR(γ) n (γ γ) N(0, I)

−

− → .                 (H-42) 

 
Combining (H-42) with (H-1) we also have that 

 

 
�

1
d

UPOL UPOL UPOL2ˆ ˆavar(η ) n (η η ) N(0, I)
−

− →               (H-43) 

 

where 
�UPOLˆavar(η )  is given in (H-1). 

  

                                                 

51Discussions of asymptotic theory for two-stage optimization estimators can be found in 
Newey & McFadden (1994), White (1994, Chapter 6), and Wooldridge (2010, Chapter 
12).    
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Appendix I.   

Bias from Using UPOLη̂ Instead of UPOη̂  in a Model of Alcohol Demand 

From equations (4-6) of chapter 4 and (3-10) of chapter 3, we can write the bias using the 

UPOL approach vs. the UPO method as the following rendition of the difference between 

elasticities obtained from unrestricted PO model with log prices (UPOL), i.e., UPOLη̂  and 

those obtained from unrestricted PO model with nominal prices (UPO), i.e., UPOη̂ .  

    [UPOL UPO
P1 X1 P2 X 2 P1η η {E λ(P α Xα ) exp(P α Xα )α− = + +     

       ]P1 X1 P2 X2 P2Λ(Pα Xα ) exp(Pα Xα )α+ + +     

        
[ ]P1 X1 P2 X2

1
}

E Λ(Pα Xα ) exp(Pα Xα )
×

+ +
 

 

        [ 1 X1 2 X2 1E λ( a Xa ) exp( a Xa )a− + +P P PP P    

        ]1 X1 2 X2 2Λ( a Xa )exp( a Xa )a+ + +P P PP P     

         
[ ]

[ ]1 X1 2 X2

E

E Λ( a Xa ) exp( a Xa )
×

+ +P P

P

P P
 

   
     

 [ P1 X1 P1 X1 P2 X2 P1{E Λ(Pα Xα )[1 Λ(Pα Xα )]exp(Pα Xα )α= + − + +     

       ]P1 X1 P2 X2 P2Λ(Pα Xα ) exp(Pα Xα )α+ + +     

        
[ ]P1 X1 P2 X2

1
}

E Λ(Pα Xα ) exp(Pα Xα )
×

+ +
 

 
 

  [ 1 X1 1 X1 2 X2 1E Λ( a Xa )[1 Λ( a Xa )]exp( a Xa )a− + − + +P P P PP P P     
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       ]1 X1 2 X2 2Λ( a Xa ) exp( a Xa )a+ + +P P PP P     

        
[ ]

[ ]1 X1 2 X2

E

E Λ( a Xa ) exp( a Xa )
×

+ +P P

P

P P
. (I-1) 

 
If we define 

 1 2v E[Λ(Wa )exp(Wa )]≡         

 2
1 2u E[Λ(W a ) exp(W a )]≡         

 [ ]m E=P P  

 1 2ν E[Λ(W α ) exp(W α )]≡
� �

 

and 

 2
1 2ω E[Λ(W α ) exp(W α )]≡

� �
 

where i i iW [P X ]=
�

 denotes the observation on W [P X]=
�

 for the ith individual in the 

 sample (i = 1, ..., n), with P expressed as log of alcohol price, and     

 i i iW [ X ]= P  denotes the observation on W [ X]= P  for the ith individual in  

 the sample (i = 1, ..., n), P with expressed as nominal price of alcohol.   

  

  AL UPO 1P1 P2 [(v u) a va ]m[(ν ω)α να ]
η η

ν v

− +− +
− = − P P2 P     

   P1 P2 1

ω u
1 α α 1 a a m
ν v

      
= − + − − +      

      
P P2 P  .   (I-2) 
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Appendix J.   

Asymptotic Distribution (and Standard Error) of UPOL UPOˆ ˆη η−  

 

In Appendix I we showed that 

 UPOL UPO
P1 P2 1 2

ω u
η η 1 α α 1 a a m

ν v

      
− = − + − − +      

      

��

��
P P P       

 
where 

 1 2ν E[Λ(Wα )exp(Wα )]≡ �� ����         

 2
1 2ω E[Λ(W α ) exp(W α )]≡ �� ����         

 1 2v E[Λ(Wa )exp(Wa )]≡
� �

        

 2
1 2u E[Λ(Wa ) exp(Wa )]≡

� �
        

 [ ]W P    X=��   

 [ ]W     X=
�

P   

and 
 

 [ ]m E≡P P              

 
 
Using the corresponding consistent estimators for ω, ν, v��  and ω��  say 

 

 
n

i
i 1

1ˆ ˆω Ω(α, W )
n=

∑= ����  

 
n

i
i 1

1
ˆν = (α, W )

n=
∑

�
���� V  
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n

i
i 1

1
ˆv̂ = V(a , W )

n=
∑

�
 

 
n

i
i 1

1
ˆû U(a , W )

n=
∑=

�
 

and 

 
n

i
i 1

1
m̂

n=
∑=P P  

 
2

1 2Ω(α, W) Λ(W α ) exp(W α )=�� �� �� ��  

 
1 2(α, W ) Λ (W α ) exp(W α )=

�� �� �� ��V   

 1 2V(a , W) Λ(W a )exp(W a )=
� � �

   

 2
1 2U(a , W) Λ(Wa ) exp(Wa )=

� � �
 

 1 2
ˆ ˆ ˆα [α α ]'′ ′=  (with 1 1 X1

ˆ ˆ ˆα = [α α ]′ ′
P  and 2 2 X 2

ˆ ˆ ˆα = [α α ]′ ′
P

) is the consistent  

  estimate of the parameter vector 1 2α [α α ]'′ ′=  (with 1 1 X1α = [α α ]′ ′
P  and 

  2 2 X2α = [α α ]′ ′
P )  [the parameters of equation (4-6)] obtained via the  

  two-part protocol culminating in (4-4) using the nominal prices of alcohol 

 1 2
ˆ ˆ ˆa [a a ]'′ ′=  (with 1 1 X1

ˆ ˆ ˆa = [a a ]′ ′
P  and 2 2 X2

ˆ ˆ ˆa = [a a ]′ ′
P ) is the consistent  

  estimate of the parameter vector 1 2a [a a ]'′ ′=  (with 1 1 X1a = [a a ]′ ′
P  and  

  2 2 X2a = [a a ])′ ′
P ) [the parameters of equations (3-6) and (3-7),  

  respectively] obtained via the unrestricted two-part protocol culminating  

  in (3-8)  using the log prices of alcohol 

 

and i i iW [P X ]=��  denotes the observation on W [P X]=��  for the ith individual in the 

sample  
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(i = 1, ..., n), and i i iW [ X ]=
�

P  denotes the observation on W [ X]=
�

P  for the ith 

individual in the sample (i = 1, ..., n). 

 

Let 

P1 P2 1 2
ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆτ = [α α  a a  ω ν   u v  m ]′�� ��

P P P   

and 

 P1 P2 1 2τ = [α α  a a  ω ν   u v  m ]′�� ��
P P P , where ˆplim[τ] = τ .   

If we could show that 

 

 

1 d
2ˆ ˆAVAR(τ) n (τ τ) N(0, I)

−

− →  

 
where the formulation of ˆAVAR(τ)  is known, then we could apply the δ-method to 

obtain the asymptotic variance of UPOL UPOˆ ˆη η−  as 

 

 UPOL UPOˆ ˆ ˆavar(η η ) c(τ) AVAR(τ) c(τ) '− =  
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where P1

2
P1

1

2
1

1 2

ω
        1

ν

              1   

u
   m 1   

v

         m

c(τ)        α / ν

        α ω / ν

      m a / ν

  m a u/ ν

u
1 a a

v

′  
−  

  
 
 

  − −   
 

− 
 = −
 
 
 
 
 −
 
  

− − −  
  

 

��

��

��

�� ��

P

P

P P

P P

P P

.   

Moreover, if we have a consistent estimator for ˆAVAR(τ) , say �̂AVAR(τ)  [i.e. 

�̂ ˆp lim AVAR (τ) AVAR (τ)  =
 

],  then we could consistently estimate 

UPOL UPOˆ ˆavar(η η )− as 

 

 
� �UPOL UPOˆ ˆ ˆ ˆ ˆavar(η η ) c(τ) AVAR(τ) c(τ) '− = .     (J-1) 

 
We focus, therefore, on finding the asymptotic distribution of τ̂  and, in particular, the 

formulation of its asymptotic covariance matrix. 

 First note that we can write τ as  

 

 τ Ξ θ=           (J-2) 

 

where θ = [δ γ ]′ ′ ′ , 1 2 1 2δ [α α   a a ]'′ ′ ′ ′= , γ [ω ν   u ν  m  ]′ = �� �� P  (recall, 

1 P1 X1α = [α α ]′ ′  , 2 P2 X2α = [α α ]′ ′ , 1 1 X1
ˆ ˆ ˆa = [a a ]′ ′

P , and 2 2 X2
ˆ ˆ ˆa = [a a ]′ ′

P ).  
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P1

P2

1

2

α

α

a

a

5,4K 5

Ξ

0 I

 
 
− − − − − − − − 
 
 
 − − − − − − − −
 

=  
 
− − − − − − − − 
 
 
− − − − − − − − 
 
 

�

�

�

�

P

P

  

 

a� is the unit row vector with the value “1” in the element position corresponding to the 

element position of a in the vector θ, b,c0  is the matrix of zeros whose row and column 

dimensions are b and c, respectively, dI  is the identity matrix of order d, and K is the 

column dimension of W.  For future reference, let’s set the following vector/matrix 

dimensions: 

 

 1α is K×1 

 2α is K×1 

 1a is K×1 

 2a is K×1 

           W��  is 1×K 

 W
�

 is 1×K 

 τ is 9×1 

 c(τ) is 1×9 

 δ is 4K×1 
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 γ is 5×1 

 θ is (4K+5)×1 

 Ξ  is 9×(4K+5) 

 
P1 P2 1 2α α a a= = = =� � � �

P P
 1×(4K+5) 

   
Clearly then  

 

  ˆˆAVAR(τ) Ξ AVAR(θ) Ξ′=        (J-3) 

 

where θ̂  is the estimator of θ obtained from the following two-stage protocol. 

 
First Stage 

Consistently estimate δ via the following optimization estimator 

 

 

n

1 i
i 1

δ

q (δ, S )
δ̂ = arg max

n
=
∑

�

�

       (J-4) 

where  

 1 i 11 1 i 12 2 i 13 1 i 14 2 iq (δ, S ) q (α , S ) q (α , S ) q (a , S ) q (a , S )= + + +
� �

� �� ��� � � �  

 11 1 i i i 1 i i 1q (α , S ) I(A 0) ln[Λ(W α )] [1 I(A 0)] ln[1 Λ(W α )]= > + − > −�� �� ��� � �  

 ( )( )
2

12 2 i i i i 2q (α , S ) I(A 0) A exp W α= − > −�� ��� �   

 13 1 i i i 1 i i 1q (a , S ) I(A 0) ln[Λ(W a )] [1 I(A 0)] ln[1 Λ(W a )]= > + − > −
� � �

� � �  

 ( )( )
2

14 2 i i i i 2q (a , S ) I(A 0) A exp W a= − > −
� �

� �  

 i i i iS [A X P ]=��  and i i i iS [A X ]=
�

P     
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1 22 1 2δ [α α    a    a ]'′ ′ ′ ′=� � � � � , 1 P1 X1α = [α α ]′ ′� � � , 2 P2 X2α = [α α ]′ ′� � �  , 1 1 X1a = [a a ]′ ′� � �
P

, 

2 2 X2a = [a a ]′ ′� � �
P and  1 22 1 22

ˆ ˆ ˆ ˆ ˆδ [α α    a a ] '′ ′ ′ ′=  

 

 

 

Second Stage 

Consistently estimate γ via the following optimization estimator 

 

 

n

i
i 1

γ

ˆq(δ, γ,  S )
γ̂ = arg max

n
=

∑

�

�

       (J-5) 

where 

 

i a i b i c i d i e i
ˆ ˆ ˆ ˆ ˆ ˆq(δ, γ,  S ) q (δ, ω,  S ) q (δ, ν,  S ) q (δ, u,  S ) q (δ, v,  S ) q (δ, m ,  S )= + + + +

� � �
� �� � ���� �� �� � �

P
 

 2
a i i

ˆ ˆq (δ, ω,  S ) (Ω(α, W ) ω)= − −� �� �� ����� ��  

 2
b i i

ˆ ˆq (δ, ν,  S ) ( (α, W ) ν)= − −
��� �� ����� ��V  

 2
c i i

ˆ ˆq (δ, u,  S ) (U(a , W ) u)= − −
� �

�  

 2
d i i

ˆ ˆq (δ, v,  S ) (V(a , W ) v)= − −
� �

� �  

 2
e i i

ˆq (δ, m ,  S ) ( m )= − −
�

� �
P PP   

1 2 1 2
ˆ ˆ ˆ ˆ ˆδ [α α    a a ] '′ ′ ′ ′=  is the first stage estimator of δ, 

 1 P1 X1
ˆ ˆ ˆα = [α α ]′ ′  , 2 P2 X2

ˆ ˆ ˆα = [α α ]′ ′  , 1 1 X1
ˆ ˆ ˆa = [a a ]′ ′

P
 and 2 2 X2

ˆ ˆ ˆa = [a a ]′ ′
P .  

Use 1q  as shorthand notation for 

  1 11 1 12 2 13 1 14 2q (δ, S) q (α , S) q (α , S) + q (a , S) q (a , S) = + +
� �

�� ��  

 
with 
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 11 1 1 1q (α , S) I(A 0) ln[Λ(W α )] [1 I(A 0)]ln[1 Λ(W α )]= > + − > −�� �� ��  

 ( )( )
2

12 2 2q (α , S) I(A 0) A exp W α= − > −�� ��  

 13 1 1 1q (a , S) I(A 0) ln[Λ(Wa )] [1 I(A 0)] ln[1 Λ(Wa )]= > + − > −
� � �

 

 ( )( )
2

14 2 i i 2q (a , S) I(A 0) A exp W a= − > −
� �

 

 

 S [A X P]=��  and S [A X ]=
�

P .  

 
and use q as shorthand notation for  
 

 a b c d eq(δ,γ,  S) q (δ, ω,  S) q (δ, ν,  S) q (δ, ω,  S) q (δ, ν,  S) q (δ, ,  S)= + + + +
� � �� ��� ���� ��� P  

with 

 2
aq (δ, ω,  S) (Ω(α, W) ω)= − −�� �� ���� ��  

 2
bq (δ, ν,  S) ( (α, W) ν)= − −

���� ���� ��V  

 2
cq (δ, u,  S) (U(a , W) u)= − −

� �
 

 2
dq (δ, v,  S) (V(a , W) v)= − −

� �
 

 2
eq (δ, m ,  S) ( m )= − −

�

P PP   

and let ˆAVAR(δ)  denote the asymptotic covariance matrix of the first stage estimator.52  

Using well known results from asymptotic theory for two-stage estimators, we can show 

that53 

                                                 

52 Note that a consistent estimate ˆAVAR(δ)  can be obtained from the packaged output 

for the first stage estimator because the first stage estimator is unaffected by the fact that 
it is a component of a two-stage estimator.  
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1 d
2ˆ ˆAVAR(θ) n (θ θ) N(0, I)

−

− →       (J-6) 

 

where ˆˆ ˆθ = [δ γ ]′ ′ ′ ,  ˆplim(θ) = θ  

 

 
11 12

12 22

D D

D D
ˆAVAR(θ)

 
=  ′ 

       (J-7) 

 

 11
ˆAVAD R(δ)=         (J-8) 

  4K×4K 

 [ ]12 δδ 1 δ 1 γ γγ

11
E ED q q ' q E q

−−
= ∇ ∇ ∇      ∇  

  
[ ] [ ] [ ]δδ 1 δ 1 δ 1 δδ 1 γ

1

γ

1

δ

1

γE q q ' q q q qE E E E
−− −

∇ ∇
′   − ∇ ∇   ∇ ∇  (J-9) 

 

 22 γγ γδ γ

1

δ
ˆˆAVAR (γ) E E AVD q q qAR (δ)E '

−
  =   =     ∇ ∇ ∇  

  [ ]γ δ 1 δδ 1 γδ

1
q ' q qE E E q

−
∇ ∇

′  −   ∇  ∇  

   [ ]γδ δδ 1 γ δ 1 γ

1

γ

1
q q q ' q qE E E ' E

−−      −    ∇ ∇
∇ ∇ ∇    

    
1 1

γγ γ γ γγq q ' q qE E E
− −

∇ ∇ ∇     +      ∇ .   (J-10) 

 
Fortunately, (J-9) and (J-10) can be simplified in a number of ways.  First note that we 

can write 

 

 γ δ 1 γ δ 1q ' q q 'E W]E |E [ q∇    = ∇  ∇  ∇
�

 

                                                                                                                                                 

53Discussions of asymptotic theory for two-stage optimization estimators can be found in 
Newey & McFadden (1994), White (1994, Chapter 6), and Wooldridge (2010, Chapter 
12).    
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but 

 δ 1 δ 11 δ 12 δ 13 δ 14q = q q q q∇ ∇ + ∇ + ∇ + ∇  

with 

 
1δ 11 αq [ ln f (I(A 0) | W) 0 0 0]∇ = ∇ > ��  

 

 ( )( ) ( )δ 12 2 2I(A 0) A exp W α exq 0 2 0 0p W α W ∇ =
 

> − �� �� ��  

 
1δ 13 aq 0 0     ln f (I(A 0) | W)    0 ∇ = ∇ > 

�
  

 ( )( ) ( )2δ 214 I(A 0) A exq 0 0  p Wa    0     2 exp Wa W> ∇ =   
−

� � �
  

where 

 I(A 0) [1 I(A 0)]
1 1Λ(W α ) [1f (I( Λ(A 0) W) W α )]| > − >=> −�� ��� �  . 

 I(A 0) [1 I(A 0)]
1 1Λ(Wa ) [1 Λ(f (I( WaA ) | W) )]0 > − >> = −

� ��
. 

Therefore 

 
( )( ) ( )

( )( ) ( )

1

1

α

δ 1

a

2 2

2 2

E[ ln f (I(A 0) | W)]

2E

E[ q | W]
E[ ln f (I(A 0) | W)]

2E

I(A 0) A exp W α exp W α | W W

I(A 0) A exp Wa exp Wa | W W

′ ∇ >
 
  

  
∇ =  

∇ > 
  
  

> −

 
−

 
>

�� �� �� ��

� � � �

��

�  

 
   = [ 0     0     0    0] 

 

because 
1α

E[ ln f (I(A 0) | W )] 0∇ > =��  and 
1aE[ ln f (I(A 0) | W)] 0∇ > =

�
 [see (13.20) on 

p. 477 of Wooldridge (2010)], ( )( ) ( )2 2I(A 0) A exp W α e W 0WE xp α |>  =
 

− �� �� ��   and 

( )( ) ( )2 2I(A 0) A exp Wa exp Wa | WE 0  =>
−



� � �
 , by design.  Finally, then we get 
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 γ δ 1q ' qE 0  = ∇ ∇  

 
so 

 
[ ] [ ] [ ]12 δδ 1 δ 1 δ 1 δδ 1 γδ γγ

11 1
E E E ED q q ' q q q qE

−− − ′   −   = ∇ ∇ ∇ ∇ ∇ ∇          (J-11) 

      4K×4K           4K×4K        4K×4K    4K×5          5×5 
     4K×5 
 
and 
 

 22 γγ γδ γδ γγ

1 1ˆˆAVAR(γ) E E AVAR(δ) E 'ED q q q q
− −

       =      ∇ ∇ ∇ = ∇  

                           5×5        5×4K      4K×4K     4K×5        5×5 
 
   

    
1 1

γγ γ γ γγq q ' q qE E E
− −

∇ ∇ ∇     +      ∇ .         (J-12) 

             5×5            5×5          5×5 
           5×5 
so 

 

11 1

(4K 5) (4K

2

12 25) 2

D D

4K 4K 4K 5

D D

5 4K

ˆAVAR(

5 5

θ)
+ × +

 
 

× × =
 ′
 

× × 

. 

Let’s consider each of the individual components of (J-6) and (J-7) in turn. 

 

δ
1

δ 1qE[ ]−−−−∇∇∇∇  

 4K×4K 

 Written out explicitly we have 

 

1 1

2 2

1 1

2 2

α α 11

1
α α 12

δδ 1 1
a a 13

a 1

1

1

1
a 4

E[ q ] 0 0 0

0 E[ q ] 0 0
q ]

0 0 E[ q ] 0

0 0 0 E[

[

]

E

q

−

−

−

−

−

 ∇
 
 ∇
 ∇ =
 ∇
 
 ∇ 

.         

(J-13) 
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Now 

 
1 1

1
1 1α α 1E ˆAV[ ] )q AR(α− = −∇                   (J-14) 

  =  the negative of the asymptotic covariance matrix for first   

   stage, first part, logit estimation in the two-stage estimation  

   protocol for θ.  We get an estimate of this directly from the Stata  

   output. 

 

A consistent estimator of 
1 1α α 11

1E[ q ]−∇  is 

 

 �
1 1

1
α 1 1α 1

ˆ ˆnAVAR *(αE q ] )[ − = −∇                 (J-15) 

 

where � 1
ˆAVAR * (α )  is the estimated variance-covariance matrix output by the Stata logit 

procedure.  Also 

 

 ( )( ) ( )
2α 2 212 I(A 0) A exp Wα expq 2 Wα W>∇ = − �� �� ��  

 
and 
 

 ( )( ) ( ) ( )
2 2α α 2 212 2I(A 0) A exp Wα exp Wα exp Wα W Wq 2   ′> − −


∇


= �� �� �� �� �� . 

Therefore 

 

 ( )( ) ( ) ( )
2 2α 2α 1 2 22 I(A 0) A exp Wα exp Wα expE[ q ] 2E Wα W W  ′> − − ∇ =    

�� �� �� �� �� . 

                     (J-16) 

 

A consistent estimator of 
2 2

1
α α 12E[ q ]−∇  is 
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( )( ) ( ) ( ){ }2 2

1
n

1
α 12 1α i i i 2 i 2 i 2 i i

i 1

I(A 0) A expÊ[ q ] W α exp W α exp W α Wn W2
−

−

=

∑   ′> − −


 
∇ =   

�� �� �� �� ��

                     (J-17) 

 

where 2α̂  is the first stage, second part, estimator of 2α  , and 1n  is the size of the 

subsample for whom I(A 0) 1> = .  

Similarly,  

 
1 1

1
1 1a a 3E ˆAV[ ] )q AR(a− = −∇                   (J-18) 

  =  the negative of the asymptotic covariance matrix for first   

   stage, first part, logit estimation in the two-stage estimation  

   protocol for θ.  We get an estimate of this directly from the Stata  

   output. 

 

A consistent estimator of 
1 1a a 13

1E[ q ]−∇  is 

 

 �
1 1

1
a 1 1a 3

ˆ ˆnAVAR *(aE q ] )[ − = −∇                 (J-19) 

 

where � 1
ˆAVAR * (a )  is the estimated variance-covariance matrix output by the Stata logit 

procedure.  Also 

 

 ( )( ) ( )
2 2a 213 I(A 0) A eq xp Wa W W2 exp a∇ = > −

� � �
 

 
and 
 

 ( )( ) ( ) ( )
2 2 2 2 2a a 14 I(A 0) A exp Wa exp Waq exp Wa W W2   ′> − −∇


=  

� � � � �
. 

Therefore 
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 ( )( ) ( ) ( )
2 2a a 14 2 2 2I(A 0) A exp Wa exp WaE[ exp WE aq W2 W]   ′> − −  

 ∇ =
  

� � � � �
. 

                     (J-20) 

 

A consistent estimator of 
2 2

1
a a 14E[ q ]−∇  is 

 
 

( )( ) ( ) ( ){ }2 2 i i i 2 i 2

1
n

1
a a 14 1

i 1
i 2 i iI(A 0) A exp W a exp W a exp W a WÊ[ q ] n 2 W

−
−

=

∑   ′> − − 
 

∇ =    

� � � � �

 

            (J-21) 

 

where 2â  is the first stage, second part, estimator of 2a  , and 1n  is the size of the 

subsample for whom I(A 0) 1> = .  

 
 
 
so 

 

 

1 1

2 2

1 1

2 2

α α 11

1
α α 12

δδ 1 1
a a 13

1

a a

1

1
14

Ê

Ê
Ê[

ˆ

[ q ] 0 0 0

0 [ q ] 0 0
q ]

0 0 [ q ] 0

0 0 0 [

E

qÊ ]

−

−

−

−

−

 ∇
 
 ∇
 ∇ =
 ∇
 
 ∇ 

.         

            (J-22) 

 

δ 1 δ 1q ' qE ∇ ∇∇ ∇∇ ∇∇ ∇          

        4K×4K 
 
 Written out explicitly we have 
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 [ ]

1 1 1 1

1 2 1 2

2 2 2 2

1 2 1 2

1

1

α 11 α 11 α 11 α 11

α 11 α 12 a 13 a 14

α 12 α 12 α 12 α 12

α 11 α 12 a 13 a 14

δ 1 δ 1

a 13

α 1

q ' q ' q ' q '

q q q q

q ' q ' q ' q '

q q q q
q

E E E E

E E E

' q
q

E

'

q

E

E

∇ ∇ ∇ ∇

∇ ∇ ∇ ∇

∇

       
       
              

       
       
            

∇ ∇ ∇

∇ ∇ ∇ ∇
∇ ∇

∇

∇

 
=

1 1 1

2 1 2

2 2 2 2

1 2 1 2

a 13 a 13 a 13

1 α 12 a 13 a 14

a 14 a 14 a 14 a 14

α 11 α 12 a 13 a 14

q ' q ' q '

q q q

q ' q ' q ' q '

q q

E E E

E E E
q q

E

       
       
              

       
       
 

 
 
 
 
 
 
 
 ∇ ∇ ∇
 
 ∇ ∇ ∇
 
 ∇ ∇ ∇ ∇
 

∇ ∇ ∇ ∇              

.        

                    (J-23) 

 

Because the first stage, first part, estimator of 1α  is MLE we can write 

 

 [ ]
1 1 1 1α 11 α 11 α α

1

111
ˆE[ q ' q ] E[ AVARq ] )α(

−
∇ ∇ − ∇ ==  

   =  the inverse of the asymptotic covariance matrix for first stage,  

first part, logit estimation in the two-stage estimation 

protocol for θ.  We get an estimate of this directly from the 

Stata output. 

 

A consistent estimator of 
1 1α 11 α 11E[ q ' q ]∇ ∇  is 

 

 �
1 1α 11 α 1

1

1 1

1
ˆAVARÊ[ q ' *(α )

n
q ]

−
 =
 

∇ ∇                (J-24) 

 

where � 1
ˆAVAR * (α )  is the estimated variance-covariance matrix output by the Stata logit 

procedure.   
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Similarly, because the first stage, first part, estimator of 1a  is also MLE we can write 

 

 [ ]
1 1 1 1a 13 a 13 a a

1

113E[ q ' q ] E[ ˆAVARq ] (a )
−

∇ ∇ − ∇ ==  

   =  the inverse of the asymptotic covariance matrix for first stage,  

first part, logit estimation in the two-stage estimation 

protocol for θ.  We get an estimate of this directly from the 

Stata output. 

 

A consistent estimator of 
1 1a 13 a 13E[ q ' q ]∇ ∇  is 

 

 �
1 1a 13 a 1

1

3 1

1
ˆAVARÊ[ q ' *(a )

n
q ]

−
 =
 

∇ ∇                (J-25) 

where � 1
ˆAVAR * (a )  is the estimated variance-covariance matrix output by the Stata logit 

procedure.   

The remainder of the block elements follow from 

 
 

1 1 1 1α 11 αq ln f (I(A 0) | W) I(A 0)[1 Λ( I(W α )] [1 W α ))]Λ( WA 0∇ = ∇ > = > − > − − 
� �� �� ���  

                       
(J-26) 

 

 ( )( ) ( )
2 2α 212 I(A 0) A exp Wα expq 2 Wα W>∇ = − �� �� �� .     (J-27) 

 

1 1a 13 a 1 1q ln f (I(A 0) | W) I(A W0)[1 Λ( I(A 0a )] [1 Wa ) W)]Λ(∇ = ∇ > = > − − − >
� � ��

 

                       
(J-28) 

 

 ( )( ) ( )
2 2a 214 I(A 0) A eq xp Wa W W2 exp a∇ = > −

� � �
.    (J-29) 
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where the formulation of 
1α 11q∇  and 

1a 13q∇  comes from equation (16.4.8) on p. 350 of 

Fomby et al. (1984) and Λ(  ) denotes the logistic cdf.  The remaining required consistent 

matrix estimators are 

 

 
1 2 1 2

n

α 11 α 12 α 11i α 12i
i 11

1ˆ ˆ ˆE[ q ' q ] q ' q
n =

∑∇ ∇ = ∇ ∇                (J-30) 

 

 
2 2 2 2

n

α 12 α 12 α 12i α 12i
i 11

1ˆ ˆ ˆE[ q ' q ] q ' q
n =

∑∇ ∇ = ∇ ∇                (J-31) 

 

 
1 1 1 1

n

α 11 a 13 α 11i a 13i
i 11

1ˆ ˆ ˆE[ q ' q ] q ' q
n =

∑∇ ∇ = ∇ ∇                (J-32) 

 

 
2 1 2 1

n

α 12 a 13 α 12i a 13i
i 11

1ˆ ˆ ˆE[ q ' q ] q ' q
n =

∑∇ ∇ = ∇ ∇                (J-33) 

 

 
1 2 1 2

n

α 11 a 14 α 11i a 14i
i 11
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where 
 

 
1α 11i i i i i i1 1

ˆW α )] [1 W )ˆ ˆq I(A 0)[1 Λ( I(A 0)]Λ( α W − −∇ = > − > 
�� �� ��    (J-38) 

 
 

 ( )( ) ( )
2α 12i i i 2 i 2i iˆ ˆI( 0) A exp W α exq̂ α2 A p W W∇ > −= �� �� ��     (J-39) 
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1a 13i i i i i 1 i1W )]ˆ ˆ ˆq I(A 0)[1 Λ( a I(A 0[1 W ) W)]Λ( a∇ =  − − > − > 

� � �
   (J-40) 

 
and 
 

 ( )( ) ( )
2 i i 2 ia 14i i i2

ˆ ˆI( 0) A exp W a exp Wq̂ 2 a WA > −∇ =
� � �

             (J-41) 

so 
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            (J-42) 

 

γδqE ∇∇∇∇    
      

   5×4K 
 
 Written out explicitly we have 
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v d
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( q  0  0  0 0)
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′∇ + + + + 
 

+∇ 
 +∇∇
 

+∇ 
 +∇ 
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P

  

 

  ω a ν b u c v d m e[ q q    q q     q ] ∇ ∇ ∇ ∇ ∇= �� ��
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( ) ( ) ( ) ( ) ( )2 Ω(α, W) ω  (α, W) ν    U(a, W) ω  V(a, W) ν     m = − − − − −  

� �� ����� �� ���� ��
PV P  

                               
           (J-43) 
 
and 
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             (J-44) 

 
where 

 
1 1α 1 22Λ(W )λ(W ) exp(W )Ω α Wα α∇ = �� �� ��� ���                (J-45) 

 

 
2

2
α 1 2Λ(W α ) exp(W WΩ α )=∇ �� ��� ���                 (J-46) 

 
1 1α 2λ(W α ) exp(W α ) W∇ = �� ���� ��V                 (J-47) 

 
2 1α 2Λ(W α ) exp(W α ) W∇ = �� ���� ��V                 (J-48) 

 
1 1a 1 22Λ(Wa )λ(Wa )exp(U Wa ) W=∇

� � � �
               (J-49) 

 

 
2

2
1 2a Λ(Wa ) exp( aU W )W=∇

� � �
                (J-50) 

 
1 1a 2λ(Wa )exp( aV W ) W∇ =

� � �
                 (J-51) 

 
2 1a 2Λ(Wa )exp( aV W ) W∇ =

� � �
                 (J-52) 
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and  

 ωa a ωa b va a va b uα c uα d vα c vα d m δ eq q q q q q q q q 0∇ = ∇ = ∇ = ∇ = ∇ = ∇ = ∇ = ∇ = ∇ =�� �� �� �� P
. 

                              (J-53) 

Note that 

 aΛ(a) λ(a) Λ(a)[1 Λ(a)]∇ = = −  

 aλ(a) λ(a)[1 2Λ(a)]∇ = − . 

 
The requisite consistent matrix estimators are 
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Ê[ Ω] = Ω
=
∑∇ ∇�� ��                   (J-55) 
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�
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 �
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n

a a ii 1

Ê[ U] = U
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 �
2 2

n

a a ii 1

Ê[ U] = U
=
∑∇ ∇                   (J-59) 

 

 �
1 1

n

a a ii 1

Ê[ V] = V
=
∑∇ ∇                   (J-60) 

 
and 
 

 �
2 2

n

a a ii 1

Ê[ V] = V
=
∑∇ ∇                        (J-61) 
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where  
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1 1 1i i 2α i ii
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�

2α i i 2 ii 1Λ(W ) exp(ˆ ˆ= α )αW W∇ �� ��� ���
V                 (J-65) 
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1 1 1 2a i i i ii
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� � � �

               (J-66) 
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2a i ii
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                (J-67) 
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1 1 2a i i ii

λ(W ) exp(Wˆ ˆV = a a ) W∇
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                (J-68) 

and 

 �
2 1 2a i i ii

Λ(W ) exp(Wˆ ˆV = a a ) W∇
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                (J-69) 

so 
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γγ
1E[ q]−−−−∇∇∇∇   

    5×5 
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                              (J-71) 

because ij kq 0∇ =  where { } { }i, j ω, v, u, v, ; k= a, b,c,d, e  am nd i j= ≠�� ��
P .    

Now 

 ωω a νν b uu c vv d m m eq q q q q 2∇ = ∇ = ∇ = ∇ = ∇ = −�� �� ����
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γ γq ' qE ∇ ∇∇ ∇∇ ∇∇ ∇    
      

        5×5 

 Given that 
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( ) ( ) ( ) ( ) ( )iγ 2 Ω(α, W) ω  (α, W) ν   U(a, W) u  V(a, W) v     m  q  ∇  = − − − − −  

� ����� �� ���� ��
PV P . 

                            (J-73) 

we have 
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The corresponding consistent estimator is 
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                   (J-75) 

Based on (J-8), (J-11) and (J-12) and using the two-stage estimator θ̂  we can consistently 

estimate (J-7) as 
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and using well known results from asymptotic theory for two-stage estimators, we can 

show that54 
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.                         (J-76) 

 
 
 
 
************************************************************************ 
ASIDE: 

Notice that the “ n  blow up” is a bit tricky here.  It implements n  for 1α̂ , ω̂ , ν̂  and 1â

; but uses 1n  for 2α̂ and 2â . We had to do this because we had to use the correct 

sample size (viz., 1n ) for a number of the components of 
�̂
AVAR(θ)  [viz., those that 

pertained to the estimation of 2ρ̂ , and 2α̂  ]; in particular (J-17), (J-21), (J-30) through (J-

37).  For this reason we had to be explicit about the denominators in all of the averages 

for the components of 
�̂
AVAR(θ) .  This meant that in the construction of the requisite 

                                                 

54Discussions of asymptotic theory for two-stage optimization estimators can be found in 
Newey & McFadden (1994), White (1994, Chapter 6), and Wooldridge (2010, Chapter 
12).    
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asymptotic t-stats we had to explicitly include the “blow-up” in the numerator (i.e., we 

had to multiply by the square-root of the appropriate sample size).  I refer to this as 

“tricky” because one typically does not have to do this.  In the usual asymptotic t-stat 

construction the denominators of the averages (“n”) need not be included in the 

construction of the asymptotic covariance matrix because it typically manifests as a 

multiplicative factor and, after pulling the diagonal and taking the square root to get the 

standard errors, this multiplicative n  cancels with the “blow-up” factor in the 

numerator.  For example, the asymptotic t-stat of the OLS estimator is 

 

 
� ( ) ( )

k k k k k k k k

1 1 12 2
2 kk kk

kk

ˆ ˆ ˆ ˆn (ρ ρ ) n (ρ ρ ) n (ρ ρ ) (ρ ρ )

ˆAVAR(ρ) ˆ ˆn σ σ1
σ̂

n

− − −

− − − −
= = =

′ ′ 
′ 

 

XX XX
XX

  

where 

 n is the sample size 

 kρ  is the coefficient of the kth regressor in the linear regression 

 kρ̂  is its OLS estimator 

 2σ  is the regression error variance estimator 

 X is the matrix of regressors 

 

and kk′XX  is the kth diagonal element of ′XX .  Note how the “ n s” simply cancel. 

Note also that what we typically refer to as the “asymptotic standard error” can actually 

be written as the square root of the diagonal element of the consistent estimator of the 

asymptotic covariance matrix divided by n; in other words 
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 asy std err =   
�̂AVAR(ρ)

n
.  

***********************************************************************   

Now back to the issue at hand.  Moreover 

 

 
�

P1 P1

1 P2 P2

1 1

1 2 21 d
2

ˆn(α α )

ˆn (α α )
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ˆˆAVAR(τ) n N(0, I)n(ω ω)

ˆn (ν ν)
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ˆn (v v)
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−
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 
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 
 −
 
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 
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 
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P P

P P

P P

.               (J-77)  

 
where 

 

 �
�̂

ˆAVAR(τ) ΞAVAR(θ) Ξ '=                   (J-78) 

 
and τ and Ξ are defined as in (J-2).  Now combining (J-1) with (J-77) and (J-78) we get 

 

 
� ( ) ( )

1
d

UPOL UPO UPOL UPO UPOL UPO2ˆ ˆ ˆ ˆavar(η η ) n η η η η N(0, I)
−

 − − − − →
 

             

           (J-79) 

where 

 

 
� �UPOL UPOˆ ˆ ˆ ˆ ˆavar(η η ) c(τ) AVAR(τ) c(τ) '− =   

and 



204 

 P1

2
P1

1

2
1

1 2

ω
        1

ν

              1   

u
   m 1   

v

         m

c(τ)        α / ν

        α ω / ν

      m a / ν

  m a u/ ν

u
1 a a

v

′  
−  

  
 
 

  − −   
 

− 
 = −
 
 
 
 
 −
 
  

− − −  
  

 

��

��

��

�� ��

P

P

P P

P P

P P

. 
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