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Serum biomarkers in Duchenne muscular dystrophy (DMD) may
provide deeper insights into disease pathogenesis, suggest new
therapeutic approaches, serve as acute read-outs of drug effects,
and be useful as surrogate outcome measures to predict later clin-
ical benefit. In this study a large-scale biomarker discovery was
performed on serum samples from patients with DMD and age-
matched healthy volunteers using a modified aptamer-based pro-
teomics technology. Levels of 1,125 proteins were quantified in
serum samples from two independent DMD cohorts: cohort 1 (The
Parent Project Muscular Dystrophy–Cincinnati Children’s Hospital
Medical Center), 42 patients with DMD and 28 age-matched normal
volunteers; and cohort 2 (The Cooperative International Neuromus-
cular Research Group, Duchenne Natural History Study), 51 patients
with DMD and 17 age-matched normal volunteers. Forty-four pro-
teins showed significant differences that were consistent in both
cohorts when comparing DMD patients and healthy volunteers at
a 1% false-discovery rate, a large number of significant protein
changes for such a small study. These biomarkers can be classified
by known cellular processes and by age-dependent changes in pro-
tein concentration. Our findings demonstrate both the utility of this
unbiased biomarker discovery approach and suggest potential new
diagnostic and therapeutic avenues for ameliorating the burden of
DMD and, we hope, other rare and devastating diseases.
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There is an urgent need for a reliable surrogate biomarker or
set of biomarkers for Duchenne muscular dystrophy (DMD),

ideally based on readily accessible and measurable molecules (1).
DMD is a severe form of myopathy with an incidence of about 1
in 3,600–9,337 boys worldwide (2, 3), and is a result of different
types of mutations in the X-linked DMD gene that abolish the
expression and biological activity of dystrophin, an essential pro-
tein for muscle-fiber plasma membrane integrity and myofiber
function (4, 5). Clinically, the disease is characterized by pro-
gressive muscle wasting, leading to loss of ambulation by 8–15 y
of age and early death from complications from respiratory,
orthopedic, and cardiac problems (2, 6).
Several current drug-development programs are focused on

slowing or preventing the progressive muscle loss in DMD either
in conjunction with the standard of care treatment or as stand-
alone therapies. Standard of care is currently chronic high-dose
glucocorticoids, which are able to prolong ambulation by 3–4 y
(7, 8) and slow disease progression, but are associated with a
significant array of side effects (2, 6, 9, 10). Promising thera-
peutic approaches for DMD include restoring expression of the
dystrophin gene via exon-skipping strategies (11–13), viral-based
gene therapies (14, 15), and nonsense suppression/read-through
strategies (16). Other genetic approaches include delivering

minidystrophins, up-regulation of utrophin to compensate for
the missing dystrophin, and many others (17). Pharmacological
strategies in development include dissociative steroid drugs,
which offer the potential of greater efficacy and lesser side ef-
fects (18), other anti-inflammatory therapies, and effectors of
signaling pathways (19). The current primary clinical endpoint
used for determining efficacy in the majority of these therapeutic
approaches for ambulatory boys with DMD is the “six-minute
walk test” (20, 21), although it is not ideal (22).
Blood provides a circulating protein representation of all body

tissue in both normal and pathological conditions, and serum
proteins are emerging as useful biomarkers for diagnosis and
prognosis of a growing number of diseases (23, 24). Mass spec-
trometry (MS)-based proteomic screens recently have proved
successful at de novo biomarker identification in DMD (25).
However, verification and validation of MS-discovered serum
biomarkers remain challenging (24). Other approaches, such as
multiplexed antibody or aptamer-based assays, are being con-
sidered for proteome screens because of their potential for
higher throughput and better sensitivity, which may help overcome
the validation challenges of identified biomarkers. For example, a
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recent study using an antibody-based array against 384 target
proteins identified 11 protein biomarkers of disease across dif-
ferent muscular dystrophies from patient samples gathered
from four different clinical sites (26). In addition, a modified
aptamer-based technology (the SOMAscan assay) is emerging as
another highly sensitive and multiplexed assay for biomarker
discovery and validation (27–29). Based on novel reagents (Slow
Off-rate Modified Aptamers, or SOMAmer reagents) that rec-
ognize specific conformational epitopes of native 3D proteins
with high specificity and high sensitivity (30–32), the SOMAscan
assay measures levels of 1,125 analytes in only 65 μL of serum
over a wide dynamic range (>8 logs of concentration). Because
the SOMAscan assay relies on the availability of the protein
epitopes (i.e., the epitopes are not blocked by other protein
binding, posttranslational modifications, and so forth), what is
measured in the assay and the actual protein concentration in the
sample being interrogated is frequently but not always corre-
lated. In the same manner, ELISAs for the same proteins also
are frequently but not always correlated.
Because blood is the preferred diagnostic clinical material, and

biomarkers in the blood can differ by several orders-of-magnitude
in abundance, the SOMAscan assay may be a path forward to
identify and verify key blood-based biomarkers for DMD and other
diseases. We used the SOMAscan technology to screen for protein
biomarkers associated with DMD using serum samples from two
independent cohorts collected in different locations and run at
different times (cohort information in Demographics, Characteris-
tics, and Enrollment Criteria of the PPMD-C and CINRG Cohorts
and Dataset S1). The first cohort analyzed was from The Parent
Project Muscular Dystrophy–Cincinnati Children’s Hospital
Medical Center (hereafter PPMD-C), which included the goal
of identifying alternative treatment paths (i.e., nondystrophin-
centric) for patients with DMD. The second cohort analyzed was
from The Cooperative International Neuromuscular Research
Group, Duchenne Natural History Study (hereafter CINRG)
(33), which included the goal of identifying changes in bio-
markers with age in patients with DMD. In the present study,
we compared the data from these two independent studies.
This process enabled us to identify 44 biomarkers in the blood
associated with DMD: 24 that are significantly increased and 20
that are significantly decreased in patients with DMD.
These data suggest new protein targets and biomarkers for

further DMD studies. The data also may facilitate future clinical
studies designed to identify new therapeutics for DMD, as well
as further demonstrating the utility of the SOMAscan assay
technology for identifying protein biomarkers for both rare and
common diseases. We are making our data fully available to the
DMD research community to enable further studies that may be
suggested by these findings.

Results
Independent SOMAscan Assay Analyses on Two DMD Cohorts. Two
independent DMD natural history cohorts were used in this
study. The PPMD-C cohort comprised 42 DMD patients (2–27 y
old) and 28 healthy male volunteers (4–28 y old, most often from
the DMD male sibling pool). The CINRG cohort comprised 51
DMD patients (age range 4–29 y old) and 17 healthy male vol-
unteers (age range, 6–18 y old). The demographics, character-
istics, and enrollment criteria of the two cohorts are summarized
in Demographics, Characteristics, and Enrollment Criteria of the
PPMD-C and CINRG Cohorts and Dataset S1. In the initial
analysis, the PPMD-C study design included steroid treatment
for a subset of patients and the CINRG study included ambu-
latory status. Steroid treatment had no statistically significant
effect on the 44 protein biomarkers described below, and am-
bulatory status was relevant only insofar as it related to in-
creasing age but had no statistically significant effect on the

results. Our standard quality-control protocols detected no sig-
nificant difference in the samples from the two cohorts.
Serum samples were tested using the SOMAscan protein

biomarker discovery assay (SomaLogic), which detects 1,125
proteins simultaneously using 65 μL of serum. At a 1% false-
discovery rate (FDR) (Materials and Methods), based on SOMAscan
assay data from a total of 93 DMD patients and 45 age-matched
controls from the two cohorts, we identified 44 proteins that
consistently differed in the serum in both cohorts when comparing
DMD patients vs. controls. The UniProt names and a measure
of differential expression [the signed Kolmogorov–Smirnov (KS)
distance] for these 44 proteins in each cohort are shown in Table 1,
along with an indicator of each protein’s known enrichment in
muscle tissue. The entire 1,125 protein SOMAscan assay results
for each cohort independently are listed in Dataset S2.
Of the 44 protein biomarkers that were significantly different

between DMD and controls, detected levels increased for 24 and
decreased in 20 in DMD patients compared with normal con-
trols. Fig. 1 shows the empirical cumulative distribution functions
(CDFs) for six representative proteins from the combined cohort
analysis [three proteins that are increased are troponin 1 fast
skeletal muscle (TNNI2), myoglobin (MB), heat-shock protein
70 (HSPA1A); and three that are decreased are proto-oncogene
tyrosine-protein kinase receptor Ret (RET), gelsolin (GSN),
bone sialoprotein 2 (IBSP) in DMD patients vs. controls]. These

Fig. 1. Representative CDFs of proteins that are up or down in DMD pa-
tients vs. controls from both cohorts. Up proteins: (A) Troponin I, fast skeletal
muscle, (B) myoglobin, (C) heat-shock protein 70. Down proteins: (D) RET,
(E) gelsolin, (F) bone sialoprotein 2.
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examples range from the highest KS distance (near 1 or −1) to
the lowest significant (near 0.5 or −0.5) for both the “up” and
“down” groups, respectively. The CDFs of all 44 proteins iden-
tified in both cohorts are provided in Fig. S1.

Correlation Between Biomarker Levels and Age of DMD Patients. In
this DMD study, age is a proxy for disease severity, because older
patients have more advanced disease. Because multiple biological
samples over time from individual patients were not available, we

Table 1. Proteins that increase (positive KS distance) or decrease (negative KS distance) significantly in DMD patients vs. controls in
both PPMD-C and CINRG cohorts

Protein name (UniProt)
Gene name
(UniProt)

PPMD-C signed
KS distance

CINRG signed
KS distance

Average
KS Rank

Muscle
enriched

Age-related
change

group no.

Troponin I, fast skeletal muscle TNNI2 1.000 0.918 0.959 1 Yes 1
Carbonic anhydrase 3 CA3 0.964 0.938 0.951 2 Yes 1
Fatty acid-binding protein, heart FABP3 1.000 0.882 0.941 3 Yes 1
Troponin I, cardiac muscle TNNI3 0.917 0.961 0.939 4 Yes 1
Creatine kinase M-type CKM 0.976 0.839 0.908 5 Yes 1
Mitogen-activated protein kinase 12 MAPK12 1.000 0.797 0.898 6 Yes 1
Alanine aminotransferase 1 GPT 0.738 0.941 0.840 7 No 1
Myoglobin MB 0.857 0.820 0.838 8 Yes 1
Fibrinogen FGA FGB FGG 0.810 0.784 0.797 9 No 1
Phospholipase A2, membrane associated PLA2G2A 0.762 0.800 0.781 10 No 3
Acidic leucine-rich nuclear phosphoprotein 32

family member B
ANP32B 0.821 0.706 0.764 11 No 1

Hepatoma-derived growth factor-related
protein 2

HDGFRP2 0.738 0.691 0.715 12 No 3

40S ribosomal protein S7 RPS7 0.690 0.734 0.712 13 No 1
Glucose-6-phosphate isomerase GPI 0.774 0.604 0.689 14 Yes 1
Heparin cofactor 2 SERPIND1 0.560 0.813 0.686 15 No 3
Persephin PSPN 0.595 0.757 0.676 16 No 3
Calcium/calmodulin-dependent protein

kinase II α
CAMK2A 0.738 0.586 0.662 17 Yes 1

Malate dehydrogenase, cytoplasmic MDH1 0.595 0.706 0.651 18 Yes 1
L-lactate dehydrogenase B chain LDHB 0.631 0.608 0.619 19 Yes 1
Aminoacylase-1 ACY1 0.643 0.577 0.610 20 No 1
Proteosome subunit α type-2 PSMA2 0.571 0.600 0.586 21 No 3
C-X-C motif chemokine 10 CXCL10 0.560 0.600 0.580 22 No 3
cAMP-dependent protein kinase catalytic

subunit α
PRKACA 0.560 0.570 0.565 23 No 1

Heat-shock 70 kDa protein 1A/1B HSPA1A 0.476 0.600 0.538 24 Yes 1
Proto-oncogene tyrosine-protein kinase

receptor Ret
RET −0.917 −0.961 −0.939 1 No 2

Growth/differentiation factor 11 GDF11 −0.667 −0.941 −0.804 2 No 4
Complement decay-accelerating factor CD55 −0.762 −0.745 −0.754 3 No 4
Cadherin-5 CDH5 −0.821 −0.675 −0.748 4 No 2
Tumor necrosis factor receptor superfamily

member 19L
RELT −0.786 −0.706 −0.746 5 No 4

Gelsolin GSN −0.750 −0.718 −0.734 6 Yes 4
Wnt inhibitory factor 1 WIF1 −0.679 −0.714 −0.697 7 No 2
Contactin-5 CNTN5 −0.655 −0.702 −0.678 8 No 2
Prolyl endopeptidase FAP FAP −0.643 −0.659 −0.651 9 No 2
Jagged-1 JAG1 −0.679 −0.613 −0.646 10 No 2
Netrin receptor UNC5C UNC5C −0.560 −0.718 −0.639 11 No 2
Kunitz-type protease inhibitor 1 SPINT1 −0.667 −0.597 −0.632 12 No 2
Protein SET SET −0.500 −0.722 −0.611 13 No 2
Disintegrin & metalloproteinase

domain-containing protein 9
ADAM9 −0.595 −0.600 −0.598 14 No 2

Cell adhesion molecule L1-like CHL1 −0.583 −0.589 −0.586 15 No 2
Osteomodulin OMD −0.452 −0.718 −0.585 16 No 2
WAP, Kazal, Ig, Kunitz and NTR

domain-containing protein 1
WFIKKN1 −0.464 −0.699 −0.581 17 No 4

Bone sialoprotein 2 IBSP −0.476 −0.613 −0.544 18 No 2
Interleukin-34 IL34 −0.488 −0.558 −0.523 19 No 2
Neurogenic locus notch homolog protein 3 NOTCH3 −0.488 −0.550 −0.519 20 No 2

Signed KS distances are given for each protein in both cohorts, along with their average value to emphasize consistency in the two cohorts. Proteins known
to be enriched in muscle tissue are indicated as such. The last column lists the “group” number for each protein based on their concentration as a function of
age (see Results, Discussion, and Fig. 2 and Fig. S2).
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instead examined the age-dependence in protein levels across the
whole cohort. Proteins were screened using a single protein linear
regression model to identify candidates where patient age was a
useful predictor of protein concentration. We identified four
general groupings of differential protein changes for the 44 bio-
markers identified in this study (Fig. 2, Table 1, and Fig. S2).
Group 1 has protein biomarkers that were at their highest

levels in young patients with DMD—far higher than in normal
controls—and then decreased as a function of age in DMD while
remaining relatively unchanged or increasing slightly with age in
controls (18 proteins, represented by creatine kinase) (Fig. 2A).
Group 2 has proteins that changed with age in DMD and

controls, but which were significantly lower in patients at most
ages (15 proteins, represented by RET) (Fig. 2B).
Group 3 has protein biomarkers that changed with age in DMD

and controls, but which were significantly higher in patients at most
ages (six proteins, represented by phospholipase A2) (Fig. 2C).
Group 4 has protein biomarkers whose concentrations were

very similar between DMD and controls at an early age, but then
decreased with age in DMD patients while increasing in controls
[five proteins, represented by growth differentiation factor 11
(GDF11)] (Fig. 2D).
Age-related regression plots for all 44 proteins are available

in Fig. S2.

Discussion
Using the SOMAscan assay, we identified 44 circulating serum
biomarkers associated with DMD patients vs. healthy controls from
two independent cohorts with a 1% FDR-corrected significance
level. Although some of us are experts in this field, in the following
discussion we have tried to minimize hypothesizing about the po-
tential meaning of the markers discovered in this study so as to
provide the wider DMD community an unbiased opportunity to
pursue these results following their own interpretations.

The most striking differences between DMD patients and
controls were observed in the young age range (4–10 y old),
where the most significant biomarkers were elevated up to two
orders-of-magnitude in serum samples of DMD patients relative
to healthy volunteers (group 1 proteins). These biomarkers then
declined with age and disease progression. These “creatine ki-
nase-like” proteins (Fig. 2A) are mostly of muscle origin and
their early elevation in blood is likely associated with muscle
damage/cell death and inflammation at an early early age, and
their subsequent decline with age is most likely the result of loss
of muscle mass in the DMD patients.
The high-to-low change in concentration of these creatine

kinase-like proteins likely reflects high myofiber membrane in-
stability/damage, necrosis, and leakage of cytoplasm into the ex-
tracellular space. This group includes muscle-enriched proteins
such as creatine kinase M-type (CK-M) itself, fatty acid binding
protein 3 (FABP3), myoglobin (MB), carbonic anhydrase III
(CA3), malate dehydrogenase (MDH1), lactate dehydrogenase
B (LDHB), glucose phosphate isomerase (GPI), Hsp70 (HSPA1A),
troponin I, fast skeletal muscle (TNNI2), troponin I, cardiac muscle
(TNNI3), mitogen-activated protein kinase 12 (MAPK12), and
calcium-calmodulin–dependent protein kinase IIα (CAMK2A).
Most of these muscle leakage proteins have been previously
reported by others to be elevated in DMD boys relative to
healthy volunteers (25, 26), except for Hsp70, MAPK12, and
CAMK2A, which are novel to this study.
We also identified several proteins (all group 2) that are as-

sociated with connective tissue remodeling, including prolyl en-
dopeptidase FAP (FAP), protein jagged-1 (JAG1), bone sialoprotein
2 (IBSP), ADAMmetallopeptidase domain 9 (ADAM9), cadherin-5
(CDH5), neural cell adhesion molecule L1-like protein (CHL1),
osteomodulin (OMD), and contactin-5 (CNTN5). Each of these
proteins was found to be significantly lower in DMD patients
than in controls at all ages. These proteins may regulate con-
nective tissue remodeling in skeletal muscle.
Several other proteins identified in this study are functionally

associated with inflammation and innate immune pathways, in-
cluding: group 2 protein interleukin-34 (IL-34); group 3 proteins
C-X-C motif chemokine 10 (CXCL10), phospholipase A2
(PLA2G2A), and hepatoma-derived growth factor-related pro-
tein 2 (HDGFRP2); and group 4 proteins CD55/complement
decay-accelerating factor (CD55) and RELT tumor necrosis
factor receptor (RELT). These proteins do not show significant
change as a function of age, with the two exceptions of CD55
(decreases with age in DMD and increases with age in controls)
and fibrinogen (increases with age in both DMD and controls).
Two of the above group 3 proteins (PLA2G2A and CXCL10)
are of particular interest because they could be useful pharma-
codynamic biomarkers to monitor efficacy of anti-inflammatory
agents in DMD patients. Phospholipase A2 activity has been
reported to be dramatically increased (10-fold) in the skeletal
muscle of DMD patients relative to controls and is associated
with muscle inflammation (34), consistent with the high serum
levels reported here. CXCL10 is an extracellular chemokine and
its elevation in serum could be associated with increased T-cell
infiltration in inflamed skeletal muscle (35).
Another intriguing protein that emerged from our studies is

the group 3 protein persephin, a member of the GDNF family of
neurotrophic factors. Persephin signals through the RET re-
ceptor tyrosine kinase-mitogen–activated protein kinase path-
way, and is known to be expressed in skeletal muscle, motor
neurons and, perhaps, Schwann cells (26). Although its role in
motor neurons is uncertain, persephin may be involved in the
reinnervation process, as it has been observed to stimulate neurite
outgrowth in oculomotor neurons (36). Thus, the increased de-
tection of persephin and decreased detection of RET (group 2)
levels in DMD patients vs. controls (Table 1) could be a marker of
the ongoing denervation/reinnervation that is occurring. In terms

Fig. 2. Example proteins from the four “types” of age-related changes in
protein signal levels seen in DMD patients (red) vs. controls (blue) from both
cohorts. (A) Group 1, creatine kinase; (B) group 2, RET; (C) group 3, phos-
pholipase A2; (D) group 4, growth-differentiation factor 11.
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of biomarkers, lower concentrations of persephin and increased
concentrations of RET may be biomarkers for therapeutic ap-
proaches that stabilized the muscle fibers and stabilized innerva-
tion. Although the significance of these particular data must first
be addressed in animal models of DMD, it is exciting to think of
the possibilities for these biomarkers for diseases and therapies.
The group 4 proteins from this study are also worth noting

[CD55, growth differentiation factor-11 (GDF-11), gelsolin (GSN),
RELT, and WAP, Kazai, Ig, Kunitz, and NTR domain-containing
protein (WFIKKN1)]. All five of these proteins are initially at
similar levels at a young age between DMD patients and controls,
but then decrease significantly with age in DMD while increasing
with age in controls, although the meaning of these changes in
concentration is unclear (see below).
GDF-11 is of particular interest, given recent studies that have

suggested that exogenous GDF-11 can reverse age-related car-
diomyopathy (37) and skeletal muscle deterioration (38) in mice.
Our data would be consistent with the hypothesis that GDF-11 is
a candidate for potentially ameliorating the cardiomyopathy as
well as skeletal muscle deterioration seen in patients with DMD.
However, there are two significant questions that must be ad-
dressed. First, it is not clear that we are measuring GDF-11 spe-
cifically and not its close homolog GDF-8 (myostatin). To that end,
experiments are underway using new and highly specific GDF-11
and GDF-8 SOMAmer reagents we recently developed. Second,
there are several published preclinical and clinical studies aimed at
inhibiting GDF-8 for the treatment of muscular disorders and it is
likely that these approaches inhibit GDF-11 as well as GDF-8, with
no discernible detrimental effects, or even with positive effects
(39–42). Perhaps the clearest thing that can be said is that the
relative benefits of inhibiting GDF-8 vs. increasing GDF-11 (and
the biological interplay of those two proteins) requires further study.
Thus, it is important to keep in mind three issues as one

contemplates SOMAscan data: epitope counting, causality, and
directionality. The X-ray structures for SOMAmers bound to
their protein targets (29) make clear that SOMAmers recognize
conformational protein epitopes, and (as noted above) any
component of the sample (other proteins bound to the target,
posttranslational modifications, and so forth) that alters epitope
availability or shape may be reflected as an “up” or a “down” in
the SOMAscan data. In that sense, MS provides a complemen-
tary measure for the absolute protein concentration (usually as
peptides after proteolysis). When a value does go up or down the
temptation is to ascribe causality to that change, when in fact
correlation is more likely than causality. “Elevator science” must
be followed by experimental tests of causality, which will be influ-
enced by directionality. Biological networks and homeostatic reg-
ulation allow two opposite interpretations of the same data. If a
protein (epitope) is elevated in a disease condition, for example,
one might ascribe causality to that elevation and counter the ele-
vation with an antagonist, such as an antibody or other drug. Al-
ternatively, the elevated biomarker might reflect homeostatic
regulation and the proper intervention could be to provide more of
the protein that was elevated. This distinction is not trivial: separate
biotech companies have often pursued biologics and antagonists for
the same protein for the same disease until clinical data decided the
directionality. Directionality decisions always require data.
The data for the proteins that are very high early in life for

DMD patients and that diminish in blood as muscle mass de-
creases (group 1 in Fig. 2A and Fig. S2) suggest that significant
muscle cell death is occurring very early in life, perhaps even
during embryonic development. However, it is striking that the
total absence of dystrophin does not cause abrupt muscle cell
death: the decrease we see in these proteins suggests that the
number of muscle cells in DMD patients decreases by a median half-
life of ∼7.2 y. This observation suggests that the balance between
muscle stem cell-derived muscle mass preservation and dystrophin-
less-derived muscle loss is a slow battle. This relative “slowness” of

muscle cell death may provide an opportunity for a novel
nondystrophin-centric treatment option for DMD patients that
tips the balance in favor of muscle preservation, at least for a
longer period. Cell culture studies and a mouse study in either
the dystrophin-negative mouse or the utrophin-dystrophin
double-knockout mouse could be designed to test all secreted
proteins to determine, in an unbiased manner, if GDF-11,
GDF-8, or any other growth factor (or even anti-inflammatory
or membrane stabilization small molecule compounds) or an-
tagonists of those proteins can slow the loss of muscle mass
over time, independent of dystrophin restoration. We also hope
there is a role for small oral drugs that will work intracellularly
to extend muscle cell survival in DMD patients.
Finally, we have recently been given access to an unpublished

SOMAscan study on the mdx mouse model with confirmation of
some mouse biomarker data with human samples. That study
provides additional novel data, including responses of the iden-
tified biomarkers to treatment.
Using the SOMAscan assay, we have discovered a rich set of

protein biomarkers that change with age in serum from two
different cohorts of patients with DMD and age-matched con-
trols. We are planning to extend these findings by running these
and many additional DMD and control samples, as well as sam-
ples from the full spectrum of Becker muscular dystrophy patients,
in an imminent new version of the SOMAscan assay that will
measure several thousand additional proteins. However, it is
our hope that research and clinical experts in DMD can use
the markers described here to pursue potential improvements
in clinical trial designs, and to generate new diagnostic and ther-
apeutic approaches to this devastating disease. We also believe
that SOMAscan can be applied with equal success to many dif-
ferent rare diseases; when proteomic changes are large, as they are
in DMD, even small clinical studies can be informative.

Materials and Methods
PPMD-C and CINRG Cohort Samples.
PPMD-C cohort. Samples and clinical and demographic data were from DMD
patients (n = 42) and healthy age-matched volunteers (n = 28). Institutional
approval came from the Cincinnati Children’s Hospital Medical Center In-
stitutional Review Board and informed consent was obtained from patients
or their parent or legal guardian.
CINRG cohort. For the CINRG cohort, sera samples and clinical and demographic
data from DMD patients (n = 51) and age-matched healthy volunteers (n = 17)
were collected through the Cooperative International Neuromuscular Research
Group Duchenne Natural History Study. The study protocol was approved by
Institutional Review Boards at all participating institutions, and informed
consent was obtained from patients or their parent or legal guardian.

Demographics, characteristics, and enrollment criteria of the two cohorts
are summarized in Demographics, Characteristics, and Enrollment Criteria of
the PPMD-C and CINRG Cohorts and Dataset S1.

SOMAscan Assay. The SOMAscan proteomic assay is described more exten-
sively elsewhere (27–29). In brief, each of the 1,125 proteins measured in
serum by the version of the SOMAscan assay performed in this study has its
own targeted SOMAmer reagent, which is used as an affinity binding re-
agent and quantified on a custom Agilent hybridization chip.

DMD and control samples were randomly assigned to plates within the each
assay run alongwith a set of calibration and normalization samples. No identifying
information was available to the laboratory technicians operating the assay.

Intrarun normalization and interrun calibration were performed accord-
ing to SOMAscan v3 assay data quality-control procedures as defined in the
SomaLogic good laboratory practice quality system. Samples from the PPMD-C
and CINRG cohorts were assayed independently and data from all samples
passed quality-control criteria and were fit for analysis.

Analysis of SOMAscan Assay Results. SOMAscan proteomic data are reported in
relative fluorescence units (RFU), as previously described (27). RFU data were
log-transformed before statistical analysis to reduce heteroscedasticity. The
nonparametric KS test was used to identify differentially expressed proteins
between DMD and controls. The KS test statistic is an unsigned quantity; here
we include a sign to indicate the direction of the differential expression, with a
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positive test statistic indicating higher protein levels in DMD patients than in
controls. We show the empirical CDF of the protein levels as an accurate
representation of the underlying signals in the two patient populations. In all
cases the ordinant represents the fraction of patients with signal levels below the
corresponding abscissa reported in log10 RFU. In statistical tests we account for
multiple comparisons by reporting the FDR computed using the BH method (43)
in the p.adjust function in the R base package, stats (44). All statistical analysis
performed with the R language for statistical computing v3.1.2 (2014-10-31).
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