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Abstract
High-resolution isotropic three-dimensional reconstructions of human brain gray and white matter
structures can be characterized to quantify aspects of their shape, volume and topological
complexity. In particular, methods based on fractal analysis have been applied in neuroimaging
studies to quantify the structural complexity of the brain in both healthy and impaired conditions.
The usefulness of such measures for characterizing individual differences in brain structure
critically depends on their within-subject reproducibility in order to allow the robust detection of
between-subject differences. This study analyzes key analytic parameters of three fractal-based
methods that rely on the box-counting algorithm with the aim to maximize within-subject
reproducibility of the fractal characterizations of different brain objects, including the pial surface,
the cortical ribbon volume, the white matter volume and the grey matter/white matter boundary.
Two separate datasets originating from different imaging centers were analyzed, comprising, 50
subjects with three and 24 subjects with four successive scanning sessions per subject,
respectively. The reproducibility of fractal measures was statistically assessed by computing their
intra-class correlations. Results reveal differences between different fractal estimators and allow
the identification of several parameters that are critical for high reproducibility. Highest
reproducibility with intra-class correlations in the range of 0.9–0.95 is achieved with the
correlation dimension. Further analyses of the fractal dimensions of parcellated cortical and
subcortical gray matter regions suggest robustly estimated and region-specific patterns of
individual variability. These results are valuable for defining appropriate parameter configurations
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when studying changes in fractal descriptors of human brain structure, for instance in studies of
neurological diseases that do not allow repeated measurements or for disease-course longitudinal
studies.

Introduction
Fractal properties of the structure of an object capture its self-similarity in shape over a
range of spatial scales or resolutions (Mandelbrot, 1967; Mandelbrot, 1983). Fractal
measures (Hentschel and Procaccia, 1983, Henry et al., 2004) have been used extensively as
estimators of topological complexity in nature, e.g. in river basins (Cieplac et al., 1998),
plant development (Corbit and Garbary, 1995), dendritic arborization of spinal cord neurons
(Milosevic et al., 2006) or the morphology and classification of α ganglion cells in the rat
retina (Jelinec et al., 2011). A number of studies have used fractal measures to characterize
the complexity of grey matter (GM) or white matter (WM) structures of the human brain
(Bullmore et al., 1994; Henry et al., 2004; Lopes and Betrouni, 2009). Several recent
neuroimaging studies have explored fractal measures, for instance, in relation to cognitive
changes and age (Mustafa et al., 2012), in relation to diffuse WM damage (Esteban et al.,
2007) and GM damage (Esteban et al., 2009) in multiple sclerosis, or in relation to GM
neurodegeneration in mild Alzheimer’s disease (King et al., 2010). Fractal measures
complement more standard quantitative analyses of brain structure based on grey matter
volume, cortical thickness (Fischl et al. 2000) or voxel-based morphometry (Ashburner et
al., 2000). Fractal measures describe topological characteristics based on scaling properties
that can provide an estimate of the structural complexity of the object under study, and
changes in structural complexity may occur independent of changes in volume. Phenomena
related to morphological changes in the brain such as neural reorganization, plasticity or
neuronal death may be amenable to fractal quantifications. However, little is known about
the reproducibility of fractal measurements and their sensitivity to variations in key analysis
parameters.

This study analyzes three fractal-based measures (Hentschel and Procaccia, 1983), the
Kolmogorov capacity dimension, the information dimension and the correlation dimension.
All rely on the box-counting algorithm, and key parameters of this algorithm that impact the
reproducibility of these measures are explored. Fractal measures were computed for the pial
surface, the cortical ribbon volume, the white matter volume, and the grey matter/white
matter boundary. Two independently collected datasets were analyzed comprising 50
subjects with three separate scanning sessions and 24 subjects with four scanning sessions
per subject. The reproducibility of fractal measures was assessed by computing intra-class
correlations (Shrout and Fleiss, 1979), derived for volumes and surfaces covering whole
hemispheres, as well as for parcellated brain regions.

Materials and Methods
Dataset A

Dataset A was collected at Indiana University School of Medicine (Indianapolis, IN, USA)
and consisted of 150 T1-weighted scans (NIfTI format) from 50 healthy controls (all males,
24±3.2 years). For each subject, images were acquired during 3 successive visits scheduled
3 weeks apart on a 3.0 Tesla (T) MR scanner (Siemens TRIO, Germany) using a 12-channel
head coil. Anatomical images were acquired using a T1-weighted MPRAGE sequence: TR/
TE = 2300/2.91ms, inversion time (TI) = 900ms, FOV = 256×240×160 mm3, flip angle =
9°, 160 slices, voxel size =1.00×1.00×1.20mm3. The study was approved by the local
Institutional Review Board, and written informed consent was obtained from subjects prior
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to any study procedures. Visual inspection of images did not reveal noticeable undesired
effects such as ringing motion or ghost images.

Dataset B
Dataset B was collected at the Center for Applied Medical Research, University of Navarra
Hospital (Pamplona, Spain) and consisted of 96 T1-weighted scans (NIfTI format) from 24
healthy controls (16 males, 57±8.6 years). For each subject, images were acquired during 4
visits scheduled 45 days apart on a 3.0 Tesla (T) MR scanner (Siemens TRIO, Germany)
using a 12-channel head coil. Anatomical images were acquired using a T1-weighted
MPRAGE sequence: TR/TE = 1620/3.09 ms, inversion time (TI) = 950 ms, FOV =
250×187.5×160mm3, flip angle = 15°, 160 slices, voxel size =0.98×0.98×1.00 mm3.
Subjects participated in the study approved by the Ethics Research Committee of the
University of Navarra, after signing a written informed consent. Visual inspection of images
did not reveal noticeable undesired effects such as ringing motion or ghost images.

Preprocessing and Segmentation
The general workflow for the image and fractal analysis was performed as follows. In order
to approximate an orthogonal orientation, all images were manually reoriented to according
to the Montreal Neurological Institute (MNI) reference brain. This step aims to minimize the
impact of different and non orthogonal orientations on fractal measures (Foroutan-pour et al.
1999). Preprocessing and segmentation of images was performed using the “recon-all”
standard procedure available in the neuroimaging suite FreeSurfer V5.1.0 (http://
surfer.nmr.mgh.harvard.edu) for each session of each subject. Briefly, this process includes
the following steps. First, several preprocessing steps were taken including motion
correction, intensity normalization, removal of extra-cerebral voxels and normalization of
head position along the commissural axis. Second, a segmentation procedure applied to GM
and WM allowed the definition and extraction of several brain objects (Figure 1). These
objects are the cortical ribbon (left and right) and its outer pial surface (left and right), as
well as the white matter and gray/white matter boundary (left and right). The cortical ribbon
and white matter are three-dimensional volumes (1 mm isotropic voxel size) whereas the
pial and gray/white surfaces are expressed as sets of faces and vertices and show sub-voxel
accuracy. Details of the automated preprocessing and segmentation steps of FreeSurfer have
been reported in a number of articles (Dale et al., 1999; Fischl et al., 2001; Fischl et al.,
2002; Fischl et al., 1999; Fischl et al., 2004; Han et al., 2006; Jovicich et al., 2006; Segonne
et al., 2007).

Gray Matter Parcellation
The cerebral cortex was divided into sixty-eight regions according to the gyral-based atlas
proposed by Desikan et al. (2006) available in FreeSurfer (denominated as ‘aparc’).
Furthermore, subcortical GM structures were divided, for each hemisphere, into thalamus,
caudate, putamen, pallidum, accumbens, hippocampus and amygdala. Overall, eighty-two
GM regions were analyzed, corresponding to the GM ‘aparc+aseg’ partition available in
FreeSurfer.

Voxelization of Inner and Outer Surfaces of the Cortical Ribbon
As opposed to the rest of the brain objects and to the parcellated divisions, all of them
represented by volumes, the outer (pial) and inner (gray/white) surfaces of the GM cortical
ribbon were extracted by FreeSurfer as sets of faces and vertices. Since box-counting
methods require volumes instead of mesh structures, a “voxelization” step was required for
both the outer (pial) and inner (gray/white) surfaces. This process did not involve the rest of
brain structures and brain regions analyzed. To perform this step, we used the s2v (surface to
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volume) function available at the iso2mesh toolbox (Fang and Boas, 2009) for Matlab
(freely available at website http://iso2mesh.sourceforge.net/cgi-bin/index.cgi?Home). The
input parameter div defines the number of voxels that will be used in the smallest Euclidean
dimension of the object. In order to avoid undesired volume effects, the parameter was set,
in each individual data set (subject and session), to the range of the smallest dimension
occupied by the mesh formed by faces and vertices. Similar approaches of voxelization or
cube-tiled volumes have also been proposed in the literature (Jiang et al., 2008, King et al.,
2010) for this purpose. Assuming that different approaches might alter the resulting volumes
and thus the fractal measurements, the results referring to these structures should be taken
with caution when looking at them without contrasting other volumetric approaches.

Fractal Measures
All fractal measures explored in this study are based on the box-counting method (Russel et
al., 1980) that is generally applied to sets of points or volume elements. In this study, a set
corresponds to a three dimensional (3D) object (O) formed by voxels. Hence, box- or cube-
counting refers to quantifying, for different 3D grids made of regular cubes of side r, the
number of cubes Nc(r) necessary to fully cover the object. Let us also define Nv (r, i) as the
number of voxels of the object contained at the i -th non-empty cube (1≤i≤ Nc (r)) of side r
(note that empty cubes were not counted). Hence the number of voxels (i.e. volume) of the

object (|O|) can be expressed for a given r as .

Theoretically, the Kolmogorov capacity dimension D0 (widely referred to as the box-
counting dimension, or simply the fractal dimension) is expressed as (Henry et al., 2004)

This measure was later placed into a generalized dimension spectrum (Hentschel and
Procaccia, 1983) where the q -th dimension, denoted as Dq is expressed as

with pi giving the probability of finding a voxel of the object within cube i of size r, i.e.

. As the exponent q increases, fractal measurements take into account higher-
order correlations. In particular, the information dimension (D1) is expressed as

and the correlation dimension (D2) is expressed as
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For a given object, it is always the case that D0≥D1≥ D2 (Henry et al., 2004). Applications
of measures of fractal dimensions to real systems in general and to the brain in particular
have generally been limited to D0, while an evaluation of D1and D2has been infrequent.

In practical applications, when studying objects that are not pure fractals, the limit limr→0 is
not attainable (Henry et al., 2004). Instead, Nc (r) and Nv (r, i) are measured for a limited
range of r values corresponding to intermediate resolutions of the object under study. Then,
estimation of D0 corresponds to the slope obtained by fitting a linear regression (least
squares) on the scatter plot of log(r) versus log(Nc (r)). Analogous linear fits are performed

for D1 (scatter plot of log(r) versus  pi logpi) and for D2 (scatter plot of log(r)

versus ). The linear fits used for these three measurements rely on their scale
invariance, ideally allowing that evaluations at different resolutions or after object re-scaling
do not alter the fractal measurements, at least in the case of pure fractals.

Due to individual differences in brain geometry across subjects, brain regions and surfaces
have different sizes that could lead to volume-effect biases. Hence a grid based on cubes of
side r does not necessarily represent the same spatial resolution across different subjects. For
this reason, r values were obtained as a function of the smallest dimension of the object
under study. Selecting the appropriate resolutions to be evaluated is very important for the
computation of FD measures based on box-counting (Foroutan-pour et al., 1999). The
minimum and maximum resolutions used for grids were set to 5% and 40% of the smallest
Euclidean dimension of the object, respectively. Note that we are expressing a percent and
not an absolute magnitude. This implies that, in order to represent truly equivalent
resolutions, slightly different cube-sizes might be used among subjects. Using very low or
very high resolutions in box-counting methods applied to real objects has been found to
produce inaccurate results (Foroutan-pour et al., 1999).

Under a box-counting approach, there are a number of parameters that can affect the
computation and accuracy of D0, D1and D2:

• GridScales: This parameter corresponds to the number of different cube sizes used,
and thus defines the number of levels of scale that contribute to estimating the
slopes and thus the fractal values. Values of GridScales ranged from 3 to 9 (in
increments of 1). For a given value of GridScales, the smallest and largest cube
sizes were set to 5% and 40% of the smallest Euclidean dimension of the object,
respectively. Intermediate cube sizes were chosen to be equidistant on the log-
scale. Three different scales for an object can be seen in Figure 2A, B and C.

• GridOffsets: For each cube size, a grid is set up in order to compute Nv (r, i) and Nc
(r). The placement of the grid with respect to the object along the three Euclidean
dimensions is known to affect the computation of fractal measures based on the
box-counting method (Barnsley 1988; Feder 1988; Falconer 1990). In order to
avoid systematic bias, a number of randomly offset grid placements were chosen.
The offset coordinates is formed by a set of 3 components {i, j, k} indicating the
starting point of the object with respect to the grid on each Euclidean dimension.
For a given cube of side r, which determines the grid, each offset component can be
from 1 up to r. Offsets were computed independently on each component
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generating random integer numbers uniformly distributed in the range [1,2,…, r].
The number of randomly placed offsets is given by the parameter GridOffsets and
ranges from 1 to 20 in this study. Higher numbers of GridOffsets up to a 100 were
explored in some data sets but did not provide additional information. Three
different offsets for an object and a fixed scale can be seen in Figure 2D, E and F.

• GridMode: Fractal theory suggests that as multiple randomly placed offsets are
sampled, the fractal dimension should correspond to the slope obtained when
including the smallest Nc (r) values found for each cube side r (Barnsley 1988;
Feder 1988; Falconer 1990). Because finding the smallest value for the fractal
dimension of a biological object may sensitively depend on the data acquisition and
other parameters (e.g. the number of GridOffsets), all Nc (r) values were retained
and three different GridModes were pursued, i.e. keeping the smallest Nc (r), the
mean Nc (r) and the largest Nc (r). Respectively, these correspond to GridMode =
min, avg, max.

The influence of these three parameters in quantifying D0is shown in Table 1. These
parameters were studied for the cortical ribbon, pial surface and gray/white matter
boundary both at left and right hemispheres. The most robust configuration of parameters
was later applied in a post-hoc analysis of structural complexity and ICC for cortical and
subcortical GM structures. All computations of fractal measures and their statistical analyses
were performed in Matlab R2012a (Mathworks, Natick, MA, USA).

In order to test our computational procedure, we evaluated a 3D pure fractal, the Menger
sponge (with 5 iterations). Theoretical results of D0are log(20) log(3)≈ 2.7268 whereas our
empirical results were, on average after 50 runs, as accurate as 〈D0〉 = 2.7078 when using
GridMode = min, GridOffsets = 100 and GridScales = 5 (in particular cube sides were
4,8,16,32 and 64). We also observed that the accuracy monotonically increased with
GridOffsets within the range studied (from 1 to 100).

Intra-Class-Correlation of Fractal Measurements
Intra-class-correlation (ICC; Shrout and Fleiss, 1979) is a descriptive statistic widely used to
assess the consistency or reproducibility of quantitative measurements made by different
observers when measuring the same quantity. In our study, those quantitative measurements
are, for each dataset, the values of D0, D1 and D2 for different brain regions and surfaces,
and the “observers” are the scan sessions (three sessions per subject for dataset A and four
sessions per subject for dataset B). The ICC represents a composite of intra-observer and
inter-observer variability. On the one hand, FD descriptors obtained from different scan
sessions of the same subject in a short period of time are desired to be as similar as possible,
in order to show low intra-subject variability across sessions. On the other hand, FD
descriptors are also desired to be specific to each individual, and thus different between
individuals, i.e. are desired to show high inter-subject variability (with respect to the intra-
subject variability). The ICC modality used in this study for both datasets was the two-way
random single measure, also referred to as ICC(2,1) (Rajaratnam, N. 1960, Shrout and
Fleiss, 1979). For the sake of simplicity, from now on, we will refer to it simply as ICC.
Let’s define xij as one measurement provided by observer i when evaluating a subject j. The
linear model for the design corresponds to a two-way random effects model:

This shows that an observation is composed of the grand mean and four deviation terms
from that mean. Parameter a stands for the observers deviations (scanner sessions of the
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same subject), parameter b stands for the target deviations (subjects), ab stands for the
interaction of the former two, and e stands for error. The estimated sources of variation
associated to this model are defined in Table 2, and permit to estimate the ICC coefficient as
follows:

were all k observers evaluate each of all the n targets (subjects). Sources of variation in the
formula are between targets (BMS) and within target divided into between judges (JMS) and
residual (EMS). See Table 2 for details. It ranges from 0 (no agreement among observers),
to 1 (perfect agreement among observers). ICC(2,1) is an estimation of the covariance ratio
between the between targets variability and all four kinds of variability described above,
namely the population value ρ:

The ICC of D0, D1and D2was measured for each GM-object for different configurations of
parameters. Those configurations were determined by different settings of GridScales,
GridOffsets and GridModes. All calculations were performed for both datasets A and B, in
particular to seven different objects: left and right cortical ribbon, left and right pial surface,
as well as the white matter and left and right gray/white matter boundaries. The parameter
configurations with the highest ICC were later applied in a post-hoc analysis to estimate FD
measures from the overall eighty-two cortical and subcortical GM structures. In all cases,
fractal and ICC measurements shown correspond not to a single realization but to the
average obtained after 16 realizations.

Statistical significance for correlations between measurements was set to p<0.05.

Results
For each scanner session of the two datasets, computation of Kolmogorov capacity
dimension (D0), the information dimension (D1) and the correlation dimension (D2) was
performed for seven objects, namely left and right pial surfaces, left and right ribbon, left
and right white surfaces and white matter. The parameters evaluated were GridModes (min,
avg and max), GridOffsets (from 1 to 20) and GridScales (from 3 to 9). The ICC was
computed for all objects and all parameter configurations on each dataset.

Figure 3A shows representative examples of one fractal measure, the Kolmogorov capacity
dimension D0, and its ICC for the left-hemispheric pial surface of dataset A. Several
relationships between key algorithmic parameters and the ICC are evident. First, the three
different settings of the GridMode parameter result in sharp differences in the
reproducibility of estimating D0, i.e. the ICC. Using only either the maximal or minimal
value for D0resulted in large variations in D0estimates across scanning sessions from the
same subject. Instead, stable and consistent estimates were achieved by averaging D0
estimates from all grid offsets, with ICC values achieving very high consistency at around
GridOffsets =15. This strong effect suggests that D0 cannot be stably estimated if only
extreme values are sampled. Instead, averaging over different instantiations of the grid
provide higher ICC. Second, the number of GridScales had little effect on ICC values. Even
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a modest number of GridScales provided stable ICC. These results hold across all objects in
both hemispheres (data not shown).

Figure 3B shows two representative examples of D0estimates for the left pial surface of all
subjects and all scanning sessions derived from the middle panel in Figure 3A. The plot at
the top illustrates D0estimates with low ICC (ICC = 0.20) calculated using suboptimal
parameter settings (GridOffsets = 1, GridScales = 5). The plot at the bottom shows D0
estimates with high ICC (ICC = 0.89; GridOffsets = 20, GridScales = 8).

Because of the superior reproducibility of averaging over all grid offsets, this setting
(GridMode = avg) is used for all further analyses shown in this paper. Figure 4 presents a
comparison of the three fractal measures D0, D1 and D2 for all structures (cortical ribbon,
pial surface, gray/white matter boundary and white matter) obtained from dataset A.
Cortical ribbon, pial surface and gray/white matter boundary are shown for both left and
right brain hemispheres. All plots are heat maps visualizing ICC across variations of the two
parameters GridOffsets and GridScales. Consistent with data shown in Figure 3, ICC values
plateau at around 15 GridOffsets and the number of GridScales has relatively little effect.
High ICC values of at least 0.8 are achieved for all objects under study, with highest ICC
values obtained for the gray/white matter boundary and white matter structures. Across
measures and for all objects and both data sets, ICC levels for D0 tended to be lower than for
measures D1 and D2. Corresponding plots for dataset B are shown in Figure 5.

Table 3 summarizes the values for all three fractal measures D0, D1and D2, for all objects
under study, for parameter settings GridMode = avg, GridOffsets = 20, GridScales = 9. In
addition, the table provides values for each structure’s regional volume. Consistent with
fractal theory (Henry et al., 2004), we observe that D2> D1> D0 for all structures and both
datasets. Furthermore, with the exception of white matter, fractal dimensions are
significantly greater for dataset A compared to dataset B.

Building on these results obtained for whole-brain or whole-hemisphere structures, we
performed a post hoc analysis to assess fractal properties of individual cortical and
subcortical GM regions, using parameter settings GridMode = avg, GridOffsets = 20, and
GridScales = 5. We adopted a lower setting for GridScales because of the smaller sizes of
individual regions. We chose to perform this regional analysis using the correlation
dimension D2 which consistently resulted in the highest ICC for the parameter settings
mentioned above.

The resulting distributions of D2and ICC revealed regional variations of fractal dimension as
well as its corresponding ICC. Importantly, regional variations in D2 and ICC showed
consistent patterns across the two datasets under study. Figure 6A shows a comparison of
the regional estimates of D2, and Figure 6B the corresponding regional ICC values, averaged
across subjects and sessions from dataset A (abscissa) and dataset B (ordinate). Both, D and
ICC are highly correlated across the two datasets (r= 0.97, r= 0.74, respectively, both
p<0.001). We note that fractal estimates from dataset B are consistently lower than those
from dataset A (see also Table 3), an effect we attribute to differences in the mean age of the
two subject cohorts (see Discussion).

Fractal measures of the human cortical surface have been found to correlate, to some extent,
with cortical thickness (Im et al., 2006) among other features. We examined the relation of
regional estimates of D2 and the corresponding regional ICC with each other, as well as with
regional estimates of volume and (for cortical regions) thickness. Regional D2 and ICC were
only weakly correlated with each other (r=−0.35 significant correlation in dataset A, and not
significantly correlated in dataset B). D2 was not significantly correlated with regional
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volume in any of the two datasets, whereas ICC was significantly correlated with regional
volume for both dataset A (r= 0.27) and dataset B (r= 0.34). Correlations between the two
measures and cortical thickness were significant in all cases, but lower in dataset A (r= 0.25,
r=−0.31) for D2 and ICC, respectively than in dataset B (r= 0.44, r=−0.43). The weak
correlation with regional volume suggests that D2 estimates are not strongly dependent on
the size of the region from which they are computed. The strengthening of the relation of
both measures with cortical thickness in dataset B relative to dataset A may be due to age
differences in the two subject cohorts (see Discussion).

The high consistency of D2 and ICC across the two datasets (Figure 6) allowed us to
aggregate these data across both datasets under study and to generate maps of their
anatomical distributions (D2 and ICC shown in Figure 7 and Figure 8, respectively).
Measures are computed by first averaging over all realizations per session, sessions per
subjects, then over subjects and finally over datasets A and B. Neither D2 nor ICC exhibit
any obvious anterior-posterior, medial-lateral or dorsal-rostral gradients that could be
attributed to acquisition artifacts. Subcortical regions exhibited higher structural complexity,
but with lower ICC. Both D2 and ICC exhibit pronounced symmetry across the two
hemispheres, both for subcortical and cortical regions. Cortical regions with high D2
included the superior frontal cortex, rostral middle frontal cortex, the precuneus, inferior
parietal cortex and the banks of the superior temporal sulcus. All of these regions also
exhibited high ICC. Regions with low D2 included the parahippocampal gyrus, posterior
cingulate cortex, and the cuneus. Only a few regions exhibited low ICC, most prominently
the pallidum (see Figure 9A) and the insula.

Discussion
Fractal measures have been used in a number of studies to characterize the complexity of
human brain structures. The approach may have some promises in identifying differences
across individual subjects that index differences in behavioral or cognitive capacities,
developmental stages, neurodegeneration or other disease-related processes. In order to be
operationally useful, fractal estimates need to exhibit robustness and reproducibility, with
high consistency between multiple acquisitions from the same subject, and significant
differences between subjects. To establish these characteristics for fractal measures requires
test-retest studies across subject cohorts. In neuroimaging, test-retest studies have been
performed in the context of fMRI activation (Raemaekers et al. 2012), pulsed arterial spin
labeling perfusion (Wang et al. 2011b) in graph theoretical analyses of structural (Bassett et
al., 2011) and resting-state functional networks (Wang et al. 2011), and in metrics of
morphological atrophy (Duchesne et al. 2012). Robustness of fractal measures has been
examined in non-neural applications, e.g. in studies of regional blood flow in rectal cancer
(Sanghera et al. 2012), but methodological analysis applied to brain imaging is lacking so
far. In this study, we report findings about the reproducibility and robustness, specifically
the intra-class-correlation (ICC), of whole-brain and regional estimates of several measures
of fractal dimension applied to structural MRI images. Applying our results in two
separately acquired datasets we identify regional patterns of structural complexity and ICC
across cortex and subcortical structures.

Estimates of fractal dimension derived from biological objects such as cortical surfaces or
brain regions are necessarily approximations, as only idealized mathematical or “pure”
fractals exhibit a single true fractal dimension manifesting at all scales. Real biological
objects have not only finite size but, in the case of neuroimaging, noisy acquisition and
limited resolution due to voxel size impose further constraints on fractal estimates. The
constraints must be taken into account if valid estimates of fractal dimension are to be
derived from realistic brain imaging data. In the absence of a single true fractal dimension
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for the brain, an accurate estimate may be expected to show high consistency across multiple
observations acquired over short time periods, as well as to express differences between
structures coming from individual subjects whose brain structure varies. This reasoning is
the main rationale for aiming to derive fractal estimates with high ICC, thus maximizing
test-retest consistency as well as between-subject differences.

Our results show that it is possible to derive fractal estimates with high ICC over a wide
range of algorithmic parameters (Figure 4 and Figure 5). Since all measures are based on
box-counting approaches, their computation sensitively depends on the placement of the
grid that determines the orientation and spacing of the boxes. As opposed to what is
considered good practice in pure fractals (Barnsley 1988; Feder 1988; Falconer 1990), our
results suggest that in brain objects high ICC is difficult to achieve when only minimal (or
maximal) coverage (GridMode = {min, max}) is taken into account. This effect is most
likely due to the resolution limits that underlie the neuroimaging acquisition. Instead,
averaging over multiple grid placements gave robust ICC values, for modest numbers of
GridOffsets and across small numbers of GridScales. This allows reproducible estimates for
fractal dimensions at reasonable computational cost. In both datasets studied here, high ICC
values could be achieved for all whole-brain or whole-hemisphere brain structures
(ICC>0.8), as well as for the majority of cortical and subcortical regions (ICC>0.6).

Our results show not only that it is possible to achieve high ICC within one subject cohort,
but we demonstrated high consistency in both D2 and ICC across two datasets acquired
independently (Figure 6). This suggests that regional differences in estimates for the
correlation dimension D2 reflect true differences in structural complexity across the brain.
Hence, it may be possible to create a map of structural complexity and relate this map to
underlying neurobiological processes.

Our post-hoc analysis revealed that some cortical and subcortical regions show higher ICC
than others. Importantly, ICCs were highly consistent across two different subject cohorts
acquired at different imaging centers. This may suggest that regional differences in ICC
reveal some real patterns in the way brain structures vary across individuals. ICC as a
measure expresses a trade-off between intra-subject variability (across sessions) and inter-
subject variability (across individuals). In our study, high ICC (ICC ≈ 1) may be due to
significant inter-subject variability that outweighs inconsistencies in estimates across short
time periods, while near-zero ICC implies that intra- and inter-subject variability cannot be
distinguished. The latter effect may be due to low inter-subject variability or high intra-
subject variability (e.g. due to acquisition noise or registration errors). An exploratory
analysis of patterns of variability in low-ICC and high-ICC regions (Figure 9) suggests that
intra-subject variability is relatively constant, but that lower ICC in some structures may be
due to lower inter-subject variability. Hence, it appears that the level of inter-subject
variability is driving the level of ICC.

ICC and fractal estimates could be influenced by the volumes or spatial location of regions.
In dataset A, linear regression of ICC and D2 on measures of regional volume and cortical
thickness explained less than 10% of the variance. In dataset B, cortical thickness was found
to be moderately correlated with ICC and D2 but still accounting only for less than 20% of
the variance. The difference in relation to cortical thickness between these two datasets may
be due to the age difference (expressed in both mean and dispersion) in the two subject
cohorts. Although the visual inspection of anatomical images did not reveal noticeable
artifacts, we cannot totally exclude the possibility that these aging effects are related to small
motion artifacts (Stockman et al., 2012). This could also explain a generally lower ICC in
brain structures of Dataset B with respect to Dataset A (see Figures 4 and 5). The anatomical
distribution of ICC and D2 across the cortical surface does not indicate a spatial pattern that
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may be due to linear gradients in signal strength/accuracy or other geometric effects.
Overall, D2 and ICC estimates appear to express structural characteristics that are fairly
independent from more classical measures such as volume and thickness, and independent
of the spatial location of each region within the brain.

The high consistency of D2 and ICC across datasets suggests that fractal measures can
capture aspects of regional structural organization that are stable and reproducible across
studies and represent true structural features. The anatomical distribution of D2 across
cortical and subcortical regions did reveal some interesting patterns. First, we found strong
hemispheric symmetry across all regions. Second, subcortical regions tended to exhibit
higher structural complexity, an effect that may be due to their specific geometry. Third,
regions with high D2 tended to be regions identified in other studies as structurally highly
connected and highly central brain “hubs” (e.g. Hagmann et al., 2008’ van den Heuvel and
Sporns, 2011). Finally, the regional distribution of ICC may give an indication of the degree
to which structural complexity varies across individuals, an idea for which the data shown in
Figure 9 provide some support. An exploratory analysis suggests that lower ICC is not due
to greater within-subject variability but instead is associated with brain regions whose
structural complexity is more constant across individuals.

The current study was intended to explore parameters for the robust estimation of the
structural complexity of whole-brain objects and individual brain regions. We have
identified parameter settings that should allow capturing inter-subject differences even from
data derived from single scanning sessions. Our results now open the possibility to measure
regionally specific differences in structural complexity across subjects, and thus add a
potentially valuable tool for characterizing changes in brain structure associated with ageing,
neurodegenerative processes, substance abuse, or pharmacological intervention.
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Highlights

• The study quantifies the reliability of fractal measures within the human brain.

• Parameter settings that ensure high reproducibility are identified.

• All results provided were validated in two separate subject cohorts.

• Estimates of fractal dimension can be derived with high intra-class correlation.

• We found robust and reproducible regional differences in fractal dimension.

Goñi et al. Page 14

Neuroimage. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Examples of brain objects under study. Panels showing the brain objects: cortical ribbon
(left and right hemisphere), pial surface (left and right hemisphere), gray/white matter
boundary (left and right hemisphere) and white matter (whole brain). The insert at the
bottom right shows details of the cubes forming part of the white matter object.
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Figure 2.
Examples of different scales and offsets for an object. The parameter GridScales is defined
by the number of different cubeSides used to create grids and the parameter GridOffsets is
defined by the number of positionings (offsets) of the object within the grid. A, B and C
show three different grids corresponding to cubeSides r=16, r= 24, r= 32 respectively. D, E
and F show 3 different offsets (indicated by a green solid circle) for the same grid (cubeSide
r= 32).
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Figure 3.
Representative examples of D0 and ICC in relation to parameter settings. The examples
shown correspond to calculations of the Kolmogorov capacity dimension D0 of the left pial
surface of dataset A. D0 and ICC heat maps (top to bottom) are generated with GridMode =
min, GridMode = avg, GridMode = max, respectively. B. The plots show fractal estimates of
D0 from three scanning sessions for each of the individual subjects (dataset A). In each plot,
subjects are arranged by their mean D0 values in increasing order (left to right). The plot at
the left was obtained with settings of GridOffsets = 1 and GridScales = 5, resulting in ICC =
0.20. The plot at the right was obtained with settings of GridOffsets = 20 and GridScales =
8, resulting in ICC = 0.89.
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Figure 4.
ICC results for Dataset A, with gridMode set to avg. The plots show data for left and right
hemisphere structures (pial surface, cortical ribbon, gray/white matter boundary) and white
matter. Rows of heat-maps represent D0, D1 and D2 respectively.

Goñi et al. Page 18

Neuroimage. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
ICC results for Dataset B, with gridMode set to avg. The plots show data for left and right
hemisphere structures (pial surface, cortical ribbon, gray/white matter boundary) and white
matter. Rows of heat-maps represent D0, D1 and D2 respectively.
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Figure 6.
A. Post-hoc analysis of the reproducibility of correlation dimension (D2). All data are for
parcellated cortical regions (derived from the cortical ribbon) and subcortical regions, with
parameters set to GridMode = avg, GridOffsets = 20, GridScales = 5. The correlation
between the two datasets was very high (r=0.97, p<0.001) while most of the regions had a
smaller correlation dimension D2 in dataset B. B. Most of the regions showed a high ICC
(>0.6) in both datasets. Furthermore, there was a significant correlation between the ICC
(r=0.74, p<0.001) of the regions from each dataset, which indicates a similar level of
reproducibility of D2 for each region regardless of the dataset studied.
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Figure 7.
Characterizing the structural complexity of parcellated cortical and subcortical regions. Data
shown are values of the correlation dimension (D2), averaged across the two data sets A and
B. The bar graph at the left shows values for both hemispheres and all (cortical and
subcortical) regions under study. The surface plots on the right show the regional
distribution of D2 across the cortical surface (subcortical regions not shown).
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Figure 8.
Characterizing the reproducibility of the parcellated complexity of different cortical and
subcortical regions. Data shown are values of the ICC of the correlation dimension (ICC-
D2), averaged across the two data sets A and B. The bar graph at the left shows values for
both hemispheres and all (cortical and subcortical) regions under study. The surface plots on
the right show the regional distribution of ICC-D2 across the cortical surface (subcortical
regions not shown).
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Figure 9.
Examples of different ICC values obtained in dataset A for three different regions. In each
plot, subjects are arranged by their mean D2 values in increasing order (left to right). A. The
pallidum (right) gave rise to a low ICC (0.19). B. The cuneus (right) gave rise to a medium-
high ICC (0.63). C. The caudal anterior cingulate (left) gave rise to a high ICC (0.84). Insets
on each panel show the region as identified by the segmentation procedure in one
representative subject of dataset A.
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Table 2
ICC sources of variation

Two-way ANOVA with random effects for n subjects and k observers (also known as judges or raters).
Symbol σ denotes standard deviation, and sub-indexes S, O, I, E refer to subjects, observers, interaction and
error respectively

Source of variation term degrees of freedom Expected mean square

Between subjects BMS n −1

Within targets

 - between observers JMS k −1

 - residual error EMS (k −1)(n −1)
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