Trapping the ATP binding state leads to a detailed understanding of the F_{1}-ATPase mechanism

Kwangho Nam ${ }^{\text {a,b,1,2 }}$, Jingzhi Pu ${ }^{\text {a,c,1,2 }}$, and Martin Karplus ${ }^{\text {a,d,2 }}$
${ }^{\text {a }}$ Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 01238; ${ }^{\text {b }}$ Department of Chemistry and Computational Life Science Cluster, Umeå University, 901 87, Umeå, Sweden; ${ }^{\text {c Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, }}$ Indianapolis, IN 46202; and ${ }^{\text {LLaboratoire de Chimie Biophysique, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, } 67000}$ Strasbourg, France

Contributed by Martin Karplus, October 10, 2014 (sent for review June 26, 2014)

Abstract

The rotary motor enzyme $F_{0} F_{1}$-ATP synthase uses the protonmotive force across a membrane to synthesize ATP from ADP and $\mathrm{P}_{\mathrm{i}}\left(\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right)$under cellular conditions that favor the hydrolysis reaction by a factor of 2×10^{5}. This remarkable ability to drive a reaction away from equilibrium by harnessing an external force differentiates it from an ordinary enzyme, which increases the rate of reaction without shifting the equilibrium. Hydrolysis takes place in the neighborhood of one conformation of the catalytic moiety F_{1}-ATPase, whose structure is known from crystallography. By use of molecular dynamics simulations we trap a second structure, which is rotated by 40° from the catalytic dwell conformation and represents the state associated with ATP binding, in accord with single-molecule experiments. Using the two structures, we show why P_{i} is not released immediately after ATP hydrolysis, but only after a subsequent 120° rotation, in agreement with experiment. A concerted conformational change of the $\alpha_{3} \beta_{3}$ crown is shown to induce the 40° rotation of the γ-subunit only when the β_{E} subunit is empty, whereas with P_{i} bound, β_{E} serves as a latch to prevent the rotation of γ. The present results provide a rationalization of how F_{1}-ATPase achieves the coupling between the small changes in the active site of β_{DP} and the 40° rotation of γ.

> F_{1}-ATPase \mid chemomechanical coupling | ATP waiting state \mid molecular dynamics $\mid P_{i}$ release

The molecular motor $\mathrm{F}_{0} \mathrm{~F}_{1}$-ATP synthase is composed of two domains: a transmembrane portion $\left(\mathrm{F}_{\mathrm{o}}\right)$, the rotation of which is induced by a proton gradient, and a globular catalytic moiety (F_{1}) that synthesizes and hydrolyzes ATP. The primary function of the proton-motive force acting on $\mathrm{F}_{0} \mathrm{~F}_{1}$-ATP synthase is to provide the torque required to rotate the γ-subunit in the direction for ATP synthesis (1, 2). The catalytic moiety, F_{1} ATPase, has an $\alpha_{3} \beta_{3}$ "crown" composed of three α - and three β-subunits arranged in alternation around the γ-subunit, which has a globular base and an extended coiled-coil portion (3) (Fig. $1 A) . \mathrm{F}_{1}$-ATPase by itself binds ATP and hydrolyzes it to induce rotation of the γ-subunit (in the opposite direction from that for synthesis) on the millisecond time scale under optimum conditions (4,5). All of the α - and β-subunits bind nucleotides, but only the three β-subunits are catalytically active. The original crystal structure (3) of F_{1}-ATPase from bovine heart mitochondria $\left(\mathrm{MF}_{1}\right)$ led to the identification of three conformations of the β-subunit: β_{E} (empty), β_{TP} (ATP analog bound), and β_{DP} (ADP bound); Fig. $1 A$. In the known structures of F_{1}-ATPase, which apparently are near the "catalytic dwell" state, the state in which catalysis occurs $(6,7)$, the β_{E} subunit conformation is partly to fully open and is very different from those of the β_{TP} and β_{DP} subunits, which are closed and very similar to each other (SI Appendix, SI1).

Searching for the ATP Waiting State

Because no X-ray structure is available for the ATP waiting state, we searched for it by molecular dynamics (MD) simulations with an external torque applied to the γ-subunit in the hydrolysis
direction while introducing different conformations of the β_{DP} subunit in the $\alpha_{3} \beta_{3}$ crown, in accord with suggestions from singlemolecule experiments (8). The results are shown in Fig. 2 (see Methods and SI Appendix, SI2 for details of the simulations). In Fig. 2, we refer 200° for the γ-rotation angle of the catalytic dwell state and 240° for the ATP waiting dwell state, respectively, to stress that the hydrolysis of an ATP, denoted as ATP*, bound after the ATP waiting dwell at 0°, takes place at the 200° catalytic dwell state (see Fig. $1 B$ for the rotation angle of γ relative to the $\alpha_{3} \beta_{3}$ complex). The initial simulation used the "Walker" crown structure [Protein Data Bank (PDB) ID code 1BMF] (3), in which the β_{DP} subunit is closed with the angle ($\mathrm{B}^{\wedge} \mathrm{C}$) formed by helices B and C equal to 21.6°, and the γ-subunit structure of Gibbons et al. (PDB ID code 1E79) (9) (Fig. 1; see Methods for system preparation). It was represented by an all-atom model based on the CHARMM program (10), combined with a coarsegrained plastic network model (PNM) (11, 12). Even for an applied torque of $2,500 \mathrm{pN} \cdot \mathrm{nm}$, much higher than is generated in the normal function (13), the γ-subunit, which has an initial rotation angle of 200°, stalled at an angle of about 220°. In the present work, we define the rotation angle of γ as the angle formed between an instantaneous vector and a reference vector, each defining the orientation of γ relative to the three β-subunits for the instantaneous configuration from MD or the reference Walker structure, respectively (see Methods and SI Appendix, SI2 for angle definition). Major clashes between residues $\gamma \mathrm{S} 12$-I16 and β_{DP} L384-I388, near the DELSEED motif, prevented further rotation (SI Appendix, SI3 and Fig. S1). When the external torque was removed, the γ-subunit returned to within 2.5° of the crystal

Significance

F_{1}-ATPase is a motor protein that converts the free energy of binding of ATP and its hydrolysis products ADP and P_{i} into a mechanical force for γ-subunit rotation. It is the catalytic moiety of $F_{0} F_{1}$-ATPase, which synthesizes ATP. There are two metastable states along each 120° rotation of the γ-subunit, one associated with ATP hydrolysis (the "catalytic dwell") and the other with ATP binding (the "ATP waiting dwell"). We use molecular simulations to determine the ATP waiting dwell structure. With this structure and the catalytic dwell X-ray structure, we develop an atomic-level model of the coupling between ATP hydrolysis and γ-subunit rotation. The molecularlevel understanding of this motor will aid in its use in nanomachines and cancer therapy.

[^0]

Fig. 1. (A) F_{1}-ATPase. The three β-subunits and the γ-subunit are shown (α-subunits are not shown for clarity): β_{E} (yellow), $\beta_{D P}$ (orange), $\beta_{T P}$ (gold), and γ (purple). To define the $\beta_{D P}$ subunit conformation we use the angle between helix B (β T163-A176) and helix C (β T190-G204). The two helices are highlighted: helix B (blue) and helix C (gray); the $B^{\wedge} C$ angle is depicted as a red angle. The $\beta_{D P} H 6$ helix, whose orientation was reported to undergo a 20° change during the 40° substep γ-rotation, is highlighted as red. During the forced rotation simulations with an external torque, the force acts on the C_{α} atom of MF_{1} : $\gamma \mathrm{M} 25$ (shown as a red sphere). The direction of the force is determined as the cross-product of the radial vector of $\gamma \mathrm{M} 25: \mathrm{C}_{\alpha}$ and the rotational axis (green). (B) Proposed 360° rotation cycle of F_{1}-ATPase showing the subunit conformations, as well as the binding-release of ligands and the hydrolysis of ATP. Starting from the binding of an ATP* to the β_{E} subunit in the ATP waiting state (0°), rotation of the γ-stalk by $200^{\circ}\left(80^{\circ}, 40^{\circ}, 80^{\circ}\right)$ leads to the transition of $\beta_{\mathrm{E}}\left(\gamma=0^{\circ}\right)$ via $\beta_{\text {TP }}\left(\gamma=80^{\circ}\right)$ to $\beta_{\mathrm{DP}}\left(\gamma=200^{\circ}\right)$, the catalytic dwell state where hydrolysis of ATP* takes place. The hydrolysis product $P_{i}{ }^{*}$ in the β_{DP} subunit is not released at this catalytic dwell (200°). Instead, the other hydrolysis product ADP* is released first after a 40° rotation $\left[\beta_{\mathrm{DP}}\left(200^{\circ}\right) \rightarrow \beta_{\mathrm{HO}}\left(240^{\circ}\right)\right]$. Then, β_{HO} is transformed to β_{E} and P_{i}^{*} is released after an additional 80° rotation to another catalytic dwell state (320°); the latter is shown in brackets outside the main cycle (see below). Finally, the release of $P_{i}{ }^{*}$ from β_{E} leads to a 40° rotation that completes the 360° cycle $(21,41)$. The other subunits are going through corresponding cycles offset by $120^{\circ}\left(\beta_{D P}\right)$ and $240^{\circ}\left(\beta_{T P}\right)$, respectively. Here, the prime symbol when it appears on the $\beta_{D P}$ and β_{E} conformations indicates that the conformation of corresponding subunits change slightly in or near the specified reaction steps. The γ-subunit is shown as a yellow oval, and its rotation during the hydrolysis cycle is indicated by a red arrow. The reaction steps occurring in or near the catalytic dwell and corresponding changes of ligands in each β-subunit are also shown in the 320° catalytic dwell: The first state (Left in the 320° catalytic dwell) has a bound ATP in $\beta_{\mathrm{Dp}}{ }^{\prime}$, and is thus referred to as a prehydrolysis state (the state before the hydrolysis of ATP during the catalytic dwell). The second state (Middle) represents the state after ATP hydrolysis (posthydrolysis state), and the third state (Right) presents the state after the release of P_{i} bound in $\beta_{\mathrm{E}}^{\prime}$ (postrelease state).
orientation in 200 ps , indicating that for the Walker crown structure, the γ-subunit orientation $\left(200^{\circ}\right)$ is a minimum.

To find the ATP waiting state, we restarted the external torque simulations with more open conformations for the β_{DP} subunit, keeping the rest of the crown near its original structure with the PNM. Fig. 2 shows the γ-rotation angle and the ($\mathrm{B}^{\wedge} \mathrm{C}$) angle of β_{DP} along the simulated conformational transition of β_{DP} to the more open conformation in the presence of the external torque. For a slightly more open β_{DP} subunit ($\mathrm{B}^{\wedge} \mathrm{C}=28^{\circ}$), similar to that of the half-open β_{HO} conformation ($\mathrm{B}^{\wedge} \mathrm{C}=23^{\circ}$; PDB ID code 2HLD_I, where "I" denotes the first $\alpha_{3} \beta_{3} \gamma$-complex among the three complexes in the crystallographic asymmetric unit of 2HLD) (14), the γ-subunit returned to fluctuate around 202°. With the β_{DP} subunit having $\mathrm{B}^{\wedge} \mathrm{C}$ equal to 31° and 35°, similar to that of the half-closed β_{HC} conformation $\left(\mathrm{B}^{\wedge} \mathrm{C}=\right.$ 32°) (see also below) in the Menz et al. structure (PDB ID code 1 H 8 E) (15), the γ-subunit rotated to 255° and 271°, respectively, before it stalled again. When the torque was removed, the γ-subunit relaxed rapidly in both cases to near 240° and remained there during the rest of the simulation. The results show that there exists a locally stable state with the γ-rotation angle near 240° and the $\alpha_{3} \beta_{3}$ crown with the catalytic subunits having conformations corresponding to β_{E}-like, β_{HC}-like (based on the $\mathrm{B}^{\wedge} \mathrm{C}$ angle), and β_{TP}-like. We note that the $\mathrm{B}^{\wedge} \mathrm{C}$ angles are $\beta_{\mathrm{E}}=49^{\circ}, \beta_{\mathrm{HC}}=32^{\circ}$, $\beta_{\mathrm{HO}}=23^{\circ}, \beta_{\mathrm{DP}}=22^{\circ}$, and $\beta_{\mathrm{TP}}=19^{\circ}$.

To check the trapping simulation, we used an alternative protocol (SI Appendix, SI2) and experimental data from Masaike et al. (8), who estimated that the helix- 6 angle of β_{DP} is rotated by 20° in the ATP waiting state. The β_{DP} subunit and the γ-subunit were subjected to a biased simulation (16) and it was found that for the partly open structure of β_{DP} (helix- 6 angle equal 20°; $\mathrm{B}^{\wedge} \mathrm{C}=$ 23°) the γ-subunit had rotated by 40° to reach the 240° state. A number of interactions stabilize the 240° state (see Fig. 3 and $S I$ Appendix, SI4 for details and a comparison with the interactions in the trapped structure). The structure was then subjected to all-
atom explicit water MD simulations with no PNM (see SI Appendix, SI5 for details). Throughout the simulation (20 ns), the γ-stalk stayed near 240°, supporting the fact that it is a (locally) stable state. In SI Appendix, Fig. S2 A and B, we show the structure from the simulation, and compare it with the structure at the catalytic dwell. The conformations of β_{DP} for the two states differ as expected. Comparisons of β_{DP} with various

Fig. 2. Rotational angle of the γ-subunit as a function of time during the relaxation simulations (see text) for different $\mathrm{B}^{\wedge} \mathrm{C}$ angle values of the β_{DP} subunit after the simulations with the applied torque. The values of the $\mathrm{B}^{\wedge} \mathrm{C}$ angle in the β_{DP} subunit are shown for each trajectory to indicate the stage of binding cleft opening during the transition from the $\beta_{\mathrm{DP}}\left(\mathrm{B}^{\wedge} \mathrm{C}=\right.$ $\left.21.6^{\circ}\right)$ to the $\beta_{E}\left(B^{\wedge} C=48.6^{\circ}\right)$ conformation. The $B^{\wedge} C$ angles were maintained at their initial values by the PNM restraining potentials during the simulations.

Fig. 3. Interactions between the γ-subunit and the surrounding subunits for a representative structure of the simulated ATP waiting state. The color scheme is the same as Fig. 1. Residues from the γ-subunit are labeled in blue, and residues from other subunits are labeled in red. Each residue involved in the interaction is shown in stick representation.
β-conformations in crystal structures in terms of the rmsd values and the $\mathrm{B}^{\wedge} \mathrm{C}$ angles (SI Appendix, Fig. S2 C and D) indicate that the conformation of the partly open β_{DP} structure is between β_{HO} and β_{HC}. Interestingly, the partly open β_{DP} subunit shares many structural features with β_{DP} in the recent F_{1}-ATPase structure of Rees et al. (PDB ID code 4ASU) (17); its $\mathrm{B}^{\wedge} \mathrm{C}$ angle equals 24° and the helix- 6 angle is close to 20°. In addition to the fact that the γ-subunit of the Rees et al. structure is rotated only by 32° relative to the reference Walker structure, the most significant difference between the present model structure and the structure by Rees et al. is that the C-terminal domain of β_{DP} of the model ATP waiting dwell structure clashes sterically with the γ-subunit of the Rees et al. structure (SI Appendix, Fig. S2B). One possible reason for the observed difference is that the structure trapped by Rees et al. contains nucleotide in all three active sites; therefore, it may represent another intermediate, rather than the ATP waiting dwell state modeled here. Although both the present work and Rees et al. (17) show a partial opening of β_{DP}, it is not observed in the model structure of the intermediate state proposed by Okazaki and Hummer (18). In addition, we observe that the C-terminal helix-turn-helix (hth) motif of β_{E} has closed slightly in the MD simulated structure (SI Appendix, Fig. S2A). Although Masaike et al. (8) concluded in their single-molecule experiments that β_{E} does not change its C -terminal helix orientation during the 40° substep rotation, the large fluctuations of the orientation angle in the measurements suggest that the small change of β_{E} observed in the MD simulation is below their resolution. We use this experimentally derived structure for the analysis that follows. Because the structure of β_{DP} is closest in rmsd to β_{HO} (SI Appendix, Fig. S2C), we denote the conformation of the partly open β_{DP} as β_{HO}-like (or simply β_{HO} for brevity when no confusion arises).

Timing of $\mathbf{P}_{\mathbf{i}}$ Release

The results from free-energy simulations and multiple MD simulations (SI Appendix, SI6 and Fig. S3) indicate that any of ATP hydrolysis, ADP and/or P_{i} release, can lead to the partly open β_{HO}-like conformation required to reach the ATP waiting state at 240° from the catalytic dwell $\left(200^{\circ}\right)$. All of these, as well as ADP and P_{i} repulsion, have been suggested as triggers for the γ-rotation (19-21). To investigate possibilities for the actual mechanism, we calculated the probability of ligand release, particularly of P_{i}, from different conformations of the β-subunits with different ligand occupancies. Given the results shown in Fig. 4 and additional experimental data [particularly Watanabe et al. (21)], we summarize in Fig. $1 B$ the rotation cycle of the subunit conformations and their occupations. For an ATP, denoted as ATP*, bound after the ATP waiting dwell at 0°, the release of $\mathrm{P}_{\mathrm{i}}^{*}$ generated from the ATP* is shown to occur after an additional 120° rotation of the γ-subunit to 320° from the catalytic dwell at 200° where the ATP* hydrolysis takes place. This contrasts with an earlier conclusion, also based on single-molecule experiments, that P_{i} is released immediately after ATP* hydrolysis at $200^{\circ}(20,22,23)$.

Because the P_{i} and ADP release takes place on the millisecond time scale, too long to be sampled in accessible simulation times at 300 K (nanoseconds), we use the high-temperature multicopy enhanced sampling (MCES) method (see Methods) to accelerate the events. This approach has been used previously to provide meaningful results on ligand release from proteins and its dependence on their conformation [e.g., CO from myogobin by Elber and Karplus (24); P_{i} from myosin by Cecchini et al. (25)]. MCES was used here to explore the ligand release probabilities of P_{i} and ADP from subunits with the conformations $\beta_{\mathrm{E}}, \beta_{\mathrm{DP}}$, and β_{HO}-like as part of the $\alpha_{3} \beta_{3} \gamma$-complex. For β_{E} and β_{DP}, we considered a structure at or near the catalytic dwell (200°), based on the X-ray structure of Braig et al. (PDB ID code 1E1R) (26); for β_{OH}, we considered the ATP waiting dwell $\left(240^{\circ}\right)$, based on the model structure reported here. Fig. 4 shows the probabilities of

Fig. 4. Probability of P_{i} release as a function of the temperature applied to P_{i} in the MCES simulations (see Methods): P_{i} release from β_{E} in the catalytic dwell (200°; red), and the release from ADP and P_{i} bound $\beta_{D P}$ at 200° (blue). The angle definition is provided in Fig. 1B. The results test the two competing models for P_{i} release: one from $\beta_{D P}$ immediately after its cleavage from bound ATP and the other from β_{E} after the rotation of γ by 120° to reach the next catalytic dwell, during which the P_{i} release from $\beta_{D P}$ is prevented. The latter model corresponds to the reaction cycle proposed in the present paper and Watanabe et al. (21). We also show the release probabilities of P_{i} and ADP from the $\beta_{\text {Ho }}$ conformation at the ATP waiting dwell with different ligand contents: P_{i} release in the presence of ADP (green), P_{i} release in the absence of ADP (pink), and ADP release in the presence of P_{i} (black).
P_{i} release from β-subunits in different conformational states as a function of the temperature of the multiple copies of P_{i}. In the Braig et al. structure used for the catalytic dwell state $\left(200^{\circ}\right), \beta_{\mathrm{E}}$ is occupied by $\mathrm{P}_{\mathrm{i}} ; \beta_{\mathrm{DP}}$ by $\mathrm{ADP}, \mathrm{AlF}_{3}$ (which was replaced with P_{i}), and Mg^{2+}; and β_{TP} by ATP analog and Mg^{2+}. The P_{i} present in β_{E} was produced during the catalytic dwell at 80° from an ATP bound at -120°. Because P_{i} has a high release probability from β_{E} at a temperature as low as 250 K , it is very weakly bound. Interestingly, in one of the all-atom explicit water MD simulations (see below), we observed the spontaneous release and rebinding of P_{i} from β_{E} (Movie S 1). The release and rebinding accompany a large fluctuation of the P -loop structure. This finding is consistent with the present P_{i} release data. By contrast, a much higher temperature $(1,500 \mathrm{~K})$ is required for a significant release probability of P_{i} from the closed β_{DP} subunit in the catalytic dwell structure $\left(200^{\circ}\right)$. This result indicates that in the 200° structure, release of P_{i} from β_{E} is the dominant process and that release of $\mathrm{P}_{\mathrm{i}}{ }^{*}$ from β_{DP} immediately after its cleavage from ATP* does not occur to a significant extent, in accord with Fig. $1 B$ and the proposal of Watanabe et al. (21).
In the ATP waiting state $\left(240^{\circ}\right)$, where β_{E} is empty (Fig. 1B), β_{DP} has opened more to become β_{HO}, but $\mathrm{P}_{\mathrm{i}}{ }^{*}$ release is even more hindered than in the 200° structure as long as ADP* (and Mg^{2+}) is present (Fig. 1B); i.e., release of $\mathrm{P}_{\mathrm{i}}{ }^{*}$ at 240° would be possible only after ADP* has been released (also see SI Appendix, SI7, SI8, and Fig. S4). To confirm this result, we performed a set of MCES simulations for β_{HO} in the 240° structure, in which ADP and P_{i} were both represented by multiple copies and thus competed for release. As expected, ADP* is released at a significantly lower temperature than $\mathrm{P}_{\mathrm{i}}^{*}$ (Fig. 4). Once ADP* is no longer present, $\mathrm{P}_{\mathrm{i}}{ }^{*}$ is released easily (SI Appendix, Fig. S5). However, as shown by Adachi et al. (20) and Martin et al. (27), ADP^{*} is released only during (or after) the rotation of the γ-subunit by another 80° to the catalytic dwell at 320° when β_{HO} has opened further to β_{E} (see Fig. $1 B$ legend). Very recently, Czub and Grubmüller have shown by MD simulations that β_{E} closes spontaneously to β_{HO} during the 80° rotation in the synthesis direction in the absence of ligand (ADP or P_{i}) in $\beta_{\mathrm{E}}(28)$. However, because changes of the ligand occupation of each β-subunit during the rotation were not taken into account in the simulations, an understanding of the entire sequence of events that occurs during the 80° rotation is not possible based on their results. Nevertheless, the results are consistent with the mechanism that the $\beta_{\mathrm{HO}} \rightarrow \beta_{\mathrm{E}}$ conformational transition and the rotation of γ to the catalytic dwell occur during or after the release of ADP*. Taken together, the P_{i} release simulations show that $P_{i}^{* *}$ is released after the $\beta_{\mathrm{HO}} \rightarrow \beta_{\mathrm{E}}$ transition is completed as part of the rotation from 320° to 360°.

Coupling Between ATP Hydrolysis, $\mathbf{P}_{\mathbf{i}}$ Release, and γ-Rotation

An essential element for understanding F_{1}-ATPase function is knowledge of the mechanism by which the torque for γ-rotation is generated. The dominant factor in the 80° rotation from the waiting dwell is known to be ATP binding to a β_{E} subunit and its closure to form $\beta_{\text {TP }}(12,29)$, in which repulsive van der Waals interactions contribute dominantly in the generation of torque. On the other hand, our understanding of the 40° rotation is much more limited $(20,30)$. To explore the mechanism, we carried out targeted molecular dynamics (TMD) (31) simulations with the model generated in this paper for the ATP waiting structure as the target (see Methods). As a reference, a TMD simulation was performed, starting with the catalytic dwell structure, and a perturbation was applied to the γ - and β_{DP} subunits of the entire $\alpha_{3} \beta_{3} \gamma$-complex to induce the 40° rotation of γ and the transition of β_{DP} to β_{HO} required to reach the model ATP waiting structure. The simulation produces a structure with the γ-subunit rotated by 40° and β_{DP} partially open; the structure differs
slightly from the model ATP waiting structure in the orientations of the C-terminal hth motifs of β_{E} and all of the α-subunits (SI Appendix, Fig. S6). The change of the β_{E} structure during or after the 40° rotation is in accord with the results of Watanabe et al. (30) that in the neighborhood of the ATP waiting state, the affinity for ATP changes with γ-rotation, implying a change in the β_{E} structure, and the all-atom explicit water MD simulation (SI Appendix, Fig. S2A). Because the TMD perturbation was applied only to γ and β_{DP}, the structural changes of the other parts of the $\alpha_{3} \beta_{3} \gamma$-complex reflect their spontaneous response to the rotation of γ and the partial opening of β_{DP}. The resulting structure was used as the target structure in subsequent TMD simulations, where the perturbation was applied only to various parts of the $\alpha_{3} \beta_{3}$ crown, with or without P_{i} in the β_{E} subunit (Fig. 5; see legend for details). With β_{E} empty, we obtained the striking result that transformations of all α - and β-subunits are required to induce the 40° rotation (Fig. 5). As shown in the figure, when fewer elements of the $\alpha_{3} \beta_{3}$ crown are transformed (e.g., all β-subunits), only intermediate rotation of the γ-subunits is produced during the simulation. Moreover, with P_{i} present in β_{E}, the P_{i} stays bound in the active site throughout the entire TMD simulation and only a 10° rotation of γ was achieved even with the full $\alpha_{3} \beta_{3}$ transformation in the simulation (Fig. 5, orange; and see Movies S2 and S3). These results show that the presence of P_{i} in the β_{E} subunit blocks the γ-rotation.

Dynamic Lock by $\mathbf{P}_{\mathbf{i}}$

To determine the mechanism of the $\beta_{\mathrm{E}}\left(\mathrm{P}_{\mathrm{i}}\right)$ lock, the structure and dynamics of the $\alpha_{3} \beta_{3} \gamma$-complex in the catalytic dwell state with different occupations of β_{DP} and β_{E} were studied by allatom explicit water MD simulations (see SI Appendix, SI5 for details). In the simulations, the binding pockets of β_{TP} and all α-subunit are occupied by ATP, whereas β_{DP} and β_{E} have different occupations: In the prehydrolysis state simulation, ATP occupies β_{DP} and P_{i} occupies β_{E}; in the posthydrolysis state simulation, ADP and P_{i} occupy $\beta_{D P}$ and P_{i} occupies β_{E}; and in

Fig. 5. γ-Rotation angles from the TMD simulations (see text). The no- P_{i} systems are systems with empty $\beta_{E}: \gamma+\beta_{D P}$ simulation (black), $\beta_{D P}$ simulation (blue), $\beta_{D P}+\beta_{E}$ simulation (green), all β simulation (purple), all $\beta+\alpha$ simulation (red). For the P_{i} system, which refers to the system with P_{i} bound in β_{E} : all $\beta+\alpha$ simulation (yellow). The simulation time is shown in nanoseconds, and the γ-rotation angle is defined as in Pu and Karplus (12). Except for the $\gamma+\beta_{D P}$ simulation, the TMD simulations continued for 1 ns and were followed by 1 -ns unperturbed simulations to relax the system; during the latter all these systems reached a plateau for the rotation angle of γ. In the $\gamma+\beta_{D P}$ TMD simulation, it took 2 ns before the rmsd distance to the 240° rotated structure fell below $0.75 \AA$ A this was followed by a 1 -ns relaxation simulation as in the other cases.
the postrelease state simulation, β_{DP} is occupied by ADP and P_{i} and β_{E} is empty. (See Fig. $1 B$ and its legend for identification of the three states.) The structural comparisons reveal that during or after the hydrolysis of ATP in β_{DP} and the release of P_{i} from β_{E}, small changes occur in the C-terminal hth motif and at the intersubunit interfaces of the subunits (SI Appendix, Figs. S2E and S7, and Movie S4). In addition, there are significant differences in the dynamics, as evidenced in the cross-correlation maps of the $\alpha_{3} \beta_{3} \gamma$-complex; they are shown in SI Appendix, Fig. S8. Details of the structural and dynamic changes are given below.

SI Appendix, Fig. S8 shows the cross-correlation maps of the entire $\alpha_{3} \beta_{3} \gamma$ complex for the prehydrolysis state (SI Appendix, Fig. S8A), posthydrolysis state (SI Appendix, Fig. S8B), and the postrelease state (SI Appendix, Fig. S8C). In comparing the simulation of the posthydrolysis state to that of the prehydrolysis state, there is a rigid-body rotation of the C-terminal hth motif of $\alpha_{D P}$ toward $\beta_{D P}$ in the former, relative to the latter. This rotation is caused by the cleavage of ATP into ADP and P_{i} in $\beta_{\mathrm{DP}}(S I$ Appendix, Fig. S7A). The rotation increases the contact between the two subunits and leads to a more closed $\alpha_{\mathrm{DP}}-\beta_{\mathrm{DP}}$ interface, as is evident from the increased buried surface area (SI Appendix, Fig. S9). It also leads to enhanced positive cross-correlation between the two subunits without a significant change of the intrasubunit cross-correlation of β_{DP} (compare SI Appendix, Fig. S8 A and B). A similar closure of the $\alpha_{\mathrm{DP}}-\beta_{\mathrm{DP}}$ interface is observed experimentally. In SI Appendix, Fig. S7B, the X-ray structure with the transition-state analog (26) is superimposed on the structure with the ATP analog (14). The superposition shows that the C-terminal domain of α_{DP} is rotated toward β_{DP} for the transition-mimic state to make the interface tighter (SI Appendix, Fig. S7B, Left), in agreement with the simulations. The origin of this structural change appears to involve the displacement of $\alpha_{D P} R 373$, which moves to interact with the P_{i} after it is cleaved from the ATP. SI Appendix, Fig. S7A shows the displacement of $\alpha_{\text {DP }}$ R373 upon the cleavage of ATP in the simulations and a similar displacement in the transition-state mimic structure (SI Appendix, Fig. S7B; also see SI Appendix, Fig. S7C for the changes of interactions at the interface between the two subunits). In this interpretation, $\alpha_{\mathrm{DP}} \mathrm{R} 373$ functions as a sensor that probes the progress of the hydrolysis reaction in β_{DP} and dynamically links the two subunits (β_{DP} and α_{DP}). This is consistent with mutation experiments, which suggested that $\alpha_{\mathrm{DP}} \mathrm{R} 373$ is involved in the rearrangement of the $\alpha_{\mathrm{DP}}-\beta_{\mathrm{DP}}$ interface upon ATP hydrolysis and the catalytic cooperativity of the enzyme (32).
We also find a noticeable difference between the cross-correlation maps of the posthydrolysis and postrelease states, i.e., there is an increase of intrasubunit correlation of both α_{E} and β_{E} in the postrelease state (SI Appendix, Fig. S8C). The cross-correlation maps of α_{E} and β_{E} in the postrelease state show crosscorrelations that extend over the C-terminal and nucleotide binding domains (SI Appendix, Fig. S8 C and D), suggesting that the two domains behave like a rigid body. This difference in the dynamics of β_{E} is of interest because the differences between the β_{E} structures with or without P_{i} or a P_{i} analog are found to be negligible (SI Appendix, SI9 and Fig. S10). The anticorrelation between α_{E} and the C-terminal domain of β_{E} has also increased significantly (compare SI Appendix, Fig. S8 B and D). This result indicates that the two subunits move concertedly but in opposite directions. In this case, α_{E} R373 could play an important role in controlling the dynamics of α_{E} and β_{E}, similar to the role of $\alpha_{\text {DP }}$ R373 in ATP hydrolysis. In this mechanism, the interaction between P_{i} in β_{E} and $\alpha_{E} R 373$ keeps α_{E} close to β_{E} and away from β_{DP}, preventing α_{E} from responding to the change of β_{DP}, thus blocking the rotation of γ. Once P_{i} leaves the binding pocket, the interaction is lost, so that α_{E} and in particular its C-terminal domain are able to respond to the change occurring in β_{DP} and the rotation of γ.

To test the proposed mechanism, we have performed an additional TMD simulation. The simulation was carried out with the TMD perturbation applied to all α - and β-subunits but without the interaction between P_{i} in β_{E} and $\alpha_{E} R 373$. If these interactions were important in blocking the γ-rotation, it would be expected that γ would rotate further in their absence than when the interactions between P_{i} in β_{E} and $\alpha_{E} R 373$ were present. The simulation produced a γ-rotation that is larger (close to 20°) than the simulation with the $P_{i}-\alpha_{\mathrm{E}}$ R373 interaction present, but then it falls back to the lower rotation angle during the subsequent relaxation simulation (SI Appendix, Fig. S11). The result confirms the proposed role of the interaction between P_{i} and α_{E} R373 in blocking γ-rotation. The result also suggests that interactions (within or between β_{E} and α_{E}), other than the interactions between P_{i} in β_{E} and $\alpha_{E} R 373$, are important in preventing the rotation-for example, reducing the increase of the intrasubunit cross-correlation in the β_{E} and α_{E} subunits and the increase of the anticorrelation between them, which occurs upon the release of P_{i}. In this regard, we note that α_{E} is the subunit forming the most extensive surface contacts with γ among the α-subunits and has an extensive surface contact with β_{DP} (SI Appendix, Fig. S9). The surface contacts of α_{E} with γ are as extensive as the contact between β_{DP} and γ, which is the largest surface contact among all $\beta \mathrm{s}$.

Taken together, the present analysis shows how the interactions between β_{E} and α_{E}, including the interaction between P_{i} and α_{E} R373, act as a "dynamic lock" to keep the protein in the prerotated catalytic dwell state. Only after P_{i} in β_{E} is released is α_{E} freed from β_{E} and able to fully engage with β_{DP} to complete the concerted conformational transition of the $\alpha_{3} \beta_{3}$ complex by which the γ-subunit rotates to reach the ATP waiting dwell state. Such dynamic locks have been proposed for different systems by Laity et al. for zinc finger proteins (33) and by Young et al. for c-Src (34).

Concluding Remark

The present study provides a structural model for the ATP waiting state of F_{1}-ATPase, in agreement with single-molecule experiments which have suggested that it does not coincide with any of the known crystal structures. Knowledge of this structure, combined with that of the state in which catalysis takes place, makes possible the development of a detailed atomic-level description of the coupling between the binding and hydrolysis of ATP and the γ-subunit rotation induced by the conformational changes of the α - and β-subunits. The suggested tests of the proposal structure and a possible method for trapping it in a crystallographically accessible conformation should stimulate experimental studies (see SI Appendix, SI10 and SI11 for details).

Methods

Forced Rotation Simulation for Finding the ATP Waiting State. The structure of the minimal rotary complex $\alpha_{3} \beta_{3} \gamma$ was prepared based on the $\alpha_{3} \beta_{3}$ subcomplex of the 1BMF structure (3) and the γ-subunit of the 1E79 structure (9) by a procedure similar to that of Ma et al. (35). The CHARMM19 all-atom force field (36) and the EEF1 implicit solvation model (37) were used to describe the protein system and water solvation, respectively. In addition, the coarse-grained PNM $(11,12)$, in which each PNM node was assigned to the corresponding C_{α} atom position of the protein, was used to stabilize the protein conformation in the presence of the high forces used in the simulation. The system was first heated from 0 K to 300 K in 60 ps and then equilibrated at 300 K for 300 ps (see details in SI Appendix, SI2). The MD simulations were carried out with a 2 -fs integration time step and SHAKE (38) applied to the bonds involving hydrogen atoms. The temperature was controlled using the Langevin thermostat.

After equilibration at 300 K for 300 ps , a large external torque was applied to drive the rotation of the γ-subunit in the hydrolysis direction (counterclockwise as seen from the membrane). Using the PULL command of the CHARMM program (10), an external force of $2,500 \mathrm{pN}$ was applied to the C_{α}
atom of residue $\gamma \mathrm{M} 25$. Residue $\gamma \mathrm{M} 25$ was identified by Pu and Karplus to provide a key contact point for the torque generation (12). In the forced rotation simulation, the external torque was applied only when backward rotation is detected. In that way, the simulation was biased toward the hydrolysis direction only when γ rotates backward but not when the forward rotation occurs spontaneously; the γ-rotation angle was checked at each update step (at every 1 ps). The γ-rotation angle is defined as in Pu and Karplus (12) using the $\alpha_{3} \beta_{3}$ (1BMF) $-\gamma$ (1E79) Walker structure as the reference structure for the catalytic dwell state, and a similar definition was used in the work by Koga and Takada (39). The direction of the force was determined as the instantaneous cross-product between the radial vector of the residue $\gamma \mathrm{M} 25$ (perpendicular to the rotational axis) and the rotational axis itself (Fig. 1A). See SI Appendix, SI2 for details of forced rotation simulations and definition of the γ-rotation angle.
$\mathbf{P}_{\mathbf{i}}$ Release Simulations. The 200° rotated system was prepared using the $\alpha_{3} \beta_{3}$ subcomplex of the 1E1R structure (26) and the γ-subunit from the 1 E 79 structure (9). For the 240° state, the starting structure was the present ATP waiting state model structure. For the P_{i} release MCES simulation (25), the P_{i} molecule was replicated 30 times by using the BLOCK module of the CHARMM program. In all simulations, P_{i} was treated as doubly protonated $\left(\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right)$, which was found to be favored in the active site of β-subunit (40). The interaction between the multiply copied P_{i} and both the protein and the solvent was scaled by a factor that is inversely proportional to the number of P_{i} copies, whereas each P_{i} has no interaction with other P_{i} molecules. The remaining interactions were not scaled. The temperature of P_{i} was controlled by attaching each P_{i} to a separate Langevin thermostat, while the remainder of the system was maintained at 300 K . At each P_{i} temperature, the MCES simulation was repeated 40 times (SI Appendix, SI7). Each

1. Itoh H, et al. (2004) Mechanically driven ATP synthesis by F_{1}-ATPase. Nature 427(6973) 465-468.
2. Walker JE (2013) The ATP synthase: The understood, the uncertain and the unknown. Biochem Soc Trans 41(1):1-16.
3. Abrahams JP, Leslie AGW, Lutter R, Walker JE (1994) Structure at $2.8 \AA$ resolution of F_{1}-ATPase from bovine heart mitochondria. Nature 370(6491):621-628.
4. Karplus M, Gao YQ (2004) Biomolecular motors: The F_{1}-ATPase paradigm. Curr Opin Struct Biol 14(2):250-259.
5. Spetzler D, et al. (2006) Microsecond time scale rotation measurements of single F_{1}-ATPase molecules. Biochemistry 45(10):3117-3124.
6. Yasuda R, et al. (2003) The ATP-waiting conformation of rotating F_{1}-ATPase revealed by single-pair fluorescence resonance energy transfer. Proc Natl Acad Sci USA 100(16): 9314-9318.
7. Okuno D, et al. (2008) Correlation between the conformational states of F_{1}-ATPase as determined from its crystal structure and single-molecule rotation. Proc Natl Acad Sci USA 105(52):20722-20727.
8. Masaike T, Koyama-Horibe F, Oiwa K, Yoshida M, Nishizaka T (2008) Cooperative three-step motions in catalytic subunits of F_{1}-ATPase correlate with 80° and $40{ }^{\circ}$ substep rotations. Nat Struct Mol Biol 15(12):1326-1333.
9. Gibbons C, Montgomery MG, Leslie AGW, Walker JE (2000) The structure of the central stalk in bovine F_{1}-ATPase at 2.4 Å resolution. Nat Struct Biol 7(11):1055-1061.
10. Brooks BR, et al. (2009) CHARMM: The biomolecular simulation program. J Comput Chem 30(10):1545-1614.
11. Maragakis P, Karplus M (2005) Large amplitude conformational change in proteins explored with a plastic network model: Adenylate kinase. J Mol Biol 352(4):807-822
12. Pu J, Karplus M (2008) How subunit coupling produces the γ-subunit rotary motion in F $_{1}$-ATPase. Proc Natl Acad Sci USA 105(4):1192-1197.
13. Noji H, Yasuda R, Yoshida M, Kinosita K, Jr (1997) Direct observation of the rotation of F_{1}-ATPase. Nature 386(6622):299-302.
14. Kabaleeswaran V, Puri N, Walker JE, Leslie AGW, Mueller DM (2006) Novel features of the rotary catalytic mechanism revealed in the structure of yeast F_{1} ATPase. EMBO J 25(22):5433-5442
15. Menz RI, Walker JE, Leslie AGW (2001) Structure of bovine mitochondrial F_{1}-ATPase with nucleotide bound to all three catalytic sites: Implications for the mechanism of rotary catalysis. Cell 106(3):331-341.
16. Paci E, Karplus M (1999) Forced unfolding of fibronectin type 3 modules: An analysis by biased molecular dynamics simulations. J Mol Biol 288(3):441-459.
17. Rees DM, Montgomery MG, Leslie AGW, Walker JE (2012) Structural evidence of a new catalytic intermediate in the pathway of ATP hydrolysis by F_{1}-ATPase from bovine heart mitochondria. Proc Natl Acad Sci USA 109(28):11139-11143.
18. Okazaki K, Hummer G (2013) Phosphate release coupled to rotary motion of F_{1}-ATPase. Proc Natl Acad Sci USA 110(41):16468-16473.
19. Ross J (2006) Energy transfer from adenosine triphosphate. J Phys Chem B 110(13): 6987-6990.
20. Adachi K, et al. (2007) Coupling of rotation and catalysis in F_{1}-ATPase revealed by single-molecule imaging and manipulation. Cell 130(2):309-321.
21. Watanabe R, lino R, Noji H (2010) Phosphate release in F_{1}-ATPase catalytic cycle fol lows ADP release. Nat Chem Biol 6(11):814-820.
simulation was started with different initial velocities and ran for 2 ns with a 1 -fs integration time step. SHAKE was applied to constrain bonds involving hydrogen atoms.

Targeted MD Simulations of the Coordinated Conformational Transition of the $\alpha_{3} \beta_{3} \gamma$-Complex. The 40° substep rotation was simulated by applying the TMD simulation method (31). The TMD simulation was first carried out with the 200° rotated catalytic dwell structure, which was prepared for the MCES P_{i} release simulations. The TMD perturbation was applied to the nonhydrogen atoms of the γ - and $\beta_{D P}$ subunits of the entire $\alpha_{3} \beta_{3} \gamma$-complex for the $\beta_{D P} \rightarrow$ $\beta_{\text {Ho }}$ transition and the $40^{\circ} \gamma$ rotation; the ATP waiting model structure was the target structure. Subsequently, using this TMD-produced structure as the target structure for the $\alpha_{3} \beta_{3}$ complex, a set of TMD simulations was carried out with the TMD perturbation applied to various parts of the $\alpha_{3} \beta_{3}$ crown with or without P_{i} in β_{E} and without any perturbation to γ (see Fig. 5 legend for the notation of each TMD simulation). In the simulations the rmsd distance to the target structure was decreased by $0.2 \times 10^{-6} \AA$ at each MD step until the rmsd distance reached a value lower than 0.75 Å.

ACKNOWLEDGMENTS. We are grateful to members of the M.K. group for helpful discussions and Dr. Gerhard Hummer for providing the coordinates of their modeled F_{1}-ATPase structure. The work was supported in part by a grant from the National Institutes of Health (M.K.) and by a start-up grant from Indiana University-Purdue University Indianapolis (J.P.) and from Umeå University (K.N.). The computational resources were provided by the $\mathrm{Na}-$ tional Energy Research Scientific Computing Center, Faculty of Arts and Science Division Research Computing Group at Harvard University, and the Swedish National Infrastructure for Computing at High Performance Computing Center North (HPC2N).
22. Junge W, Sielaff H, Engelbrecht S (2009) Torque generation and elastic power transmission in the rotary $\mathrm{F}_{0} \mathrm{~F}_{1}$-ATPase. Nature 459(7245):364-370.
23. Shimo-Kon R, et al. (2010) Chemo-mechanical coupling in F_{1}-ATPase revealed by catalytic site occupancy during catalysis. Biophys J 98(7):1227-1236.
24. Elber R, Karplus M (1990) Enhanced sampling in molecular dynamics: Use of the timedependent Hartree approximation for a simulation of carbon monoxide diffusion through myoglobin. J Am Chem Soc 112(25):9161-9175.
25. Cecchini M, Alexeev Y, Karplus M (2010) P_{i} release from myosin: A simulation analysis of possible pathways. Structure 18(4):458-470.
26. Braig K, Menz RI, Montgomery MG, Leslie AGW, Walker JE (2000) Structure of bovine mitochondrial F_{1}-ATPase inhibited by Mg^{2+} ADP and aluminium fluoride. Structure 8(6):567-573.
27. Martin JL, Ishmukhametov R, Hornung T, Ahmad Z, Frasch WD (2014) Anatomy of F_{1}-ATPase powered rotation. Proc Natl Acad Sci USA 111(10):3715-3720.
28. Czub J, Grubmüller H (2014) Rotation triggers nucleotide-independent conformational transition of the empty β subunit of F_{1}-ATPase. J Am Chem Soc 136(19):6960-6968.
29. Yasuda R, Noji H, Yoshida M, Kinosita K, Jr, Itoh H (2001) Resolution of distinct rotational substeps by submillisecond kinetic analysis of F_{1}-ATPase. Nature 410(6831): 898-904
30. Watanabe R, et al. (2012) Mechanical modulation of catalytic power on F_{1}-ATPase. Nat Chem Biol 8(1):86-92.
31. Schlitter J, Engels M, Krüger P, Jacoby E, Wollmer A (1993) Targeted molecular dynamics simulation of conformational change-Application to the $T \leftrightarrow R$ transition in insulin. Mol Simul 10:291-308.
32. Senior AE, Nadanaciva S, Weber J (2002) The molecular mechanism of ATP synthesis by $\mathrm{F}_{1} \mathrm{~F}_{0}$-ATP synthase. Biochim Biophys Acta 1553(3):188-211.
33. Laity JH, Dyson HJ, Wright PE (2000) DNA-induced α-helix capping in conserved linker sequences is a determinant of binding affinity in $\mathrm{Cys}_{2}-\mathrm{His}_{2}$ zinc fingers. J Mol Biol 295(4):719-727.
34. Young MA, Gonfloni S, Superti-Furga G, Roux B, Kuriyan J (2001) Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell 105(1):115-126.
35. Ma J, et al. (2002) A dynamic analysis of the rotation mechanism for conformational change in F_{1}-ATPase. Structure 10(7):921-931.
36. Brooks BR, et al. (1983) CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187-217.
37. Lazaridis T, Karplus M (1999) Effective energy function for proteins in solution. Proteins 35(2):133-152.
38. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J Comput Phys 23:327-341.
39. Koga N, Takada S (2006) Folding-based molecular simulations reveal mechanisms of the rotary motor F_{1}-ATPase. Proc Natl Acad Sci USA 103(14):5367-5372.
40. Yang W, Gao YQ, Cui Q, Ma J, Karplus M (2003) The missing link between thermodynamics and structure in F_{1}-ATPase. Proc Natl Acad Sci USA 100(3):874-879.
41. Gao YQ, Yang W, Karplus M (2005) A structure-based model for the synthesis and hydrolysis of ATP by F_{1}-ATPase. Cell 123(2):195-205.

[^0]: Author contributions: K.N., J.P., and M.K. designed research; K.N. and J.P. performed research; K.N., J.P., and M.K. analyzed data; and K.N., J.P., and M.K. wrote the paper.

 The authors declare no conflict of interest.
 ${ }^{1}$ K.N. and J.P. contributed equally to this work.
 ${ }^{2}$ To whom correspondence may be addressed. Email: kwangho.nam@chem.umu.se, jpu@ iupui.edu, or marci@tammy.harvard.edu.
 This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas. 1419486111 /-/DCSupplemental.

