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Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving motoneuron
(MN) axonal withdrawal and cell death. Previously, we established that facial MN (FMN) survival
levels in the SOD1G93A transgenic mouse model of ALS are reduced and nerve regeneration is
delayed, similar to immunodeficient RAG2- mice, after facial nerve axotomy. The objective of
this study was to examine the functionality of SOD1593A splenic microenvironment, focusing on
CD4* T cells, with regard to defects in immune-mediated neuroprotection of injured MN. We
utilized the RAG27- and SOD193A mouse models, along with the facial nerve axotomy paradigm
and a variety of cellular adoptive transfers, to assess immune-mediated neuroprotection of FMN
survival levels. We determined that adoptively transferred SOD1693A unfractionated splenocytes
into RAG2- mice were unable to support FMN survival after axotomy, but that adoptive transfer
of isolated SOD1CG93A CD4* T cells could. Although WT unfractionated splenocytes adoptively
transferred into SOD1G93A mice were able to maintain FMN survival levels, WT CD4* T cells
alone could not. Importantly, these results suggest that SOD1G93A CD4* T cells retain
neuroprotective functionality when removed from a dysfunctional SOD1G93A peripheral splenic
microenvironment. These results also indicate that the SOD1G93A central nervous system
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microenvironment is able to re-activate CD4* T cells for immune-mediated neuroprotection when
a permissive peripheral microenvironment exists. We hypothesize that dysfunctional SOD1G93A
peripheral splenic microenvironment may compromise neuroprotective CD4* T cell activation
and/or differentiation, which, in turn, results in impaired immune-mediated neuroprotection for
MN survival after peripheral axotomy in SOD1G93A mice.
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Introduction

In previous studies, we have established an immune-mediated model of endogenous
neuroprotection following facial nerve axotomy in wild-type (WT) and immunodeficient
recombinase activating gene-2 knock-out (RAG2") mice lacking functionally mature B and
T cells, but intrinsically maintaining antigen presentation by MHC class I1-expressing
peripheral antigen-presenting cells (APC; Serpe et al., 1999; Serpe et al., 2003). Key to
immune-mediated neuroprotection after axotomy is the generation of neuroprotective CD4*
T cells that are antigen-speifc and require: 1) initial activation peripherally, via interaction
with MHC class ll-expressing APC, and 2) re-activation centrally, via interaction with MHC
class Il-expressing microglia (Byram et al., 2004).

Amyaotrophic lateral sclerosis (ALS) is a neurodegenerative disease resulting in motoneuron
degeneration and accompanied by neuroinflammation involving reactive microglia and
astrocytes centrally and immune activation peripherally (Appel et al., 2010; Philips and
Robberecht, 2011). The most widely used transgenic mouse model of ALS, involving the
overexpression of human mutant superoxide dismutase-1 (SOD1G934), develops disease
pathology similar to that in familial and sporadic ALS patients (Rosen et al., 1993; Gurney,
1994; Gurney et al., 1994). An axonal die-back response precedes MN cell death in SOD1
mice (Kennel et al., 1996; Fischer et al., 2004; Hegedus et al., 2007), resulting in a cascade
of events similar to that observed in WT mice after peripheral nerve injury. Specifically,
axonal degeneration, denervated neuromuscular junctions, afferent presynaptic stripping
surrounding MN cell bodies in CNS, immune cell activation peripherally, and glial
activation centrally are responses that occur both as a result of axonal die-back in ALS and
peripheral nerve injury (Moran and Graeber, 2004; Jones et al., 2005; Zang et al., 2005;
Chiu et al., 2009; Jinno and Yamada, 2011).

SOD1C%3A mice demonstrate significantly increased FMN cell death following either a
facial nerve transection or crush axotomy, relative to WT (Mesnard et al., 2011; Mesnard et
al., 2013). Interestingly, while axotomized SOD1G93A FMN respond with a pro-regenerative
response similar to WT, a dysregulated response to axotomy exists in the microenvironment
surrounding the SOD1G93A FMN cell bodies (Mesnard et al., 2011). Importantly, target
disconnection via disease or facial nerve axotomy in SOD193A mice results in comparable
motoneuron- and glial-specific molecular changes within the facial nucleus (Haulcomb et
al., 2014). Furthermore, SOD1G93A FMN exhibit a delayed functional recovery response to
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facial nerve crush axotomy, relative to WT mice (Mesnard et al., 2013), that resembles the
delayed functional recovery response of FMN in immunodeficient mice following facial
nerve crush (Serpe et al., 2002). Therefore, both peripheral and central immune cell
irregularities appear to impact SOD1%93A FMN survival and functionality after facial nerve
axotomy.

The main objective of the current study was to begin to define whether an immune defect in
SOD1C%3A CD4* T cell development, activation, or re-activation is associated with the
increased susceptibility of SOD1 FMN to axotomy-induced cell death or the defect lies
within the previously identified central glial response (Mesnard et al., 2011). Through a
variety of adoptive transfer experiments utilizing SOD1693A and RAG2~ mice, our results
suggest that a defective SOD1G93A peripheral microenvironment and/or response, rather
than a defect in the CD4" T cell itself, may underscore the impaired immune-mediated
neuroprotection required for motoneuron survival and regeneration.

Materials & Methods

Animals

Female, C57BI/6 wild-type (WT) and transgenic SOD1 (SOD16934) were obtained from
Jackson, and recombination activating-2 gene knock-out (RAG27") from Taconic, at 6
weeks of age and permitted 1 week to acclimate prior to experimental manipulation. The
mice were provided autoclaved pellets and water ad libitum, and housed under a 12 h light/
dark cycle in microisolater cages contained within a laminar flow system to maintain a
pathogen-free environment.

Cellular adoptive transfers

Cellular adoptive transfers were completed at 7 weeks of age and 1 week prior to
undergoing facial nerve axotomy. Spleens were removed from WT or SOD193A mice, and
the splenocytes were isolated as previously described by our laboratory (Serpe et al., 1999;
Byram et al., 2003; Serpe et al., 2003). Specifically, WT or SOD1G93A splenocytes were
collected for adoptive transfer at a concentration of 50 x 106 splenocytes/100 pL PBS via
tail vein injection per animal. Naive WT or SOD1CG93A CD4* T cells were isolated from the
splenocyte samples via autoMACS magnetic cell sorting for adoptive transfer at a
concentration of 5 x 108 CD4* T cells/100 uL PBS per animal. Axotomy-activated CD4* T
cells (Byram et al., 2004) were isolated from WT or SOD1CG93A spleens 3 days after facial
nerve axotomy via autoMACS. Ten specific groups (N = 3-6/group) were utilized for FMN
survival analyses, including WT, SOD1CG9A RAG27-, SOD1CG9A + WT splenocytes,
RAG27- + SOD1693A splenocytes, RAG27 + WT CD4* T cells, RAG27- + SOD1G93A
CD4* T cells, SOD1G93A + WT CD4* T cells, SOD1G93A + WT CD4-depleted splenocytes,
and SOD1G9A + Axot WT CD4* T cells. All SOD1G93A mice were utilized by 12 weeks of
age, and pre-symptomatic.

Facial nerve axotomy

A right facial nerve transection axotomy was performed in mice at 8 weeks of age. All
surgical procedures were completed in accordance with National Institutes of Health
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guidelines on the care and use of laboratory animals for research purposes. Using aseptic
techniques, mice were anesthetized with 3% isoflurane and maintained at 1.5%, and the
right facial nerve was exposed and completely transected at its exit from the stylomastoid
foramen (Jones and LaVelle, 1985; Serpe et al., 1999). The proximal and distal facial nerve
stumps were manually pushed away from each other in order to prevent reconnection. The
left facial nerve remained intact, leaving the left facial nucleus to serve as an internal control
for comparison purposes.

Facial motoneuron (FMN) counts

Results

For each experiment, FMN survival levels were assessed at four weeks following facial
nerve transection axotomy, where surviving FMN were counted in the ipsilateral facial
nucleus and compared to the contralateral uninjured (control) facial nucleus. At 4 weeks
post-axotomy, 25 um cryosections were collected throughout the rostrocaudal extent of the
facial motor nucleus (Mesnard et al., 2011). FMN were counted in thionin-stained tissue
sections, and after application of the Abercrombie correction factor, results were presented
as the average percent of FMN survival + the standard error of the mean (SEM), as
described in detail (Serpe et al., 1999; Mesnard et al., 2011). Representative
photomicrographs of facial motor nuclei were obtained with an Olympus microscope and
Image-Pro software. Statistical analysis was accomplished using a one-way ANOVA,
followed by the Student-Newman-Keuls post-hoc multiple comparison test, with
significance at p < 0.05.

Significant FMN cell loss in SOD1693A and RAG27- mice after axotomy

Compared to the uninjured facial nucleus in WT mice (92 neurons * 2; Figure 1A), baseline
FMN counts were not altered in transgenic mice containing overexpression of the human
mutant SOD1C93A gene (90 neurons + 2; Figure 1B) or deletion of the RAG2 gene (90
neurons * 3; Figure 1C) at 12 weeks of age (quantitative data not shown). However, at 4
weeks post-axotomy, FMN survival levels in the axotomized facial nucleus of WT mice
(84% =+ 2.0; Figures 1D and 2) were significantly higher compared to both SOD1G%3A (68%
+1.0; Figures 1E and 2) and RAG27" mice in (57% + 2.5; Figures 1F and 2), relative to the
respective uninjured facial nuclei.

WT splenocytes adoptively transferred into SOD1¢93A mice maintain axotomized FMN
survival levels

To determine whether the increased axotomy-induced cell death in SOD1G93A mice could
be prevented with the addition of naive peripheral immune cells, WT unfractionated
splenocytes were adoptively transferred via tail vein into SOD1693A mice prior to axotomy.
At 4 weeks post-axotomy, adoptive transfer of WT splenocytes into SOD1693A mice
(SOD1G93A + WT splenocytes) prior to axotomy resulted in maintenance of FMN survival
levels at 76% + 1.8 in the axotomized facial nucleus, relative to the uninjured facial nucleus
(Figures 1G and 2). The FMN survival levels in the SOD1G%3A + WT splenocytes group
were similar to the levels observed in WT, and significantly elevated compared to
SOD1G93A mice without adoptive transfer. These results suggest that a potential defect
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exists within the intrinsic peripheral immune cells of SOD1G9A mice, and that the
introduction of extrinsic WT peripheral immune cells into SOD1G93A mice prior to axotomy
prevents the axotomy-induced cell death.

SOD1G93A splenocytes adoptively transferred into RAG2”- mice unable to sustain WT
levels of axotomized FMN

To determine whether SOD1G93A splenocytes were capable of restoring WT FMN survival
levels in RAG27~ mice, as observed with WT unfractionated splenocytes (Serpe et al.,
2000), unfractionated splenocytes from SOD1G93A mice were adoptively transferred into
RAG2" mice prior to axotomy. At 4 weeks post-axotomy, FMN survival levels in the
axotomized facial nucleus of RAG2~ mice that received an adoptive transfer of SOD1G93A
unfractionated splenocytes (RAG27~ + SOD1G93A splenocytes) were 60% + 3.4, relative to
the uninjured facial nucleus (Figures 1H and 2), comparable to FMN survival levels in the
RAG27- group and significantly reduced relative to WT group. Thus, splenocytes from
SOD1C93A mice were not capable of the immune-mediated neuroprotection required to
maintain RAG27- FMN survival levels.

SOD1G93A CD4* T cells adoptively transferred into RAG2”- mice as effective as WT CD4* T
cells in restoring FMN survival levels after axotomy

In previous studies, B, CD4* T, CD8* T, CD4*CD25* Treg, NKT, and NK cellular
populations were separately isolated from WT splenocytes and adoptively transferred into
RAG27- mice prior to axotomy (Serpe et al., 2000; Byram et al., 2003; Serpe et al., 2003;
DeBoy et al., 2006a; Deboy et al., 2006b). Only CD4* T cells were found to provide the
necessary immune-mediated support required to maintain RAG2”- FMN survival levels to
those of WT after axotomy (Serpe et al., 2003). The immune-mediated neuroprotective
ability of SOD1G93A CD4* T cells was compared to WT CD4* T cells via adoptive transfer
of the respective CD4* T cells into RAG2™- mice prior to axotomy. At 4 weeks post-
axotomy, FMN survival levels in the axotomized facial nucleus of RAG2 mice that
received an adoptive transfer of WT CD4* T cells (RAG27- + WT CD4* T cells) were 82%
+ 2.1 (Figures 11 and 2) and in the axotomized facial nucleus of RAG2- mice that received
an adoptive transfer of SOD1G93A CD4* T cells (RAG27- + SOD1CG9A CD4* T cells) were
78% = 1.9 (Figures 1J and 2), relative to the uninjured facial nucleus. FMN survival levels
in the RAG27 + WT CD4* T cells and the RAG2”" + SOD1G9A CD4* T cells groups were
significantly increased compared to the RAG27" group, and comparable to the WT group.
These results indicate that SOD1CG93A CD4* T cells are as effective as WT cells in
mediating neuroprotection of axotomized FMN, when placed in a non-SOD1G93A peripheral
microenvironment (i.e., RAG27"), and support the concept that other cells in the SOD1G93A
central and/or peripheral immune compartment(s) may prevent neuroprotective SOD1693A
CD4* T cell development after axotomy.

Increased naive CD4" T cells, from WT mice, adoptively transferred to SOD1%93A mice
unable to support WT levels of axotomized FMN

To investigate whether the addition of isolate WT CD4" T cells could prevent the increased
susceptibility of SOD1G93A FMN to axotomy-induced cell death, WT CD4* T cells were
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adoptively transferred into SOD1G93A mice prior to axotomy. Thus, the number of CD4* T
cells in the intrinsic peripheral immune compartment of SOD1G93A mice was increased in
an attempt to determine if this would prevent the susceptibility of SOD1G93A FMN to
axotomy-induced cell death. At 4 weeks post-axotomy, FMN survival levels in the
axotomized facial nucleus of SOD1G93A mice that received an adoptive transfer of WT
CD4* T cells (SOD16%3A + WT CD4* T cells) were 72% + 2.8, relative to the uninjured
facial nucleus (Figures 1K and 2), which was significantly reduced compared to WT FMN
survival levels and no different from SOD1G93A FMN survival levels. These results indicate
that the addition of WT CD4* T cells alone could not restore WT FMN survival levels after
axotomy.

Increased non-CD4* naive peripheral splenocytes, from WT mice, adoptively transferred to
SOD1693A mice unable to support WT levels of axotomized FMN

In an effort to alter the intrinsic peripheral immune compartment of pre-symptomatic
SOD1G9A mice and provide a peripheral microenvironment that could potentially activate
intrinsic SOD1G93A CD4* T cells after axotomy, WT splenocytes depleted of CD4* T cells
were adoptively transferred into SOD1%93A mice prior to axotomy. At 4 weeks post-
axotomy, FMN survival levels in the axotomized facial nucleus of SOD1G93A mice that
received an adoptive transfer of WT splenocytes depleted of CD4* T cells (SOD1G93A +
CD4-depleted WT splenocytes) were 72% + 4.5, relative to the uninjured facial nucleus
(Figures 1L and 2). The FMN survival levels in the SOD1CG9A + CD4-depleted WT
splenocytes group were comparable to SOD1G93A Jevels and significantly reduced
compared to WT. These results indicate that the addition of WT CD4-depleted splenocytes
could not support WT FMN survival levels after axotomy, as observed with the addition of
WT unfractionated splenocytes, or prime SOD1G93A CD4* T cells to mediate
neuroprotection.

Bypassing the SOD1G93A peripheral microenvironment with adoptive transfer of prior
axotomy-activated WT CD4* T cells did not result in WT levels of axotomized FMN

To evaluate whether the addition of prior activated CD4* T cells from axotomized WT mice
could bypass the initial activation requirement after axotomy in the SOD1%93A peripheral
immune compartment, prior axotomy-activated (i.e., facial nerve antigen-primed; Byram et
al., 2004) CD4* T cells were isolated from the cervical lymph nodes and spleens of WT
mice after axotomy and adoptively transferred into SOD193A mice prior to axotomy. At 4
weeks post-axotomy, FMN survival levels in the axotomized facial nucleus of SOD1G93A
mice that received an adoptive transfer of prior axotomy-activated WT CD4* T cells
(SOD1G9A + Axot WT CD4™ T cells) were 59% + 5.1, relative to the uninjured facial
nucleus (Figures 1M and 2). The SOD1G9A + Axot WT CD4* T cells group exhibited FMN
survival levels comparable to SOD1693A Jevels and significantly reduced compared to WT
levels. Prior activation of WT CD4* T cells was unable to restore SOD1G93A FMN survival
levels via bypassing the initial activation in the SOD1G93A peripheral immune compartment.
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Discussion

Molecular abnormalities in the microenvironment surrounding FMN of SOD1CG9A mice are
evident prior to and following facial nerve transection (Mesnard et al., 2011). The
significant delay in SOD1G93A peripheral nerve regeneration (Mesnard et al., 2013) and
reduced FMN survival levels (Mesnard et al., 2011) mirror the response of immunodeficient
mice to facial nerve crush or cut axotomy (Serpe et al., 1999; Serpe et al., 2000; Serpe et al.,
2002), and implicate a potential defect in immune-mediated neuroprotection. In
immunodeficient mice, we have established a crucial role for the CD4* T cell, initially
activated in the peripheral immune compartment, and then reactivated in the CNS by
MHCII-expressing glial cells, once FMN have been experimentally disconnected from their
target musculature (Byram et al., 2004). Thus, the functionality of CD4* T cells, peripheral
APC, and central glia, is critical to the mechanism underlying immune-mediated
neuroprotection.

The objective of this study was to utilize the facial nerve axotomy model to begin to
elucidate underlying immune-related defects that contribute to disease in the SOD1G93A
mouse model of ALS WT levels of FMN survival after axotomy require functional APC in
both peripheral (i.e., B cells, macrophages, or dendritic cells) and central (i.e., microglia)
compartments (Byram et al., 2004). If SOD1CG9A FMN survival levels after axotomy indeed
resemble RAG27- mice due to a defect in immune-mediated neuroprotection, this would
suggest a defect in either the central glial or peripheral immune response.

Interestingly, our data indicate that WT unfractionated splenocytes adoptively transferred
into SOD1G93A mice are able to maintain WT levels of FMN survival after axotomy. These
results eliminate the possibility of a defect located centrally in the SOD1G93A mice because
the re-activation of the peripherally-activated CD4" T cell, which is essential for FMN
survival (Byram et al., 2004), was able to occur and maintain FMN survival levels to that of
WT after axotomy in the SOD1G93A mice when WT mouse splenocytes were adoptively
transferred. However, SOD1G93A ynfractionated splenocytes adoptively transferred into
RAG2" mice fail to support WT levels of FMN survival. Yet, isolated SOD1C9A CD4* T
cells are equally as effective in maintaining FMN survival levels as WT CD4" T cells when
adoptively transferred into RAG27- mice. Therefore, separation of the SOD1G93A CD4* T
cell from its peripheral microenvironment before adoptive transfer is necessary for the
SOD1G9A CD4* T cell to functionally mediate neuroprotection. However, increasing the
number of naive CD4* T cells, increasing the number of naive non-CD4* splenocytes, or
attempting to bypass the intrinsic SOD1G93A peripheral immune compartment with prior
activated WT CD4* T cells all failed to maintain FMN survival levels in SOD1G93A mice
when adoptively transferred prior to axotomy. Collectively, these data indicate that a
peripheral microenvironment defect exists in the SOD1G93A mouse that may involve the
prevention and/or reversal of the appropriate neuroprotective CD4* T cell development or
activation through an active inhibitory mechanism.

Interestingly, polyclonally-activated WT CD4* T cells, as opposed to naive CD4* T cells,
are effective in altering disease progression when adoptively transferred to SOD1G93A mice
(Banerjee et al., 2008), further suggesting that a defective SOD193A peripheral
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microenvironment prevents naive T cell activation. Immunodeficient SOD1G93A mice,
crossed onto the RAG2™- background, possess a shortened life-span (Beers et al., 2008),
which can be restored with the addition of WT or SOD193A hone marrow, or adoptive
transfer of WT or SOD1G93A CD4* T cells (Beers et al., 2008; Beers et al., 2011). Two
alternative interpretations of these results are that either the SOD1G93A B and CD4* T cells
contribute a degree of neuroprotection in the SOD1%93A mouse model of ALS or the
remaining peripheral microenvironment is neurodestructive without functional interactions
with CD4* T cells. Both interpretations are supported by the results obtained in the current
study. Moreover, the adoptive transfer of anti-CD3-activated WT CD4* T cells into
SOD1G9A mice crossed with RAG2" mice delays disease progression (Banerjee et al.,
2008), as do WT CD4* (Chiu et al., 2008) or CD4"Foxp3™* (Beers et al., 2008) T cells.
These reports further suggest that exogenous CD4" T cells are capable of mediating
neuroprotection in SOD1%93A mice to regulate the ALS disease process, but do not address
the functionality of the SOD1G93A CD4* T cells specifically.

In the current study, our novel finding was that SOD1G93A CD4* T cells indeed possess the
capability of mediating neuroprotection and supporting MN survival, suggesting that their
development is not interrupted but, rather, that their activation is inhibited or disrupted.
Therefore, a peripheral splenic microenvironment-mediated defect may underlie the
heightened susceptibility of SOD1G93A FMN to axotomy-induced cell death, and a
combination of WT CD4* T cells and WT APC is required to overcome the suppressive or
dysfunctional SOD1G93A peripheral microenvironment. Collectively, this study
demonstrates that the SOD1G93A CD4* T cell is able to respond normally to an antigen-
specific response initiated by facial nerve axotomy, but is prevented from functioning in a
neuroprotective manner due to a complex immune regulatory mechanism that exists in
SOD1C93A mice and modulated only with WT unfractionated splenocytes.

In summary, an overall disrupted homeostatic balance in the peripheral microenvironment
(i.e,, macrophages, dendritic cells, B cells, T cell subsets, etc.) and central
microenvironment (i.e., microglia, astrocytes, infiltrating immune cells, etc.) appears to play
arole in ALS motor neuron degeneration, disease onset and progression (Troost et al., 1992;
O'Reilly et al., 1995; Graves et al., 2004; Henkel et al., 2004; Turner et al., 2004;
Rafalowska et al., 2010; Sanagi et al., 2010; Mesnard et al., 2011). Our results point toward
a problem in ALS CD4* T cell activation, peripheral antigen presentation, and/or antigen-
presenting cell development in the periphery that, in turn, contributes to MN death when
disconnection, by disease or experimentally by axotomy, from target musculature occurs.
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Figure 1. Representative photomicrographs of coronal control or axotomized facial motor nuclei
sections from WT, and SOD1G93A, and RAG2”~ mice + cellular adoptive transfers collected 4
weeks post-axotomy

Representative photomicrographs are shown of control facial nuclei from (A) WT, (B)

SOD16%3A (C) RAG27, and of axotomized facial nuclei from (D) WT, (E) SOD16%A (F)
RAG27, (G) SOD1693A + WT splenocytes, (H) RAG27" + SODS93A splenocytes, (1)
RAG27 + WT CD4* T cells, (J) RAG27 + SOD1C%A CD4* T cells, (K) SOD169A + WT
CD4* T cells, (L) SOD1G93A + WT CD4-depleted splenocytes, (M) SOD1G93A + prior
axotomy-activated WT CD4™" T cells. Scale bar indicates 120 pum.
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Figure 2. FMN survival in WT, and SOD1G93A and RAG27~ mice + cellular adoptive transfers 4
weeks post-axotomy
Average percent survival £ SEM of FMN from axotomized facial nucleus of WT,

SOD16%A RAG27-, RAG27- + SOD1CG9A splenocytes, RAG27- + WT CD4* T cells, and
RAG27- + SOD1G93A CD4* T cells, relative to the uninjured nucleus. Significance denoted
by *compared to WT, **compared to SOD1G93A, and ***compared to RAG27~ at p < 0.05.
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