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Superresolution imaging methods—now widely used to character-
ize biological structures below the diffraction limit—are poised to
reveal in quantitative detail the stoichiometry of protein com-
plexes in living cells. In practice, the photophysical properties of
the fluorophores used as tags in superresolution methods have
posed a severe theoretical challenge toward achieving this goal.
Here we develop a stochastic approach to enumerate fluorophores
in a diffraction-limited area measured by superresolution micros-
copy. The method is a generalization of aggregated Markov meth-
ods developed in the ion channel literature for studying gating
dynamics. We show that the method accurately and precisely enu-
merates fluorophores in simulated data while simultaneously de-
termining the kinetic rates that govern the stochastic photophysics
of the fluorophores to improve the prediction’s accuracy. This sto-
chastic method overcomes several critical limitations of temporal
thresholding methods.
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Protein–protein and protein–nucleic acid interactions are re-
sponsible for most of information processing and control in

the cell. Moreover, essential cellular tasks such as replication,
transcription, translation, recombination, control of gene expres-
sion, and transport of proteins across membranes, to cite a few, all
depend on the interaction among preorganized molecular as-
semblies (1–4). Developing a mechanistic understanding of cell
biology requires a quantitative determination of macromolecular
organization and interaction in living cells. In particular, charac-
terizing protein–protein and protein–nucleic acid complexes and
their stoichiometric ratios is a first step in determining how al-
tered stoichiometries may lead to disease states of the cell (5–8).
Conventional optical microscopy is diffraction limited and typ-

ically cannot resolve images below the 250-nm range, but super-
resolution (SR) methods can achieve tens of nanometer resolution
(9–12). One such SR method is photoactivated localization
microscopy (PALM), where temporal separation is achieved by
illuminating a sample with inactive (i.e., nonfluorescing) fluo-
rophores under low light intensity. The light stochastically trig-
gers fluorophore activation. Once active, a fluorophore is excited
by light of a different wavelength and releases a burst of photons
(an emission burst). This emission is used to locate the position
of the emitter with uncertainty that depends only on the number
of photons detected. A short time later, the fluorophore irre-
versibly photobleaches. The low probability of photoactivation
ensures that two fluorophores separated less than the diffraction
limit will most probably not emit simultaneously. In this manner,
the PALM fluorophores that could not otherwise be spatially
separated are instead separated in time. The fluorophores in
PALM are genetically encoded with photoactivatable fluorescent
proteins (PA-FPs) (13)—often mEos2 (14) or Dendra2 (15, 16)—
that are fused to proteins of interest.
Generating PALM images is now routine, and both SR tagging

techniques and instrumentation have progressed much faster than
our ability to analyze PALM images. In particular, extracting

protein complex stoichiometry information from PALM data is
not straightforward. Rather, stoichiometry is often determined
using in vitro (e.g., coimmunoprecipitation) (17) or coarser (dif-
fraction-limited) methods (18–23). However, PALM has the po-
tential to provide molecular counting with single molecule
sensitivity and in vivo. However, several obstacles remain: (i) PA-
FP “blinking” leads to severe overcounting biases. Blinking refers to
a process by which a PA-FP produces a series of intermittent
emission bursts, instead of a single continuous burst (24, 25), by
transiently transitioning to a “dark” state. Accordingly, counting the
number of emission bursts over a region of interest (ROI) will lead
to overestimating the number of labeled molecules; and (ii) Un-
known blinking statistics. Often the blinking properties of common
PA-FPs are known in vitro, but not in vivo in the specific cellular
compartment occupied by the molecules. Characterizing the
blinking properties of PA-FPs in their cellular context is required
because these properties are highly sensitive to their local cellular
environment (pH, ionic strength) (26–33). An analytical method
capable of extracting the blinking statistics of PA-FPs inside the cell
to correct for blinking is not available.
Here, we describe a stochastic approach for dealing with these

obstacles. Our approach is an adaptation of the continuous time
aggregated Markov model (AMM) techniques developed in the
ion channel literature to estimate kinetic rates using maximum-
likelihood methods for channel opening and closing events in
patch-clamp experiments (34–38). Our objective is, thus, to ar-
rive at molecular quantification in PALM. Previous studies have
addressed the PALM counting problem by setting a temporal
threshold ðτcritÞ (39–42). In those studies, a pair of emission
bursts separated by a time shorter than some τcrit are grouped
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together and assigned to a single PA-FP. Bursts separated by
a time longer than τcrit are considered to be from separate PA-
FPs. Our method overcomes several important limitations of
temporal thresholding methods because it treats the properties
of PA-FPs stochastically. First, by contrast to temporal thresh-
olding methods that necessitate advance knowledge of kinetic
rates to determine the optimal value of τcrit, our method does not
require knowledge of kinetic rates beforehand. Kinetic rates are
an output of the method, not an input. Second, the method is not
tied to a specific kinetic model. We can easily explore alternative
kinetic models, such as those with multiple blinking states or with
time-varying rates. Third, we can correct for missed transitions
which occur if typical PA-FP fluorescence times are as fast as or
faster than the frame integration time. Finally, we can use fluo-
rescence intensities (which can vary if multiple PA-FPs fluoresce
at once) to inform our estimate for the complex stoichiometry.
In what follows we develop the theoretical methodology and

benchmark the method on sample data as well as on synthetic
data. We will describe how it is possible to derive from SR data
not only the number of PA-FPs, as well as their photophysics, but
also determine error bars around all of the estimates.

Results
Analysis of Simulated Data.Consider the model shown in Fig. 1 for
the photophysics of a single PA-FP. There are four possible
states: inactive (I), active (A), dark (D), or photobleached (B).
Once active, the PA-FP has two options: (i) it can blink possibly
transitioning multiple times between the active and the dark
state or (ii) it can irreversibly photobleach. Fluorescence is only
detected from the active state, not in the other three states. Now
consider a collection of N identical PA-FPs, each of which is
governed by the model of Fig. 1.
Thresholding methods used in enumerating PA-FPs do not

treat the stochastic nature of the fluorescence bursts explicitly.
Thus, these methods cannot separate overlapping PA-FP signals
where one FP activates before the last FP has photobleached.
These methods also cannot treat superposing signals, which occur
when two or more FPs fluoresce at the same time. Overlapping
and superposing signals arise when multiple PA-FP spikes occur
over a short period. This can happen when (i) there are a large
number of PA-FPs; (ii) the PA-FP blinking rate is fast and the PA-
FP photobleaching rate is slow; and (iii) the PA-FP photo-
activation rate is fast and the PA-FP photobleaching rate is slow.
Without a priori knowing the PA-FP number, N, or the PA-

FP’s properties, it is not possible to ascertain whether over-
lapping and superposing signals are improbable. Thus, in these
conditions, if the problem at hand is specifically to determine N,
the use of thresholding methods may not be appropriate. The
method developed here, by contrast, is applicable for any N and
PA-FP, regardless of its photophysical properties (activation,
blinking, and photobleaching) because it explicitly treats them as
the stochastic events they are.

To benchmark our method for finding kinetic rates and N
from the data, we first analyzed 200 simulated trajectories, each
one representing a collection of N = 5 PA-FPs.
These simulated trajectories (a sample of which is shown in

Fig. S1) were generated using the Gillespie stochastic simulation
algorithm (43). That is, the PA-FP photophysical dynamics were
simulated stochastically according to the model given in Fig. 1
and the time trace recorded a fluorescence signal only during
times in which any of the PA-FPs were in the A state.
There are several assumptions that these simulations make:

i) We assume that we have a unique dark and active state. If
the number of dark and active states is greater than one, we
will find that our estimates for the rates will come with large
error bars (we will later see this for the case of Dendra2)
and, in this case, additional information must be provided to
specify the number of states needed.

ii) We assume that the breadth of the distribution over N for
our simulated data arises only from finite data. In reality,
finite data provides a lower bound on the breadth of the
distribution over N. The remainder of the distribution’s
breadth arises from the intrinsic variability in the stoichiom-
etry of the complex which we will discuss later.

iii) We assume all PA-FPs photoactivate. Recent work suggests
that the photoactivation efficiency ranges from only 40–60%
depending on the PA-FP (44); to correct for this, we would
amend our PA-FP topology to add another state to which
state I can irreversibly transition without ever entering
state A.

iv) We assume that maturation of all PA-FPs (mEos2 and
Dendra2) used in the in vitro experiments is complete; we
assume this because the elapsed time—from protein expres-
sion to the point where purified protein are obtained—is
longer than the maturation half-time (90 and 120 min for
Dendra2 and mEos2, respectively) (45, 46).

v) We assume that protein complexes are well separated in
space, which is often the case in experiments. For instance,
the bacterial flagellar motor complex—with ∼22 MotB
monomers forming part of each complex—are spatially well
separated (20), as are individual kinetochores associated
with six or more proteins linking kinetochore microtubules
to centromeric DNA (47). For the complicated case where
complexes are closely packed (i.e., packed within region
spatially nonresolvable by PALM), our analysis should yield
a distribution over N peaked at multiples of some number,
e.g., N = 5; this, in itself, is important information that would
then motivate future experiments in an effort to establish
whether complexes aggregate or coincidentally colocalize
within an ROI.

We simulated three different blinking scenarios: moderate
blinking (set 1), fast blinking (set 2), and slow blinking (set 3).
We generated 200 synthetic traces for each scenario. The
parameters for the three sets are summarized in Table 1. We
tuned the ratio between the blinking rate and the photobleaching
rate ðkd=kbÞ to control the blinking behavior. If kd is large, rel-
ative to kb, then many blinking events will occur before photo-
bleaching. If kd is much smaller than kb, the PA-FP is more likely
to photobleach without blinking.
To find the model parameters ðkd; kb; ka; kr;NÞ from the syn-

thetic data, we use a maximum-likelihood procedure detailed in
Materials and Methods. The likelihood function is based on the
likelihood of observing a particular on-off fluorescence time
trace in the data, which is then maximized with respect to the
model parameters.
In the analysis of these data sets, we used a bootstrapping ap-

proach (resampling data with replacement) to determine the pre-
cision of our parameter estimates (48, 49). We randomly selected

Fig. 1. Kinetic model for PA-FP blinking. This kinetic model has four states
inactive (I), active (A), dark (D), and photobleached (B). The only fluorescent
state is A. We name the transitions between states this way: activation
ðI→AÞ, blinking ðA→DÞ, recovery ðD→AÞ, and photobleaching ðA→BÞ.
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a subset of trajectories and determined the rates that maximized the
sum of the log-likelihoods of the selected trajectories. We con-
structed a distribution of rates by repeating this process (200 times)
for other randomly selected sets of trajectories. Our estimate for
each parameter is the mean of the corresponding distribution, and
we compute the 95% confidence interval based on percentiles of
the distribution. The results are shown in Figs. 2 and 3 (for data
set 1 and 2) and Fig. S2 (for data set 3).
The bootstrap results show that the parameters were determined

precisely, except for a small underestimate of N throughout and
a small bias toward slower kd in set 2 (Fig. 3). This set has a faster
blinking rate than the other two sets. When we had simulated the
synthetic data, we imposed a 50-ms time bin on our simulated data
(to mimic the time resolution, i.e., camera rate, of PALM experi-
ments). In Fig. 4 we show that this bias toward smaller N is due to
missed transitions in the presence of fast blinking and low temporal
resolution. In other words, as we increase the resolution to 5 ms,
the bias in the estimate of N indeed vanishes.
Finally, Fig. 5 shows that if the values for the rates are known,

we can use the PALM trajectory data to find the only unknown—
namely, N. We show this to be the case in Fig. 5 for the chal-
lenging parameter set 1 both with 5-ms and 50-ms temporal
resolution where the theoretical N value is set to 15. Again, the
simulation with a resolution to 5 ms is sharply peaked at the
correct answer.

Analysis of in Vitro Data. In addition to the simulated data pre-
sented above, we analyzed the in vitro data of Lee et al. (40). In
this data set (which includes 1,000 traces), biotinylated Dendra2
molecules were immobilized on a streptavidin-coated glass cov-

erslip, in a manner such that oligomerization was negligible and
molecules were spatially well separated enough to be detected
individually ðN = 1Þ. The sample was simultaneously illuminated
with 405-nm and 561-nm lasers to activate (from a precursor
state to I) and then excite (from I to A) the Dendra2 molecules,
respectively, until all of the molecules were photobleached (see
Lee et al. (40) for further details). Individual emission bursts
from the EMCCD output were processed into single-molecule
time traces for analysis as described in ref. 40.
We simultaneously extracted the four kinetic rates (ka, kd, kr ,

kb) and found that Dendra2 blinking probability is low
ðkd=kb ≈ 0:3Þ; its behavior most closely resembles that of set 3 of
our simulated data. Dendra2 molecules are more likely to pho-
tobleach upon activation than blink. Our N distribution is sharply
peaked at 1 (Fig. 6), as expected for this data set, because the
experiments were designed to separate and isolate Dendra2
molecules on the coverslip. Our rate estimates (drawn from 300
bootstrap iterations) compare well with those of Lee et al. (40),
who found a similar blinking rate (Table 2). Our results differ
from their results most significantly for kr , the rate of recovery
from D to A. Lee et al. (40) fit the distribution of fluorescence-off
times to determine kr and found that the distribution fit poorly to
a single exponential, but that it was well fit by a double exponential
ðkr1e−kr1t + αkr2e−kr2tÞ. The poor fit to a single exponential agrees
with the fact that our histogram of kr is heavy tailed toward slower
rates (Fig. 6). Their findings and ours suggest that the kinetic
model of Dendra2 (Fig. 1) should be amended to two dark states
rather than one. We will explore the possibility of including more
dark states, and the implication of uniquely identifying a model
when using more dark states, in future work.

Missed Transitions May Be Necessary in Tackling Larger Data Sets. To
tackle more challenging data sets, we need to correct for missed
transitions when PA-FP residence times in the dark or active
state are on the order of the temporal resolution or data ac-
quisition time (the dead time, td). The mathematical details are
relegated to Materials and Methods. Typically, the lower bound
for this time resolution is limited by the camera’s acquisition
rate, i.e., the frame integration time.
In Fig. 7, Left, we show a distribution over N obtained by

combining 10 traces ðN = 10Þ of the N = 1 from the in vitro data

Table 1. Transition rates for simulated data

Rate constant Set 1 Set 2 Set 3

ka 0.5 0.5 0.5
kd 3.0 10.0 0.1
kr 0.1 0.1 0.1
kb 1.0 1.0 1.0
kd=kb 3 10 0.1

Kinetic rates used to generate simulated data sets. Rates in units of Hz.
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to generate more challenging yet controlled data sets. We gen-
erated 1,000 of such traces. When td = 0, we underestimate N by
a factor of ∼2 (even after 200 bootstrap iterations). This un-
derestimation is most likely due to the missed transitions of the
active state rather than of the dark state. Because the mean dwell
time in the active state (83 ms ∼ 1=ðkd + kbÞ) from Table 2 is
about as long as the data integration time (50 ms), we expect to
miss about half the transitions to the active state, which agrees
well with our result (N = 5 using td = 0 instead of the expected
N = 10; Fig. 7). By contrast, the dwell in the dark (1,100 ms) is
much larger (∼20 times) than this integration time.
We did not undercount when we considered the N = 1 (Fig. 6)

case because the probability of observing exactly N = 0 is zero
because the first fluorescent peak is automatically counted as one

emission burst, which obviously corresponds to the activation of
a new molecule. We did not overcount because our theory cor-
rectly differentiates between blinks and new photoactivations (as
benchmarked for our simulated data sets).
To approximately correct for the undercounting when N is larger

than 1, we increased td to 50 ms, which considerably improves our
N estimate (Fig. 7).
Next, if we set the dead time closer to the active-state dwell

time, td = 100 ms the distribution shifts still further toward the
correct value (Fig. 7).
To avoid using this approximate treatment, a goal should be to

develop PA-FPs that blink with kinetics slower than the data’s
acquisition rate.

Making Use of Intensity Measurements. Previously, we showed how
to correct for missed transitions in dealing with real data sets.
Here we describe how to use fluorescence intensity data by
separating bright states into several distinct aggregates also rel-
evant to analyzing real data sets (Fig. 8).
Fig. 8A shows the number of states in each aggregated class for

N = 20 fluorophores. The top row groups all bright macrostates
into one class. The second row splits the bright macrostates into
two bright classes, and the bottom row further splits them into
a third bright class. The class sizes have a practical consequences:
they determine the sizes of the transition matrix submatrices
(discussed in Materials and Methods), which determine the com-
putational cost of computing the matrix exponentials and, ulti-
mately, the computational cost of parameter extraction.
The method recovers N = 5 correctly (after 200 bootstrap

iterations) when there are two bright aggregates, corresponding
to one fluorophore active and more than one fluorophore active,
respectively (Fig. 8B). A mathematical formalism is detailed in
Materials and Methods.
Using the same number of synthetic traces and bootstrap iter-

ations, we then extracted rates and N for a larger simulated data
set ðN = 10Þ with two observable bright aggregates. With a 50-ms
time resolution, the rates were correctly extracted but N was
underestimated because some transitions are missed. By regen-
erating simulated data with 5-ms time resolution, the rates are
also correctly extracted and the estimate of N improves, but the
distribution remains relatively broad because the data are probed
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Fig. 3. Histogram of bootstrapping results from simulated data set 2. Histogram of bootstrapping results from simulated data set 2 with 200 traces (200
bootstrap iterations). An overall bias toward slow kd is observed in the kd distribution. We will discuss how to correct for missed transitions, which gives rise to
this bias, later. The theoretically expected results are shown in the dotted line.

Fig. 4. Histogram of bootstrapping results from simulated data set 2 with
5-ms time bins. We followed the same procedure as in Fig. 3 except we now
used 5-ms—as opposed to 50-ms—time bins.
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to extract all rates as well as N (Fig. 9). The estimate for N
sharpens dramatically, even when trying to estimate larger N,
when information on the rates is provided and the data are in-
stead entirely focused on estimating N more precisely (Fig. 5). All
code used to generate the results can be obtained by emailing the
corresponding author.

Discussion
Common biochemical/biophysical methods used to establish the
stoichiometry of protein complexes often lack single molecule
resolution. For example, in the ion-channel literature the fol-
lowing methods are common: densitometry of silver-stained and
Western-blotted protein complexes (in quantifying atrial inward
rectifying potassium channel complex stoichiometry) (50); volt-
age-clamp electrical recordings [combined with channel inhib-
itors release to count potassium voltage gated channel (KCNE)
subunits] (7); LC-MS (in counting subunit e used in bovine heart
mitochondria ATP synthase self-association) (51); coimmuno-
precipitation/immunocytochemistry (to assess colocalization of

potassium voltage-gated channels such as KCNE2 to KCNQ1
and KCNE1 in cardiomyocytes) (17).
Fluorescence-based methods are also common in enumerating

proteins but have severe limitations. For instance, flow cytometry
(52, 53) yields estimates for intracellular protein number, but
provides no spatial resolution and is less accurate for proteins
numbering less than a few hundred (53). By contrast, quantita-
tive fluorescence microscopy (54–56), which is diffraction lim-
ited, provides a maximum spatial resolution of a few hundred
nanomoles and is commonly used in protein counting, but still
provides an order of magnitude less resolution than PALM or
STORM (stochastic optical reconstruction microscopy), another
SR technique. Using quantitative fluorescence, Joglekar et al.
(54) counted proteins in the kinetochore of budding yeast using
the fluorescence intensity from tagged Cse4p (57–59) as a fluo-
rescence intensity standard. This indirect method can lead to
counting errors because standards themselves can be poorly
characterized (18, 19).
Stepwise photobleaching methods, in turn, count proteins by

monitoring discrete fluorescence intensity drops as individual
proteins photobleach over one ROI. This method was used to
count KCNE1s in the cardiac channel IKs (5). Photobleaching
does not require fluorescence standards but is still diffraction
limited (20–23). Furthermore, the noise inherent to photo-
bleaching data limits the method to complexes with less than 5–6
proteins (21).
By comparison, the method presented here provides a princi-

pled recipe for enumerating PA-FPs while gathering critical
photophysical properties of the PA-FPs directly and self-consis-
tently from the same SR data set used to determine N.
A qualitative reason explaining why likelihood functions peak

at the correct value of N (Fig. S3) is illustrated with the following
example. Suppose we start by guessing that all fluorescence
spikes in a time trace are due to one PA-FP (i.e., N = 1). Thus, all
events, except the first photoactivation, are blinks. Assuming we
only have a single D state, all waiting times between successive
fluorescence spikes should therefore be sampled from this dis-
tribution: e−krt. However, if we have many PA-FPs, not all waiting
times will be sampled from e−kr t, and the likelihood of N = 1 will
be small. We can repeat a similar reasoning for any N value.

Fig. 5. Histogram of N obtained by assuming rates. We demonstrate that
we can accurately determine N if the rates are known. We use parameters
from set 1 from Table 1 and use the simulated data to determine N (and not
the rates). (Left) Shown with 50-ms time resolution (and therefore under-
estimated N ). (Right) Improvement afforded by smaller time resolution
(5 ms).
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Another decisive advantage of our method is its ability to
generate entire distributions of N for a given complex; this is
particularly relevant given that protein complex stoichiometry
may vary from complex to complex based on the dissociation
constant of the various subunits in those complexes (5, 60), tissue
development, and even its disease state (8, 61, 62). Developing
therapeutic agents against some heart diseases, for instance, may
require a quantitative assessment of protein complex composi-
tion in living tissues (7, 62–64) and finding drugs to restore native
complex stoichiometries is one such strategy (8, 62).
Our method is a first step in the quantitative determination of N

from SR data, it includes the treatment of the “missed event
problem” and shows how one can take advantage of intensity
measurements.

Materials and Methods
States of the Model. We assume that each fluorophore is independent of the
others: the state of one fluorophore does not affect the state of any other
fluorophore. We describe the state of a system of N fluorophores as a vector
of the populations of the inactive, active, dark, and photobleached states:
fNI ,NA,ND,NBg. To avoid confusion, we will use the term “microstate” to
refer to the state of a single fluorophore (i.e., I, A, D, or B), and “macrostate”
to refer to a population vector that describes the collection of fluorophores.
For example, macrostate i for a collection of two PA-FPs in which both PA-
FPs are inactive would be si = f2; 0;0; 0g. The set of all macrostates is
S= fs1, . . . ,sMg, where each si in S is a population vector and M is the total
number of macrostates.

Computing M is a common combinatorial problem: the number of unique
ways to partition N indistinguishable objects into x bins. In this case, the
objects are PA-FPs and the bins are the microstates. There are four micro-
states, so x = 4.

M=
�
N+ x − 1
x − 1

�
=
�
N+3
3

�
[1]

For example, if the collection contains two fluorophores, the following 10
macrostates (obtained from

�
5
3

�
) are available.

We model the collection of PA-FPs as an AMM. As shown in Table S1, each
macrostate belongs to an aggregated class, either dark or bright. Macro-
states with at least one active PA-FP ðA> 0Þ are assigned to the bright class.
Macrostates with zero active PA-FPs ðA= 0Þ are assigned to the dark class.

Here, the bright class corresponds to the detection of fluorescence and the
dark class corresponds to the absence of fluorescence. The aggregated classes
are necessary because PALM experiments cannot distinguish between the
various dark states. The dark and bright classes here are analogous to the
closed and open classes in the ion channel AMMs.

There can be multiple bright classes as there can be multiple levels of
fluorescence that are observable: bright, bright2, bright3, . . ., brightN, as
shown in Fig. 8.

The number of macrostates grows exponentially (Fig. S4) with N, which is
a concern for the numerical calculations discussed in the results section; the
computational time of the likelihood depends on the number of macro-
states. As such, we define a quantity Amax , which represents the maximum
number of PA-FPs we allow to be simultaneously photoactive. We use this
quantity as a way to tune the size of the state space to save on computa-
tional time in situations where we expect photoactivation events to be well
separated in time.

Model Kinetics. The transition rate from macrostate si to macrostate sj is
simply the transition rate for one PA-FP multiplied by a combinatoric factor
for the population of the appropriate microstate. The macrostate transition
rates are summarized in Table S2.

The dynamics of the PA-FP AMM are governed by a rate matrix, Q. Each
off-diagonal matrix element qij equals the transition rate of si → sj. The di-
agonal elements are set so that each row sums to zero: qii =−

P
i≠jqij. The

macrostate transition probabilities at any time t are given by the Kolmogorov
equation (34):

dPðtÞ
dt

= PðtÞQ [2]

whose solution is given by

PðtÞ= Pð0ÞeQt : [3]

In the case of dark and bright observation classes, we can partition the rate
matrix Q into four submatrices, based on the dark (subscript d) and bright
(subscript b) aggregated classes:

Q=
�
Qdd Qdb

Qbd Qbb

�
: [4]

The submatrix Qdd contains the rates for transitions from states in class
d to other states in class d; Qdb contains the rates for transitions from the
states in class d to the states in class b. The other two submatrices are
similarly defined.

Another possibility would be that multiple levels of fluorescence are
observable: bright1, bright2, bright3, etc. For example, in the case of two
bright aggregated classes, macrostates with A= 1 would be grouped into the
bright1 class, which we denote b1. Macrostates with A> 2 would be grouped
into the bright2 class, which we denote b2. By extension, if three intensity

Table 2. In vitro Dendra2 kinetic rates

Rate constant Our analysis Lee et al. (40)

ka 0.009 0.01
kd 2.8 3.2
kr 0.87 1.6
kr2 n/a 18, α=3:2
kb 9.2 16.6
kd=kb 0.3 0.2

In vitro Dendra2 kinetic rates from the current AMM analysis and from
Lee et al. (40). Rates in units of Hz.

Fig. 7. Increasing the dead time, td , helps approximately correct for missed transitions. We combine 10 N= 1 in vitro traces and use the combined traces to
determine rates and N (whose theoretical value should be N= 10). We generated 1,000 of such traces (with 200 bootstrap iterations). The distribution over N is
shown for increasing values of td . Dendra2 has a dwell time in the bright state, which is on average approximately as long as the time resolution of ex-
periment (50 ms). Thus, when td is zero, approximately half the transitions to the bright state are missed. As td increases, our estimate for N improves. Fig. 4
shows that PA-FPs with kinetics slower than the integration time should improve the estimate for N.
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levels were resolvable, b2 would contain macrostates with A> 1 and class b3

would contain macrostates with A> 2. In the case of one dark class and two
bright observation classes, our rate matrix would be partitioned into nine
submatrices:

Q=

0
@ Qdd Qdb1

Qdb2

Qb1d Qb1b1 Qb1b2

Qb2d Qb2b1 Qb2b2

1
A:

Having multiple bright aggregates is advantageous because it shrinks the
size of the largest submatrix in the likelihood calculation. Furthermore, if
the time traces infrequently visit the higher brightness classes, then fewer
exponentiations of the largest submatrix will be necessary.

Likelihood Function. The likelihood function that we describe in this section
provides an answer to the following question: Given a kinetic model and a set
of kinetic rates, what’s the likelihood of observing the data? Our goal is to
determine the kinetic rates and N that maximize the likelihood function, i.e.,
maximize the likelihood of observing the data that was collected by PALM.

Suppose we have a trajectory of L dwells representing the dynamics of a
collection of N PA-FPs. Associated with each dwell is an observed aggregated

class and a dwell time. The set of observation classes is h= fh1, . . . ,hLg. The
set of dwell times is t= ft1, . . . ,tLg. So, during dwell i we observe class
hi ∈ fd,bg for duration ti . See Fig. 10 for an illustration. The probability
densities for dwelling in the dark class for time t and then transitioning to
the bright class are given by the elements of the following matrix:

GdbðtÞ= eQdd tQdb: [5]

The ði,jÞth element of Gdb is the probability density of entering class d from
its ith state, dwelling in class d for time t, and then transitioning to the jth

state of class b.
When we have missed transitions, we implement renormalized transition

matrices—instead of transition matrices like those given by Eq. 5 —that
account for missed transitions to the bright state, say, by resuming over all
possible missed events (37, 65)

GdbðtÞ= expðQddtdÞexp
��
Qdd −Qdb

�
I− eQbbtd

�
Q−1

bbQbd
	ðt − tdÞ

	
Qdb:

Next, we wish to calculate the likelihood of the dwell trajectory h, given the
model parameters θ, where θ is the set of parameters (N and the transition

Bright 1 Bright 2 Bright 3Dark

231 states

231 states

231 states

1320 states

210 states

210 states 190 states

1110 states

920 states

A B

Fig. 8. Using intensity measurements can improve the estimate for N. (A) When N=5 we can observe, in principle, a fluorescence intensity ranging from one
to five bright (if all PA-FPs are on simultaneously). Here we show how many states coincide with the different fluorescence intensities up to three simul-
taneously bright. (B) We show that we can take advantage of the intensity measurements to compute a correctly centered distribution for N (using 200
synthetic traces with 200 bootstrap iterations).

Fig. 9. Intensity measurements become particularly useful when estimating rates and N for larger N. Here we used simulated set 1 with N= 10 (200 synthetic
traces with 200 bootstrap iterations). If the data are instead focused on determining only N, rather than N and the rates, the distribution over N becomes
dramatically sharper even for larger N (Fig. 5).
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rates) that go into the rate matrix Q. The likelihood function then reads as
follows:

fðθjt,hÞ= Pinit ·Gdbðt1ÞGbdðt2Þ . . .GbdðtLÞeQdd tfinal ·Pfinal , [6]

where Pinit is a probability vector with all probability density in the fully
inactive macrostate. The parameters, θ, determine the elements of the rate
matrixQ. The final factor of eQdd tfinal comes from the fact that all of the PA-FPs
irreversibly photobleach by the end of the trajectory. After all photo-
bleaching events occur, the system will dwell in the dark class indefinitely; we
represent this with a long final dwell in the dark class for time tfinal = 104 s.
Pfinal is a probability vector with all probability density in the fully
photobleached macrostate.

Numerical Evaluation of the Likelihood Function. Our goal is to find the set of
parameters θ̂ that maximize the likelihood function given the data (a dwell
trajectory represented by t and h; in practice, this is accomplished by mini-
mizing −log½fðft,hgjθÞ� with respect to the rates for a fixed value of N, and
then repeating this process for other values of N). The optimization is per-
formed in Python using the limited-memory Broyden-Fletcher-Goldfarb-
Shanno (BFGS) minimizer, implemented in Scipy (66). BFGS is a quasi-Newton

method that performs well on nonsmooth optimization problems. The
computational time is plotted in Fig. S5. The scaling depends on Amax , and it
is advantageous to set Amax to a small value when possible (when activation
events are well separated).

As an aside, we point out that Amax = 1 is still distinct from thresholding
methods. Consider the following scenario: a PA-FP activates, and then blinks.
Whereas the first PA-FP is in the dark state, a second PA-FP activates and
photobleaches before the first molecule recovers from blinking. This sce-
nario would still obey Amax = 1, but it would be forbidden in thresholding.

To determine whether likelihood maximization runs converge to the
correct parameter values, as a preliminary test we computed 1D slices in
parameter space around the true value of each parameter. Each panel of Fig.
S3 was obtained by holding four of the five parameters (ka, kd , kr , kb, and N)
constant at their true values and then varying the remaining parameter over
a range encompassing its true value. We see that the four kinetic rates are
peaked in the correct location at their true values. In the 1D slice for N, we
see a maximum (as determined by the value of the likelihood function) that
spans N= 4 and N= 5.

Next, we assessed the ability of the numerical maximization procedure
to converge to the correct parameter values. The 1D slices discussed above
suggest that the likelihood function maximum is in the correct region of
parameter space, but a separate question is, Can we simultaneously de-
termine all five parameters? We found that the likelihood-maximization
procedure converges to the correct kinetic rates within 100 cycles. Fig. S6
shows the convergence of the rate estimates from one of the maximi-
zation runs. For simulated fast (set 2) and slow blinking (set 3), we found
that convergence of the likelihood maximization also occurred within
∼100 cycles.
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