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Abstract

The pharmacology of drugs is often defined by more than one protein target. This property can be

exploited to use approved drugs to uncover new targets and signaling pathways in cancer.

Towards enabling a rational approach to uncover new targets, we expand a structural protein-

ligand interactome (http://www.biodrugscreen.org) by scoring the interaction among 1,000 FDA-

approved drugs docked to 2,500 pockets on protein structures of the human genome. This afforded

a drug-target network whose properties compared favorably with previous networks constructed

with experimental data. Among drugs with highest degree and betweenness two are cancer drugs

and one is currently used for treatment of lung cancer. Comparison of predicted cancer and non-

cancer targets reveals that the most cancer-specific compounds were also the most selective

compounds. Analysis of compound flexibility, hydrophobicity, and size showed that the most
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selective compounds were low molecular weight fragment-like heterocycles. We use a previously-

developed screening approach using the cancer drug erlotinib as a template to screen other

approved drugs that mimic its properties. Among the top 12 ranking candidates, four are cancer

drugs, two of them kinase inhibitors (like erlotinib). Cellular studies using non-small cell lung

cancer (NSCLC) cells revealed that several drugs inhibited lung cancer cell proliferation. We

mined patient records at the Regenstrief Medical Record System to explore possible association of

exposure to three of these drugs with occurrence of lung cancer. Preliminary in vivo studies using

non-small cell lung cancer (NCLSC) xenograft model showed that losartan- and astemizole-

treated mice had tumors that weighed 50 (p < 0.01) and 15 (p < 0.01) percent less than vehicle.

These results set the stage for further exploration of these drugs and to uncover new drugs for lung

cancer.

INTRODUCTION

Genomic and proteomic studies have established that cancer is a systems biology disease

that involves a large number of genes spanning multiple signaling pathways as shown in

lung,1 pancreatic,2 breast,3 brain4 and colorectal5 cancers. In the case of lung cancer,

hundreds of genetic alterations spanning 18 signaling pathways have been found.1, 6 The

large number of mutations make it a significant challenge to identify effective treatments for

this disease. According to the American Cancer Society, the disease has taken 160,340 lives

in the U.S in 2011 alone. Non-small cell lung cancer (NSCLC) is the most prevalent form of

the disease (85 percent of all cases). It is characterized by poor prognosis and aggressive

behavior. First-line treatment options for the majority of patients include chemotherapeutics

that cause significant side effects. New treatments with lower toxicity and greater efficacy

are urgently needed.

Studies have shown that approved and experimental drugs as well as chemical probes bind

and modulate the function of multiple proteins.7, 8 This property, also known as

polypharmacology, offers an opportunity to uncover new targets. Recently, we have

explored the possibility of using structure-based docking to generate a protein-compound

interactome that can be used as a hypothesis generation tool to uncover new targets for small

molecules. We docked more than 1,200 compounds to more than 3,000 pockets from 1,000

proteins. The resulting structural protein-ligand interactome (SPLINTER) is available at http://

www.biodrugscreen.org 9. The scoring of protein-compound interactions in this interactome

enables the rank-ordering of compounds for individual targets for purposes of hit

identification, but also makes it possible to rank-order proteins for a list of potential targets

for a compound or drug of interest. In a recent application, we used the interactome to

search for compounds that mimicked the binding profile of an existing drug.10 We stipulated

that such compounds may exhibit similar pharmacokinetic properties and efficacy to the

drug and possibly serve as leads for the development of cancer therapeutics. From this

study, several compounds were uncovered with potent anti-cancer properties and in vitro

studies suggested suitable pharmacokinetic (PK) properties.10

Here, we extend SPLINTER by docking more than 1,000 FDA-approved drugs to targets in the

interactome. The cancer drug erlotinib was used as a template to search for other approved
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drugs that may possess similar anti-cancer properties. Erlotinib is used in the treatment of

non-small cell lung cancer (NSCLC) patients. Twelve drugs are tested for their effect on cell

growth in a panel of NSCLC cells. We mined patient records to study the potential

association between drug exposure and lung cancer occurrence in patients taking these

drugs.11 In vivo preclinical studies using human NSCLC xenografts in NOD-SCID mice

were carried out to probe these drugs for their effect in lung cancer.

RESULTS AND DISCUSSION

Docking approved drugs to the human structural proteome

The solvent-accessible surface area (SASA) and volume were determined for each pocket to

provide insight into their physico-chemical properties (Fig. 1). The SASA and volume

define the shape and size of the pocket. The mean SASA for cancer and non-cancer targets

is 367.6 and 353.5 Å2 respectively (Fig. 1A and 1G). To put this number in perspective, a

typical SASA for a protein-protein interaction is at least 1000 Å2 while enzyme active site

pockets are smaller. More than 90 percent of the pockets fall within 680 Å2. These cavities

are located either at protein-protein interaction interfaces, enzyme active sites, or allosteric

sites. The mean volume for the cavities is 1029.6 Å3 for cancer targets and 1061.4 Å3 for

non-cancer targets (Fig. 1D and 1J). 90 percent of the targets have cavities with volumes that

are within 1995 Å3.

To get insight into the physico-chemical properties of binding cavities within the cancer and

druggable targets, we defined pseudocenters in the binding pockets following the approach

of Klebe and coworkers.12 These pseudocenters consisted of aromatic, aliphatic, hydrogen

bond donors, and acceptors as shown in Fig. 1. On average, there are 13.8 and 14.6 aromatic

pseudocenters in the binding cavities of the proteome for cancer and non-cancer targets (Fig

1B and 1H). We found on average 21.1 and 22.7 aliphatic pseudocenters for cancer and non-

cancer targets (Fig. 1E and 1K). Hydrogen bond donor and acceptor reflect hydrogen

bonding capacity of residues within the binding cavities. The average number of acceptors

was 19.7 and 17.3 for cancer and non-cancer targets (Fig. 1C and 1I). The mean number of

donors was 17.3 and 14.6 for cancer non-cancer targets (Fig. 1F and 1L).

Physico-chemical properties and polypharmacology

Flexibility and solubility are investigated for approved drugs, approved cancer drugs, and

publicly-available NCI compounds. Flexibility is represented by the number of rotatable

bonds. Using a threshold value of 0.1 μM, the number of targets for all three classes versus

the size of the small molecule is provided in Fig. 2A. The most promiscuous compounds

have about 5 rotatable bonds. The most selective compounds had less than 3 rotatable bonds.

High promiscuity is predicted even for compounds with more than 10 rotatable bonds (Fig.

2B). In fact, some drugs with 20 rotatable bonds had more than 1,000 predicted targets at the

0.1 μM threshold. Approved cancer drugs followed a similar pattern. Rotatable bonds for

NCI compounds, non-cancer drugs and cancer drugs showed different distributions (Fig.

2B). A significantly greater fraction of NCI compounds had 3-5 rotatable bonds compared

with drugs and non-cancer drugs. Rotatable bonds were more uniformly distributed among

approved drugs. A significant fraction of drugs and approved drugs had more than 7
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rotatable bonds in significant contrast to NCI compounds. Cancer drugs were even more

likely to have more than 7 rotatable bond than non-cancer drugs.

It has been suggested that hydrophobic compounds are more promiscuous.13 Lipophilicity is

quantified by the partition coefficient that corresponds to the ratio of the concentration of

compound in water versus n-octanol. Several algorithms have been developed to predict the

logarithm of the partition coefficient (cLogP).14 A plot of the number of pockets versus

cLogP for all three classes of compounds shows a gradual increase in promiscuity for

compounds with increasing cLogP (Fig. 2C). This is observed for approved non-cancer

drugs, approved cancer drugs, and NCI compounds. The mean cLogP was 2.3, 2.7 and 2.5

for the three classes of compounds, suggesting that cancer drugs had slightly more

hydrophobic character than other drugs and compounds. This is illustrated by the

distribution in Fig. 2D as a greater proportion of cancer drugs had cLogP values greater than

5. The distribution also shows that compounds from the NCI library were more likely to

have a cLogP between 1 and 3.

Drug pharmacology

Compounds that bind selectively to cancer-associated targets are more desirable as they are

likely to possess greater efficacy and lower toxicity. To get insight into the selectivity of

drugs, the Cancer Selectivity Index (CSI) is defined as the ratio of the number of predicted

cancer target proteins from the HCPIN database to predicted non-cancer targets of approved

drugs obtained from DrugBank. A plot of CSI versus the total number of predicted targets

(HCPIN + DrugBank) for each drug is shown in Fig. 2E. A protein is considered a “target”

when the predicted binding affinity from the ChemScore empirical scoring function exceeds

a predefined threshold of 0.1 μM. ChemScore has been extensively validated for scoring

protein-compound complexes.15, 16 For the majority of drugs, the CSI ratio is in the 0.7 to

1.2 range. This is not completely unexpected since pockets located on cancer targets are

similar to those located on non-cancer targets. A close inspection of the data reveals that

there were 500 drugs with CSI greater than 1. A significant proportion among them, 64 are

approved cancer drugs. Twelve of these have a high degree of preference to cancer targets

with CSI values greater than 2 (Table 1). All twelve had a total of less than 18 targets (that

exceeded the 0.1 μM threshold). Their chemical structure is provided in Supporting

Information Fig. S1. It was notable that the overwhelming majority of these drugs were

fragment-like with molecular weights below 300 Da. They consisted of a single heterocyclic

or aromatic ring structure with various appendages. This suggests that smaller compounds

may be the most effective approach to achieve selective polypharmacology.

A measure of the predicted polypharmacology of compounds was defined using the ratio of

targets defined by the number of proteins that exceeded the 0.1 μM threshold to the number

of proteins below this threshold. The distribution of this ratio is shown in Fig. 2F. The

majority of NCI compounds and drugs exhibit a ratio below 0.2, with compounds showing

greater selectivity than drugs. Cancer drugs exhibit less selectivity than NCI compounds and

non-cancer drugs (Fig. 2F).

A survey of the literature reveals that at least four of these drugs bind to targets that have

previously been implicated in cancer. For example, isoetharine and salbutamol are
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adrenergic β1, β2 agonists and are used for the treatment of bronchospasm, asthma, and

chronic obstructive pulmonary disease. They bind and activate the β1 and β2 adrenergic

receptors, which are involved in multiple metabolism pathways including calcium signaling,

gap junction, salivary secretion, and endocytosis.17 Recent studies suggest these receptors

are critical for the development of colorectal cancer.18 The third drug is methyprylon, a

sedative of the piperidinedione derivative family and a treatment for insomnia. Up-

regulation of microRNA miR-155 inhibits γ-aminobutyric acid A receptor 1 (GABRA1,

target of methyprylon) and promotes tumor growth.19 The targets of the fourth drug

(bromfenac) are cox1 and cox2, which are well-known to be involved in inflammation,

which in turn has been implicated in cancer.20

Drug-target network

The interaction between small molecules and their targets can be understood within the

context of a drug-target network.8, 21 The availability of complete protein-drug or protein-

compound interactome affords the construction of a complete drug-target network (Fig. 3).

In this network, a node represents a molecule and two nodes are linked if they share a cancer

target. A protein is considered a target to a small molecule if its ChemScore predicted

affinity is higher than 0.01 μM. We constructed a drug network for cancer and non-cancer

FDA-approved drugs (Fig. 3A).

A comparison of the two networks reveals a total of 120,314 and 54,632 edges, with 559 and

402 nodes for the NCI compounds and FDA-approved drugs, respectively. To gain insight

into the level of interconnections of the nodes, we computed the mean degree for each

network (the degree of a node corresponds to the number of edges connected to the node).

The NCI compound network exhibited a mean degree of 430, while the FDA-approved drug

network showed a mean degree of 272. The number of non-redundant shortest pathways

going through each node (betweenness) was also computed for each network. The mean

betweenness for the NCI network was 128 while that of the FDA-approved drug network

was 131. A plot of the degree versus betweenness is shown in Fig. 3B. The top 10 drugs

with highest betweenness and degree are provided in Table 2. It is worth noting that two of

the ten compounds are cancer drugs, and one, namely bexarotene, is used in the treatment of

lung cancer (Table 2).22 Finally, the mean clustering coefficient was determined to gain

insight into the topology of the networks. Clustering coefficient of the NCI compound

network is 0.913 while that of the FDA-approved drug network is 0.898. It was found that

the NCI compound network was slightly less loosely connected than the FDA-approved

drug network. These values are in excellent agreement with a previous study that computed

them from a drug-network based on experimental data.23

A search for new cancer drugs using compound polypharmacology

Previously, we had used predicted off-targets of erlotinib to identify compounds that

mimicked the pharmacokinetic and anti-cancer properties of the cancer drug. Here, we

extend this concept to identify FDA-approved drugs that could be potentially used in the

treatment of lung cancer. Following the same approach a fingerprint is defined based on

erlotinib’s predicted off-targets.10 We selected the top 12 drugs with highest similarity to the

binding profile of erlotinib as measured by a Tanimoto coefficient that was determined by

Peng et al. Page 5

Mol Biosyst. Author manuscript; available in PMC 2015 March 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



comparing fingerprints (Table 3). It was notable that among these 12 drugs, 4 are either

currently used for the treatment of cancer, or have been considered in clinical trials as

candidates for the treatment of cancer; these include lapatinib, dasatinib, bexarotene, and

podofilox. Lapatinib is approved for advanced or metastatic breast cancer. Dasatinib is

approved BCR-ABL positive chronic myelogenous leukemia. Bexarotene is approved for

treatment of T-cell lymphoma and is being studied in a Phase II lung cancer clinical trial. All

of these drugs were tested in clinical trials for treatment of lung cancer. Podophyillotoxin

(podofilox) is approved to treat external genital warts; due to its tubulin modulation property

and antimitotic function, podophyillotoxin and its derivatives may have anticancer

properties.24 Another significant outcome of the ranking by fingerprint using erlotinib is the

fact that two of the anti-cancer drugs, namely lapatinib and dasatinib, are kinase inhibitors

just like erlotinib. The most significant aspect of this observation is that the fingerprint

approach can be used to identify other drugs that target the same protein as the template

drug without the use of chemical structure. It is interesting to note that none of the drugs

shared any structural similarity with erlotinib. Hence, our fingerprint approach obviates the

need to use chemical structure to identify pairs of small molecules that share similar targets.

In an effort to assess the effect of each drug on cancer cell growth, we performed an MTT

study for each drug in three NSCLC cancer cell lines, namely H1299, A459, H460, and one

non-cancer WI38 fibroblast cell line. All 32 MTT curves are provided in the Supporting

Information Fig. S1 to S4. EC50 that were obtained from these curves are provided in Table

4. The most cytotoxic drug was podophyillotoxin with EC50 in the nanomolar

concentrations (Table 4). This was not a surprising finding since this drug is a derivative of

etoposide a well-known chemotherapeutic. The second most potent drug was dasatinib. In

A549 and WI38, the compound inhibited proliferation at sub-micromolar EC50. Astemizole

was the next most cytotoxic drug, EC50 of 12, 9, 10, and 8 μM for H1299, H460, A549 and

WI38 cells, respectively. Lapatinib, another kinase inhibitor, showed significantly less

inhibition of cell proliferation in all three cell lines with EC50 values between 30 to 40 μM.

Bexarotene, which was previously tested in lung cancer clinical trials revealed weaker anti-

proliferative effect (EC50 = ~50 μM), showed weaker effect on WI38 proliferation.

Ergotamine, an analog of dihydroergotamine, had higher potency with an EC50 ~ 25 μM in

H1299 and H460, and even greater potency in A549 cells (13 μM). What sets this compound

apart from the others is that it had significantly less effect on WI38, providing a potential

therapeutic window. Losartan, a drug used mainly to treat high blood pressure, showed very

little cytotoxicity even at concentrations up to 100 μM.

Mining and statistical analysis of clinical drug exposure and disease occurrence

Patient cohorts were defined based on different drugs. For losartan, patient cohort was

constructed as co-occurrence of hypertension prior to lung cancer plus mono-occurrence of

hypertension without any kind of cancer. For ergotamine, patient cohort was constructed as

co-occurrence of migraine pain prior to 12 major types of cancer (Supporting Information

Table S1) plus mono-occurrence of migraine pain without any kind of cancer. All cohorts

contained patients who had first diagnosis of hypertension or migraine pain at 30 years of

age or older. We extracted 67,109 patients in the losartan/hypertension cohort, among which

65,411 patients had not been exposed to losartan and 1,698 patients had been exposed to
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losartan before first diagnosis of lung cancer or last visit date; and among which 1,574

patients were diagnosed with lung cancer sometime after first hypertension diagnosis and

65,535 patients were not diagnosed with any cancer before last visit date (Table 5). For

ergotamine/migraine pain cohort, we extracted 44,721 patients in the ergotamine/migraine

pain cohort, among which 44,509 patients had not been to ergotamine and 212 patients had

been treated with ergotamine before first diagnosis of any of major cancer types; and among

which 1,171 patients were diagnosed with any of 12 major cancers after first migraine pain

diagnosis and 43,550 patients were not diagnosed with any cancer before last visit date

(Table 6).

Survival statistical analysis was conducted for the association of drug exposure and risk of

cancer (Fig. 4). Time to occurrence of cancer by drug exposure status was analyzed using

the Kaplan-Meier method and log-rank test. Survival time (time to occurrence of cancer)

was defined as the time from the date of first diagnosis of hypertension (for losartan) or

migraine pain (for ergotamine) until date of first diagnosis of lung cancer (for losartan) or

any of the 12 major cancer types (for ergotamine). Drug exposure status was considered

positive if the patient was prescribed the drug before first diagnosis of cancer or last visit

date. Patients who did not have cancer were censored until last visit date. The y-axis

corresponds to the fraction of patients who had not been diagnosed with cancer. The x-axis

corresponds to survival time in days from first diagnosis of hypertension until first diagnosis

of lung cancer (for losartan group) (Fig. 4A), and days from first diagnosis of migraine pain

until first diagnosis of any of 12 major cancers in the case of ergotamine (Fig. 4B). For

losartan (Fig. 4A green curve), survival time was longer than without losartan (Fig. 4A red

curve) at any cancer percentage in range. While with ergotamine (Fig. 4B green curve),

survival time was shorter than without ergotamine (Fig. 4B red curve) at most cancer

percentage in range. These conditions suggested further statistical confirmation on

association of exposure of losartan and astemizole with reduced and enhanced cancer risk

respectively.25

In vivo studies in mouse xenograft models

Astemizole, losartan, and ergotamine were evaluated for their effect in vivo on tumor growth

using an H460 NSCLC human xenograft model. Two studies were carried out. The first

study was done by orally dosing mice with ergotamine at 50 mg/kg orally (n = 7) (Fig. 5A).

Vehicle mice (n = 8) were dosed with the methylcellulose. The study was terminated at day

21. While differences in tumor volume in vehicle versus compound-treated mice were not

statistically significant, there were some trends worth noting in this early exploratory study.

At day 15, tumor volume ranged from 249 to 944 mm3 for ergotamine-treated mice, and 274

to 743 mm3 for vehicle.

Another study was carried out with losartan and astemizole. These drugs were administered

i.p. at a dose of 50 and 10 mg/kg daily, respectively (n = 10 for losartan and vehicle; n = 9

for astemizole). Another difference is that mice were dosed with drug for a period of 7 days

before tumors were implanted. At day 24, tumor size was measured (Fig. 5B). Tumor

volume ranged from 1,770 to 4,600 mm3 for vehicle mice. For treated mice, tumor size

ranged from 1271 to 3,773 for losartan, and 1,470 to 3,969 mm3 for astemizole,
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respectively. The median tumor volume was 2,800, 2,463, and 2,810 for vehicle, losartan,

and astemizole, respectively. Tumor weights, which measured on the last day of the study

were 50 percent smaller for losartan-treated mice (p<0.01), and 15 percent for mice treated

with astemizole (p<0.01) (Fig. 5C). Four of the losartan-treated mice developed tumors that

weight less than 2.5 g, compared with none of the vehicle (smallest tumors for vehicle was

3.2 g). Three astemizole treated mice developed tumors that weighed less than 3.2 g. During

this study, the animal’s body weight was monitored (Supporting Information Fig S5) and no

significant alteration was found.

Histopathology studies were performed on the resected lung tumors to evaluate the cell

cycle arrest of NSCLC cells. The mitotic index (MI) was measured, which is defined as the

ratio of mitotic cell to non-mitotic cells for tumor tissues treated with vehicle, losartan, and

astemizole. The results were 7, 18, and 8 respectively. These data seem to suggest that

losartan has a significant propensity to cause G2M arrest in the cell cycle, which may lead to

apoptosis, similar to mechanism of Paclitaxel, a microtubule stabilizer and a well-known

cancer drug.26, 27

CONCLUSION

We extend our protein-compound interactome SPLINTER by docking FDA-approved drugs to a

large set of proteins within the dataset. The scoring of these protein-compound structures

using ChemScore led to a predicted binding affinity for each protein-compound pair. The

resulting matrix of predicted binding affinities can be used to rank proteins for each drug to

identify the most likely targets for that drug, or to rank drugs for individual proteins to

identify potential hit compounds. A protein is defined as a target for a drug if its predicted

binding affinity exceeds a pre-defined threshold value. This matrix was instrumental to

enable us to get deeper insight into the pharmacology of these drugs particularly in cancer.

Since our interactome consists of cancer and non-cancer proteins, it was possible to identify

drugs that exhibited greater selectivity to cancer targets. The data revealed that selectivity

for cancer targets can only be achieved only for compounds with fewer predicted targets

overall. In addition, it was possible to study the predicted polypharmacology of compounds

and drugs. In general compounds from chemical libraries had greater promiscuity than

drugs, but cancer drugs exhibited more promiscuity than non-cancer drugs. In addition,

physico-chemical properties of compounds and drugs led to significant differences predicted

polypharmacology. The data also revealed that smaller fragment-like compounds exhibited

greater selectivity. Finally, protein-compound scores enabled a network analysis and led to

the discovery of highly interconnected hubs that may yield new cancer therapeutics among

existing FDA-approved drugs. Interestingly, the parameters of these networks based on

predicted binding affinity were in good agreement with previous network constructed on

experimentally-determined interactions.

Beyond a deeper understanding of compound pharmacology, the protein-compound score

matrix provided an opportunity to extend on previous work that revealed that binding

profiles can be used effectively to identify compounds that share similar pharmacology.28

The binding profile of compounds was encapsulated into a fingerprint. We defined these

fingerprints as bits of 0 and 1 that correspond to whether the compounds exceeded a pre-
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defined threshold. In our previous application we used a drug to search commercial libraries

for compounds that mimic the properties of that drug.28 Here, we extend this approach to

FDA-approved drugs that we have docked to all proteins within our interactome. As we

have done previously, we use the lung cancer drug erlotinib as a template and use its

fingerprint to search for other approved drugs that share a similar fingerprint with the

expectation that these drugs will possess similar pharmacology to erlotinib. The fingerprints

are compared using a Tanimoto coefficient as we have done previously.28 From this

analysis, the top 12 drugs that possessed the most similar fingerprints as erlotinib were

further analyzed. It was interesting that three of these drugs are already in use for treatment

of lung and other cancers. Among the remaining nine drugs, cellular studies revealed that

except for one case, these drugs were micromolar inhibitors of NSCLC proliferation in a

panel of NSCLC that include A549, H1299 and H460.

We selected two drugs (losartan and ergotamine) that are commonly prescribed in the clinic

and for which there is extensive clinical data at the Regenstrief Institute database. We were

interested in evaluating whether patients that take these drugs are less likely to develop

cancer than those that do not. Mining patient records at the Regenstrief Institute, our

preliminary results indicate that ergotamine may hasten the onset of cancer; while losartan

had the opposite effect. Further statistical analyses and controls are needed in future studies

to make a definite link between these drugs and lung cancer in patients. Three drugs were

tested in a sub-cutaneous model of NSCLC in NOD-SCID mice. Mice treated with losartan

and astemizole had tumors that weighed 50% and 15% less than vehicle, respectively. In

histopathological analysis of resected lung tumors, losartan induced more significant G2M

arrest in the cell cycle.

MATERIALS AND METHODS

Docking approved drugs structures

Previously, we had docked 1592 compounds from the NCI diversity set to 1918 binding

pockets that were found at the surface of protein structures that have been previously

implicated in cancer.9, 10 In this work, an additional 1084 FDA-approved small molecule

drugs obtained from DrugBank 29 were docked to 2546 cavities on 1738 proteins following

the same process that we described previously.9 The strength of the interaction between drug

and target was determined using the ChemScore empirical scoring function.

Calculation of physico-chemical properties

The protein targets were collected from two sources: HCPIN30 and DrugBank29, 31

databases. The first HCPIN release contained structures up to February of 2006. We created

a local updated version of the database. We obtained sequence information for all HCPIN

targets at the UniProt Web site (http://www.uniprot.org) using the SwissProt name provided

by the HCPIN Web site. Proteins without a SwissProt name were not included. DrugBank

provided sequence information for all targets of existing approved drugs obtained directly

from the DrugBank Web site. In total, we collected 3,155 human sequences, 1,147 and

2,241 corresponded to DrugBank and HCPIN proteins, respectively. Among them, 233 were

overlapped between the two databases. A BLAST search was carried against RCSB Protein Data
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Bank (PDB) proteins to map sequence to structures. The crystal structures were obtained

from the PDB. 572 and 1065 PDB structures were identified for DrugBank and HCPIN

sequences respectively. Solvents, ligands and binding partners were removed from the

crystal structures. The REDUCE program 32 was used to add hydrogen atoms to proteins and

optimize some of the residue orientations. The MGLTOOLS (v1.5.2) 33 was used to assign

Gasteiger charges to the protein and generate a structural file for docking. The structural

files were then processed with RELIBASE+ 34, 35 to detect binding pockets and compute pocket

physico-chemical properties, including volume, aromatic pseudocenters, aliphatic

pseudocenters, hydrogen bond donor, hydrogen bond acceptor and donor/acceptor. A probe

radius of 1.4 Å was used to compute the pocket solvent accessible surface area (SASA). The

physico-chemical properties for drugs and compounds, including cLogP and number of

rotatable bonds, were computed with the QIKPROP program in the Schrödinger package. The

mol2-formatted coordinate files of drugs and NCI diversity compounds were downloaded

from DrugBank29 and ZINC.36

Erlotinib binding profile calculation

We used the crystal complex of elotinib bound to EGFR as the reference structure and

identified 11 potential targets1 including EGFR from HCPIN by docking elotinib to HCPIN

target crystal structures if available. The targets were selected using a consensus scoring

function consisting of ChemScore37 and GoldScore38 implemented in SYBYL program.

Complex scored more favorable than the reference structures was considered as a potential

target and set an ON bit in the binding profile fingerprint. Hence there are 11 ON bits in case

of elotinib, which constitutes the fingerprint of binding. The binding profile of any other

FDA-approved small molecules was compared to the elotinib. The similarity was measured

by Tanimoto coefficient.39

Cell culture

Human NSCLC cell lines H1299 and H460 cells were cultured in RPMI-1640 medium

(Cellgro, Manassas, VA). Human epithelial cell line A549 was cultured in Dulbecco’s

Modified Eagle Medium (Cellgro, Manassas, VA). Each medium was supplemented with

10% FBS and 1% penicillin/streptomycin in a 5% CO2 atmosphere at 37 °C.

Proliferation assay

The procedure consisted of culturing cells in 10% FBS-DMEM or RPMI-1640 medium

containing various amounts of compounds. 20 mM drug stock in 100% DMSO was serially

diluted and added into each well of a 96-well plate. Cells were treated and incubated for 3

days. Viable cells were quantified by MTT assay at absorbance of 570 and 630 nm.

Mining and statistical analysis of clinical drug exposure and disease occurrence data

Retrospective, observational clinical studies were performed with patient data in the Indiana

Network of Patient Care (INPC) database formatted to Common Data Model (CDM) of the

Observational Medicine Outcomes Partnership (OMOP), which is an NIH-funded public-

private partnership for drug safety surveillance.40, 41 INPC is a local health information

infrastructure, which is maintained at the Regenstrief Institute. It includes most of the
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Regenstrief Medical Record System (RMRS) clinical data (660 million separate results)

from five major hospital systems (fifteen separate hospitals) of central Indiana, county and

state public health departments, Indiana Medicaid, and RxHub.42 After INPC was formatted

to the CDM format of OMOP, the database contained records of 2002480 distinct persons

spanning from January 1, 2003 to December 31, 2009. The data structure of OMOP CDM 43

allowed us to retrieve patient data such as demographic data, starting/ending date of multiple

episodes of drug exposure, starting date of disease diagnosis, and last visit date with

database query language SQL. The extraction of diseases including hypertension, migraine

pain and cancers was based on codes in Ninth Revision of International Classification of

Disease (ICD-9) adopted by WHO in 1975 (Supporting Information Table S1). We focused

on 12 major types of cancer which are among top ten deadly cancers in the U.S. either in

male, female, or both for the year of 2008. Statistical analysis and graphing were performed

with SAS (9.2), IBM SPSS Statistics 19 and SigmaPlot (11.0).

In vivo xenograft studies

NOD/SCID mice were obtained from the on-site breeding colony maintained by the In Vivo

Therapeutics Core at the Indiana University Simon Cancer Center (IUSM, Indianapolis, IN).

H460 cells (2 × 106) were injected subcutaneously into the right flank of 8-10 week old

NOD-SCID mice. These cells were obtained directly from ATCC (Manassas, VA) and used

at low passage (<10). Mice were randomized to treatment group based on average tumor

volume (mm3). Two different studies were conducted. The first consisted of PO dosing of

mice with ergotamine (n =7) at a dose of 50 mg/kg or a PBS solvent control (n = 8). Mice

were dosed once a day for 14 days. The second study involved three groups: Astemizole,

losartan, and PBS control. For this study, prior to tumor implant, the animals were pre-

treated with drugs daily for a period of 7 days. Following subcutaneous tumor implantation

animals were treated with astemizole and losartan that were administered intraperitoneally at

10 mg/kg, once a day for 28 days, respectively. Tumor growth was measured over time via

electronic caliper and volume calculated as Length * Width2/2 in millimeters. After four

weeks mice were euthanized, the lungs were resected, fixed in formalin solution, sectioned,

and stained with hematoxylin and eosin (H&E) for analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The research was supported by the NIH (CA135380 and AA0197461) and the INGEN grant from the Lilly
Endowment, Inc. (SOM). We acknowledge Indiana University School of Medicine Lungs for Life fellowship to
LL. XP is a recipient of National Library of Medicine Biomedical Informatics Fellowship (LM007117-14).
Computer time on the Big Red supercomputer at Indiana University is funded by the National Science Foundation
and by Shared University Research grants from IBM, Inc. to Indiana University. We wish to acknowledge Tony
Sinn, Jayne Silver and Kacie Peterman and the In Vivo Therapeutics Core for their expert technical assistance with
the in vivo studies.

REFERENCES

1. Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, Stinson J, Yue P, Zhang Y, Pant KP, Bhatt D, Ha C,
Johnson S, Kennemer MI, Mohan S, Nazarenko I, Watanabe C, Sparks AB, Shames DS, Gentleman

Peng et al. Page 11

Mol Biosyst. Author manuscript; available in PMC 2015 March 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



R, de Sauvage FJ, Stern H, Pandita A, Ballinger DG, Drmanac R, Modrusan Z, Seshagiri S, Zhang
Z. Nature. 2010; 465:473–477. [PubMed: 20505728]

2. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H,
Jimeno A, Hong SM, Fu B, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky
Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A,
Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani
G, Vogelstein B, Velculescu VE, Kinzler KW. Science. 2008; 321:1801–1806. [PubMed:
18772397]

3. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J,
Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson
JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N,
Vogelstein B, Kinzler KW, Velculescu VE. Science. 2006; 314:268–274. [PubMed: 16959974]

4. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM,
Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA,
Tekleab H, Diaz LA Jr. Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H,
Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE,
Kinzler KW. Science. 2008; 321:1807–1812. [PubMed: 18772396]

5. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J,
Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA,
Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JK, Sukumar S,
Polyak K, Park BH, Pethiyagoda CL, Pant PV, Ballinger DG, Sparks AB, Hartigan J, Smith DR,
Suh E, Papadopoulos N, Buckhaults P, Markowitz SD, Parmigiani G, Kinzler KW, Velculescu VE,
Vogelstein B. Science. 2007; 318:1108–1113. [PubMed: 17932254]

6. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H,
Muzny DM, Morgan MB, Fulton L, Fulton RS, Zhang Q, Wendl MC, Lawrence MS, Larson DE,
Chen K, Dooling DJ, Sabo A, Hawes AC, Shen H, Jhangiani SN, Lewis LR, Hall O, Zhu Y,
Mathew T, Ren Y, Yao J, Scherer SE, Clerc K, Metcalf GA, Ng B, Milosavljevic A, Gonzalez-
Garay ML, Osborne JR, Meyer R, Shi X, Tang Y, Koboldt DC, Lin L, Abbott R, Miner TL, Pohl C,
Fewell G, Haipek C, Schmidt H, Dunford-Shore BH, Kraja A, Crosby SD, Sawyer CS, Vickery T,
Sander S, Robinson J, Winckler W, Baldwin J, Chirieac LR, Dutt A, Fennell T, Hanna M, Johnson
BE, Onofrio RC, Thomas RK, Tonon G, Weir BA, Zhao X, Ziaugra L, Zody MC, Giordano T,
Orringer MB, Roth JA, Spitz MR, Wistuba, Ozenberger B, Good PJ, Chang AC, Beer DG, Watson
MA, Ladanyi M, Broderick S, Yoshizawa A, Travis WD, Pao W, Province MA, Weinstock GM,
Varmus HE, Gabriel SB, Lander ES, Gibbs RA, Meyerson M, Wilson RK. Nature. 2008; 455:1069–
1075. [PubMed: 18948947]

7. Hopkins AL. Nat Chem Biol. 2008; 4:682–690. [PubMed: 18936753]

8. Paolini GV, Shapland RH, van Hoorn WP, Mason JS, Hopkins AL. Nat Biotechnol. 2006; 24:805–
815. [PubMed: 16841068]

9. Li L, Bum-Erdene K, Baenziger PH, Rosen JJ, Hemmert JR, Nellis JA, Pierce ME, Meroueh SO.
Nucleic acids research. 2010; 38:D765–773. [PubMed: 19923229]

10. Li L, Li J, Khanna M, Jo I, Baird JP, Meroueh SO. ACS Med Chem Lett. 2010; 1:229–233.
[PubMed: 20824148]

11. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, Campos D,
Maoleekoonpiroj S, Smylie M, Martins R. New Engl J Med. 2005; 353:123–132. [PubMed:
16014882]

12. Schmitt S, Kuhn D, Klebe G. Journal of molecular biology. 2002; 323:387–406. [PubMed:
12381328]

13. Hopkins AL, Mason JS, Overington JP. Curr Opin Struct Biol. 2006; 16:127–136. [PubMed:
16442279]

14. Sangster J. European Journal of Medicinal Chemistry. 1997; 32:842–842.

15. Wang R, Lu Y, Fang X, Wang S. J Chem Inf Comp Sci. 2004; 44:2114–2125.

16. Ferrara P, Gohlke H, Price DJ, Klebe G, Brooks CL. J. Med. Chem. 2004; 47:3032–3047.
[PubMed: 15163185]

17. Brodde OE. Pharmacology & therapeutics. 2008; 117:1–29. [PubMed: 17916379]

Peng et al. Page 12

Mol Biosyst. Author manuscript; available in PMC 2015 March 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



18. Wong HPS, Ho JWC, Koo MWL, Yu L, Wu WKK, Lam EKY, Tai EKK, Ko JKS, Shin VY, Chu
KM. Life sciences. 2011; 88:1108–1112. [PubMed: 21565206]

19. D’URSO PI, D’URSO OF, Storelli C, Mallardo M, DAMIANO GIANFREDA C, Montinaro A,
Cimmino A, Pietro C, Marsigliante S. International journal of oncology. 2012; 41:228–234.
[PubMed: 22470130]

20. Cross JT, Poole EM, Ulrich CM. The pharmacogenomics journal. 2008; 8:237–247. [PubMed:
18195728]

21. Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M. Nature Biotechnology. 2007; 25:1119–
1126.

22. Dragnev KH, Petty WJ, Shah SJ, Lewis LD, Black CC, Memoli V, Nugent WC, Hermann T,
Negro-Vilar A, Rigas JR, Dmitrovsky E. Clin Cancer Res. 2007; 13:1794–1800. [PubMed:
17363535]

23. Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M. Nat Biotechnol. 2007; 25:1119–1126.
[PubMed: 17921997]

24. Clark P, Cottier B. The activity of 10-, 14-, and 21-day schedules of single-agent etoposide in
previously untreated patients with extensive small cell lung cancer. 1992

25. Azoulay L, Assimes TL, Yin H, Bartels DB, Schiffrin EL, Suissa S. PloS one. 2012; 7:e50893.
[PubMed: 23251399]

26. Ahmed W, Rahmani M, Dent P, Grant S. Cell Cycle. 2004; 3:1305–1311. [PubMed: 15467449]

27. Pasquier E, Honore S, Pourroy B, Jordan MA, Lehmann M, Briand C, Braguer D. Cancer Res.
2005; 65:2433–2440. [PubMed: 15781659]

28. Li L, Li J, Khanna M, Jo I, Baird JP, Meroueh SO. ACS. Med. Chem. Lett. 2010; 1:229–233.
[PubMed: 20824148]

29. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M. Nucleic
acids research. 2008; 36:D901–906. [PubMed: 18048412]

30. Huang YJ, Hang D, Lu LJ, Tong L, Gerstein MB, Montelione GT. Mol Cell Proteomics. 2008;
7:2048–2060. [PubMed: 18487680]

31. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J.
Nucleic acids research. 2006; 34:D668–672. [PubMed: 16381955]

32. Word JM, Lovell SC, Richardson JS, Richardson DC. J Mol Biol. 1999; 285:1735–1747.
[PubMed: 9917408]

33. Sanner MF. J Mol Graph Model. 1999; 17:57–61. [PubMed: 10660911]

34. Hendlich M, Bergner A, Gunther J, Klebe G. J. Mol. Biol. 2003; 326:607–620. [PubMed:
12559926]

35. Bergner A, Gunther J, Hendlich M, Klebe G, Verdonk M. Biopolymers. 2001; 61:99–110.
[PubMed: 11987159]

36. Irwin JJ, Shoichet BK. J Chem Inf Model. 2005; 45:177–182. [PubMed: 15667143]

37. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP. J Comput Aid Mol Des. 1997;
11:425–445.

38. Jones G, Willett P. Curr Opin Biotechnol. 1995; 6:652–656. [PubMed: 8527835]

39. Flower DR. Journal of molecular graphics & modelling. 1998; 16:239–253. 264. [PubMed:
10522243]

40. Overhage JM, Ryan PB, Reich CG, Hartzema AG, Stang PE. Journal of the American Medical
Informatics Association. 2012; 19:54–60. [PubMed: 22037893]

41. Stang PE, Ryan PB, Racoosin JA, Overhage JM, Hartzema AG, Reich C, Welebob E, Scarnecchia
T, Woodcock J. Annals of internal medicine. 2010; 153:600. [PubMed: 21041580]

42. McDonald CJ, Overhage JM, Barnes M, Schadow G, Blevins L, Dexter PR, Mamlin B. Health
Affairs. 2005; 24:1214–1220. [PubMed: 16162565]

43. Ryan P, Griffin D, Reich C. 2009

Peng et al. Page 13

Mol Biosyst. Author manuscript; available in PMC 2015 March 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
Physico-chemical properties of binding pockets on cancer targets and non-cancer targets. (A,

G) Solvent-accessible surface area (SASA). (D, J) Volume of the cavities identified in

targets. (B, H) Distribution of aromatic; (E, K) aliphatic; (C, I) hydrogen-bond acceptors;

and (F, L) hydrogen bond donors within binding pockets.
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Figure 2.
Physico-chemical properties of the cancer drugs, non-cancer drugs and non-drug compounds

using 0.1 μM binding threshold. (A) Compound rotatable bonds versus number of targets.

(B) Distribution of rotatable bonds among NCI compounds, non-cancer and cancer drugs.

(C) Logarithm of the partition coefficient (cLogP) vs. number of cavities. (D) Distribution of

cLogP among NCI compounds, non-cancer and cancer drugs. (E) Ratio of cancer to non-

cancer targets of cancer drugs and non-cancer drugs. (F) Distribution of ratio of targets over

non-targets among for NCI compounds, non-cancer drugs, and cancer drugs.
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Figure 3.
Drug-target networks for cancer drugs and non-cancer drugs. (A) Overview of drug-target

networks. Each node represents a drug and two nodes are linked if they share a target. (B)

Degree and betweenness of the drugs. Degree of a node is defined as the number of edges

connected to the node. Betweenness of a node is defined as the number of non-redundant

shortest pathways going through each node.
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Figure 4.
Kaplan-Meier time to cancer occurrence curves of patients with (green curve) or without

(red curve) losartan (A) and ergotamine (B). Time to cancer occurrence was measured from

occurrence of 1st hypertension diagnosis to 1st diagnosis of lung cancer (A) and from

occurrence of 1st migraine pain diagnosis to 1st diagnosis of any of the major cancer types

(B).
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Figure 5.
Effects of losartan and astemizole on tumor growth in an H460 NSCLC xenograft mouse

model.
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Table 1

Drugs that Exhibit High Selectivity and Preference to Oncology Targets

Drug Name
Total

Cancer
targets

Total
Approved

Drugs
targets

CSI Targets

Isoetharine 4 1 4 β1 adrenergic receptor

Salbutamol 3 1 3 β1,2 adrenergic receptor

Guanadrel
sulfate 2 1 2 Sodium-dependent noradrenaline

transporter

Diatrizoate 4 2 2 N/A

Rimantadine 2 1 2 Influenza A virus matrix protein 2

Starvudine 2 1 2 HIV1 reverse transcriptase

Phensuximide 2 1 2 N/A

Diethylpropion 8 4 2 Sodium-dependent noradrenaline and
dopamine transporters

Bromfenac 12 6 2 COX1, 2

Methyprylon 2 1 2 γ-aminobutyric acid receptor subunit alpha-
1

Iophendylate 2 1 2 N/A

Methsuximide 10 5 2 Voltage-dependent T-type calcium channel
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Table 2

Top FDA-Approved Drugs with the Highest Betweenness and Degree Obtained from a Network Analysis of

the Data

Name Betweenness Degree Indication

Tacrine 2027 348 Alzheimer’s

Sulfisoxazole 1896 310 Antibacterial

Adapalene 905 376 Acne

Flurbiprofen 786 293 Inflammation and Pain

Naftifine 651 367 Antifungal

Conjugated Estrogens 622 360 -

Nilotinib 593 355 leukemia

Proflavine 590 359 bacteriostatic

Bexarotene 571 374 Cancer including lung

Tolcapone 531 349 Parkinson
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Table 3

Top FDA-Approved Drugs Identified using Erlotinib Binding Profile

Name Indication (DrugBank)

Ergotamine Migraine headaches

Treprostinil Pulmonary Arterial Hypertension

Bexarotene Cutaneous T-cell lymphoma

Astemizole Seasonal allergic rhinitis

Podofilox External genital warts (Condyloma acuminatum)

Forasartan Hypertension

Acenocoumarol Thromboembolic diseases

Desoxycorticoserone
Pivalate Adrenocortical insufficiency

Dihydroergotamine Migraine headaches

Latanoprost Glaucoma or occular hypertension

Lapatinib Advanced or metastatic breast cancer

Dasatinib Chronic, accelerated, or myeloid or lymphoid blast phase chronic
myeloid leukemia
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Table 4

EC50 Values for 8 Drugs on Lung Cancer Cells

Drug Name
EC50 (μM)

H1299 H460 A549 WI38

Dihydroergotamine 70±9 67±1 43±2 80±24

Astemizole 12±1 9±1 10±1 8±1

Podophyllotoxin 0.003±0.032 0.0002±0.0007 0.024±0.002 -

Ergotamine 252±3 26±1 14±1 57±4

Losartan - - 63±7 9±3

Lapatinib 41±2 32±1 67±11 32±1

Dasatinib - - 0.1±0.04 0.7±0.4

Bexarotene 44+2 52±2 58±4 76±10
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Table 5

Patient Records Data to Assess Effect of Losartan in Cancer

Lung cancer No cancer Total

Losartan 26 1672 1698

No losartan 1548 63863 65411

Total 1574 65535 67109
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Table 6

Patient Records Data to Assess Effect of Ergotamine in Cancer

Any cancer No cancer Total

Ergotamine 13 199 212

No ergotamine 1158 43351 44509

Total 1171 43550 44721
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