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Abstract Resting state functional magnetic imaging (fMRI)
is a novel means to examine functional brain networks. It
allows investigators to identify functional networks defined
by distinct, spontaneous signal fluctuations. Resting state
functional connectivity (RSFC) studies examining child and
adolescent psychiatric disorders are being published with
increasing frequency, despite concerns about the impact of
motion on findings. Here we review important RSFC findings
on typical brain development and recent publications on child
and adolescent psychiatric disorders. We close with a summa-
ry of the major findings and current strengths and limitations
of RSFC studies.
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Introduction

For decades, acquiring functional magnetic resonance imag-
ing (fMRI) scans while research participants complete tasks
has been the “gold standard” technique for understanding
human brain function. However, over the last 5 years, publi-
cations and scientific presentations on “resting state fMRI,”

“resting state functional connectivity,” or “intrinsic functional
connectivity” have become quite common. Here we briefly
summarize this new brain imaging technique and its relevance
to understanding the developing brain. Specifically, we review
studies of typical development that have examined how rest-
ing state functional connectivity (RSFC) changes across de-
velopment and in some of the most common psychiatric
disorders seen in youth: autism spectrum disorders (ASD),
mood and anxiety disorders, attention-deficit/hyperactivity
disorder (ADHD), and psychotic disorders. We conclude with
a summary and discussion of concerns that have been raised
about this novel neuroimaging technique.

What Is Resting State Functional Connectivity?

RSFC is a term commonly used in the scientific literature to
describe a form of fMRI used in research studies where, in
contrast to traditional fMRI scan paradigms, there is no spe-
cific task for the participants to complete; rather, the scan is
acquired while the subject is “at rest.” Typically, participants
are asked to lie still and to not think about anything in
particular. Many studies provide instructions for participants
to stay awake with their eyes closed, while others instruct
participants to keep their eyes fixed on a neutral stimulus, such
as a cross, throughout the scan. The primary principle under-
lying RSFC is that the pattern of low-frequency fluctuations in
the blood oxygen level-dependent (BOLD) signal is highly
correlated between brain regions that form functional circuits,
even in the absence of an experimental task (Fig. 1) [1••].
Resting state networks discussed in this paper are visually
depicted in Fig. 2 [2]. RSFC allows for more facile compar-
isons across research sites and enables the study of brain
function in populations that are typically excluded from
task-based MRI studies (i.e., infants and developmentally
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disabled subjects). Currently, the utility of RSFC is limited to
non-clinical research settings.

Typical Development

Changes During the First 2 Years

RSFC has been studied in infants as young as 2 weeks of age.
The earliest infant study identified five functionally and spa-
tially independent brain networks in 24- to 27-week-old-in-
fants (n=12) [3]. Each of these networks has been described in
adults, although the authors noted the absence of one of the
best-characterized RSFC networks, the default mode network
(DMN). The DMN comprises the medial prefrontal, posterior
cingulate, temporal, and parietal cortices, which have been
shown to be active, as a network, during rest or during low-
cognitive-demand tasks [4]. Theories about the function of the
DMN include “the retrieval and manipulation of episodic
memories and semantic knowledge” [4], social or self-

referential processing [5, 6], or stimulus-independent thought
[7, 8].

Another study, which compared 2- to 4-week-olds (n=28),
1-year-olds (n=26), and 2-year-olds (n=21), reported that
RSFC strength increased with age, with a more rapid devel-
opmental trajectory being noted for sensorimotor as opposed
to visual networks [9].More recently, Gao and colleagues [10]
examined RSFC in neonates (n=51), 1-year-olds (n=50), and
2-year-olds (n=46), and found that two well-known networks
(the DMN and dorsal attention, which is thought to conscious-
ly orient attention toward stimuli [11]) evolved from isolated
regions in neonates to cohesive networks by the age of 1 year,
with further expansion/strengthening of the networks by the
age of 2 years [10]. Whereas adult research has shown that
these networks are anti-correlated (i.e., the regions oscillate
out of sync with each other [12]), this study found that the
anti-correlation was absent at birth but became apparent by the
age of 1 year and was further enhanced by the age of 2 years
[10]. Thus, primitive RSFC networks appear to be present
early in infancy but mature rapidly over the first 2 years of life.

Changes from Childhood to Adulthood: Integration,
Segregation, Homotopy and Anti-correlations

Several different techniques have been used to study changes
in development in RSFC networks from childhood to adult-
hood. However, findings characterizing RSFC across devel-
opment must be considered with caution, in light of recent
work suggesting that head motion likely impacts and even
negates some of these findings, as discussed in more detail
below (see “Conclusions”). In a series of studies, Fair and
colleagues examined RSFC differences between children,
adolescents, and adults. They first examined attention control
networks and found that each developmental phase was asso-
ciated with an increase in long-distance connections
(interpreted as improved “integration”) and a decrease in
short-range connections [13••]. They also found that four
networks spanning the brain (DMN, frontoparietal, cingulo-
opercular, and cerebellar) showed increased integration and
segregation across development [14, 15]. Utilizing a large
sample (n=100) of 12- to 30-year-olds, Stevens and

Fig. 1 The waveforms in A and B represent the low-frequency blood
oxygen level-dependent (BOLD) signal fluctuations (x-axis) originating
from two distinct locations in the resting brain, over time (y-axis). A.
“Positively” correlated waveforms that are often referred to as “positive
resting state functional connectivity.” B. Anti-correlated or “negative
resting state functional connectivity” between two regions

Fig. 2 Group clustering of resting state fMRI data revealed nine resting state networks (RSNs) of functionally linked cortical regions (reproduced with
permission from van den Heuvel et al. [2]). ACC anterior cingulate cortex, BA Brodmann area, MFC medial prefrontal cortex
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colleagues also found that increasing age was associated with
within-network connectivity growth and more efficient
between-network connectivity [16].

Kelly and colleagues examined RSFC development of
anterior cingulate cortex (ACC) networks from childhood
through adulthood [17]. As in the studies above, they noted
a decrease in short-range (local) connectivity with age, and an
increase in long-range connectivity. Further, they noted that
the greatest degree of developmental change was observed in
emotionally relevant regions (originating in the subgenual
ACC [sgACC]) and a network of regions involved in social
processing (originating in the perigenual ACC [pgACC]).
RSFC has also been used to predict individual brain maturity
[18•, 19], with the greatest predictive power being within the
cingulo-opercular network, a network though to be involved
with cognitive control [20]. Brain maturity was associated
with overall weakening of between-network connections and
strengthening of within-network connections [18•].

Zuo and colleagues examined homotopy, or the degree to
which regions in each hemisphere are connected, of RSFC
networks across development [21]. In addition to age-related
changes, they found sex differences in homotopy, where fe-
males had greater homotopy in the posterior cingulate cortex,
medial prefrontal cortex, and middle and superior frontal
cortex, but males had greater homotopy in the cerebellum,
parahippocampus, and fusiform cortex. Further, there was a
sex by age interaction for the dorsolateral prefrontal cortex
and amygdala, where females and males showed opposite
developmental trajectories.

Narrowing in on specific networks, a recent study exam-
ined “task-positive” RSFC networks (the intraparietal sulcus,
frontal eye fields, and middle temporal region; regions rou-
tinely exhibiting task-related activations [22]; also known as
the “ventral attention network”) and “task-negative” RSFC
networks (similar regions to the DMN; regions routinely
exhibiting task-related deactivations [22]) in children (n=63)
and adults (n=28) [23]. They found that adults showed greater
connectivity between the task-positive network and the dor-
solateral prefrontal cortex, and stronger anti-correlations be-
tween the task-negative network and the anterior insula, pari-
etal, and posterior cingulate cortices [23]. Chai and colleagues
also examined the development of anti-correlated networks in
8- to 24-year-olds [24] and found that as age increased, anti-
correlations also increased between networks (i.e., between
the medial and dorsolateral prefrontal cortex, and between the
lateral parietal cortex and supramarginal gyrus and
precuneus). The authors noted that the correlation between
regions in these networks was positive in childhood but neg-
ative in adulthood, with adolescent connectivity levels falling
in the middle [24].

To summarize, across normal development, RSFC net-
works have been found to span longer distances in the brain
and become increasingly segregated, resulting in both within-

and between-network efficiency. It appears that particular
RSFC networks (i.e., involving the sgACC) are tied to specific
developmental functions (i.e., emotional development).
Gender differences have received little experimental attention
but did appear to be present in studies that examined them
[21]. Finally, anti-correlated networks have been reproduced
in several studies as markers of more advanced, adult-like
development [23, 24]. All of the studies reviewed here have
had the limitation of cross-sectional designs and concerns
about the impact of head motion on findings. Longitudinal
examinations of developing RSFC networks are needed to
definitively characterize changes across development.

Resting State Functional Connectivity Studies
with Clinical Samples

Autism Spectrum Disorders

Current RSFC research comparing individuals with ASD and
healthy comparison participants (with numbers of participants
ranging from 20 to 39 for each group) has implicated RSFC
abnormalities, including both abnormally high and abnormal-
ly low RSFC, in nearly every region of the cortex and the
cerebellum [25, 26, 27, 28•].

Studies characterizing specific behavioral problems asso-
ciated with ASD have largely focused on social and commu-
nication deficits. Assaf and colleagues found abnormally de-
creased RSFC between the precuneus and other DMN areas in
ASD patients, compared with controls (n=16 per group) [29].
This atypical connectivity was associated with social and
communication deficits [29]. A similar study found that in-
creased RSFC between the posterior cingulate and temporal
cortex was associated with social impairment (n=20 subjects
with ASD; n=19 controls) [27]. Furthermore, Abrams and
colleagues found that abnormally low RSFC between the
temporal cortex and regions of the brain associated with
reward was associated with severity of communication defi-
cits among children with ASD (n=20 subjects with ASD; n=
19 controls) [30••]. This finding suggests that communication
deficits in ASD may be either the result of, or exacerbated by,
reduced ability to associate social interaction with a sense of
reward. This is important to consider in the treatment of ASD,
as other, more salient, rewarding stimuli may be necessary to
advance a patient’s social interaction skills. Indeed, this is a
practice employed in an applied behavioral analysis (ABA)
framework, which emphasizes the use of positive reinforce-
ment in the promotion of social behaviors [31]. Further re-
search examining RSFC before and after initiation of treat-
ments would be of important clinical significance, as RSFC of
these regions may normalize over time with interventions.
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Regarding the developmental trajectories of RSFC among
children and adolescents with ASD, findings have been in-
consistent. One study found that relative to controls (n=41),
ASD participants (n=39) had smaller increases in RSFC
within the DMN over time [28•], while another found that
group differences in DMN RSFC appeared to diminish with
age (n=40 subjects with ASD; n=40 controls) [32]. Of note,
these studies were both cross sectional, and overall function-
ing and treatment histories varied greatly in the participants in
these studies. Future research should carefully consider the
influence of these factors and implement longitudinal designs
to better understand the developmental trajectory of RSFC in
ASD.

Anxiety Disorders

Studies in this area, while few, have typically taken the ap-
proach of examining the association of pediatric anxiety se-
verity with RSFC in healthy participants. Among typically
developing children (n=76), Qin and colleagues found that
anxiety was associated with increased RSFC between the
amygdala and regions involved in emotion perception and
regulation and attention [33]. Furthermore, these findings
were specific to anxiety symptoms, as other symptoms, such
as depressive symptoms, did not show a relationship to RSFC.
Also among healthy youth (n=67), anxiety severity was re-
lated to increased DMN–insula RSFC [34]. A cross-sectional
study found that life stress in infancy was associated with
higher childhood cortisol levels and, later, with decreased
amygdala–prefrontal RSFC. In turn, amygdala–prefrontal
RSFC was inversely related to adolescent anxiety symptoms
(n=57) [35]. Thus, anxiety symptoms in healthy samples
implicate networks involving the insula, prefrontal cortex,
and amygdala.

Roy and colleagues scanned adolescents with generalized
anxiety disorder (GAD; n=15) and found abnormal amygdala
RSFC between the medial prefrontal cortex, insula, and cere-
bellum, compared with findings in controls (n=20) [36•].
Furthermore, anxiety severity was associated with amygdala
RSFC with the insula and superior temporal gyrus. Clearly,
further research is needed to replicate these GAD findings and
examine other unstudied pediatric anxiety disorders, such as
separation anxiety disorder, social anxiety disorder, and spe-
cific phobias.

Mood Disorders

A larger body of literature has used resting state fMRI to
examine the neural circuitry underlying mood disorders in
children and adolescents. These studies have broadly impli-
cated abnormalities within circuitry that has been shown to be
relevant for processing emotions [37]. Specifically, this cir-
cuitry encompasses limbic regions such as the amygdala and

hippocampus, which are important for both immediate emo-
tional experiences and emotional memory, and regulatory
cortical regions such as the prefrontal cortex and the
pgACC. Additional regions in this network include the
sgACC, which has been strongly implicated in the pathophys-
iology of mood disorders through the use of several different
types of imaging modalities and also postmortem studies
[38–40], and the insula, which is known to be important for
processing the emotional salience of an individual's experi-
ences. Thus, abnormalities in this circuit could broadly impact
emotional processing, resulting in mood states seen in both
unipolar and bipolar depressive disorders.

Major Depressive Disorder

Several studies examining depressed youth have shown ab-
normalities in sgACC networks, although the pattern of find-
ings has varied. In a small study of mostly medicated adoles-
cents with major depressive disorder [MDD] (n=12) versus
controls (n=14), Cullen and colleagues reported that de-
pressed teens showed lower RSFC between the sgACC and
a network comprising the dorsal ACC, several frontal and
temporal regions, and the insula [41•]. These findings were
corroborated in a sample of 36 children (aged 7–11 years), 17
of whom had a history of MDD [42]. However, other studies
found greater RSFC between the sgACC and frontal regions
in unmedicated adolescents with MDD (n=23) compared
with controls (n=36) [43], and in adolescents/young adults
with MDD (n=18) compared with controls (n=20) [40].
Furthermore, while Gaffrey and colleagues found greater
RSFC between the sgACC and precuneus among children
with histories of MDD [42], Connolly et al. found lower
RSFC between the sgACC and precuneus in an adolescent
MDD group [43]. The divergence of findings in the pattern of
sgACC RSFC abnormalities across studies may stem from
differences in methodological steps, sample characteristics
(e.g., age, pubertal status, age at MDD onset, medication
status, comorbidity), or general difficulty in replicability of
RSFC findings. Larger studies are needed to clarify the RSFC
of the sgACC in pediatric MDD.

Brain regions comprising the striatum (the caudate, puta-
men, and nucleus accumbens) are thought to play an impor-
tant role in reward processing, which is known to be impaired
in MDD [45]. Gabbay and colleagues examined RSFC cen-
tered around the striatum in medication-free adolescents with
MDD (n=21) and healthy controls (n=21) [46•]. They report-
ed that the MDD group showed greater RSFC between the
striatal regions and the dorsomedial prefrontal cortex and
ACC. They also reported a diverse set of connections that
were associated with anhedonia [46•]. In contrast, Davey and
colleagues found decreased ACC–caudate RSFC in older
adolescents with MDD [44]. Although the directionality var-
ied, both studies implicated abnormal frontostriatal neural
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circuits in the pathophysiology of depression, especially with
respect to anhedonic symptomatology.

The amygdala is another important brain region investigat-
ed in mood-disordered youth. This region is involved in the
processing of negative emotion [47] and has consistently been
implicated in mood disorders [48]. Luking and colleagues
studied amygdala RSFC in a sample of children (aged 7–11
years) with either a history of preschool-onset MDD (n=13), a
maternal history of MDD (n=11), both (n=13), or neither (n=
14) [49]. They found that in comparison with low-risk chil-
dren, the at-risk groups showed decreased negative amygdala
connectivity in a network comprising cortical regulatory re-
gions, but greater positive amygdala connectivity with a net-
work of limbic regions. More recently, Cullen and colleagues
examined amygdala RSFC in a large sample of unmedicated
adolescents with MDD (n=41) versus healthy controls [50].
They found that adolescents with MDD showed lower amyg-
dala RSFC with the hippocampus, parahippocampus, and
brainstem, but increased amygdala–precuneus RSFC than
controls. These findings partially overlapped with the
Luking at-risk findings [49], suggesting that amygdala con-
nectivity abnormalities may be present both in childhood and
adolescence, before and after the onset of the disorder.

Bipolar Disorder

Three studies have examined RSFC in youth with bipolar
disorder (BD). They used quite different approaches, and each
revealed a different aspect of the aberrant RSFC. Dickstein
and colleagues examined RSFC stemming from the dorsolat-
eral prefrontal cortex, amygdala, and nucleus accumbens, and
found a group difference with dorsolateral prefrontal cortex
analysis, in which the BD group (n=15) showed greater
negative RSFC with the right superior temporal gyrus, while
controls (n=15) had positive RSFC in this circuit [51]. The
authors noted that the abnormal frontotemporal circuit is also
implicated in memory and learning, and could represent an
underlying mechanism for the cognitive deficits involved in
BD.

In a more recent paper, Wu and colleagues used an auto-
mated method to examine RSFC across the entire brain [52].
They found that in comparison with controls (n=40), youth
with BD (n=34) had greater levels of involvement of the
dorsal ACC within affective and executive networks, and
greater widespread connectivity within a sensorimotor net-
work. The authors speculated that the excessive involvement
of the ACC in both affective and executive networks could
explain the association of BD and poor academic
performance.

Third, Xiao and colleagues recently studied regional ho-
mogeneity (ReHo) in 15 adolescents with BD and 15 healthy
controls [53]. Relative to the controls, the subjects with BD
showed lower ReHo in several cortical areas but greater ReHo

in several limbic areas. Furthermore, elevated limbic ReHo
was correlatedwithmanic symptoms. Thus, three papers, each
using distinct methods, have reported cortical–limbic RSFC
abnormalities. Caution must be taken in reading the BD
literature, however, given the concern about likely differences
between depressed, manic, and euthymic mood states [54].
Considering the difficulty in diagnosing these disorders in
youth, additional work with larger, carefully characterized
samples is needed.

Combined Mood and Anxiety Disorders

Depressive and anxiety disorders are often studied together
because of their high comorbidity and their categorization as
internalizing disorders [55]. Among children with a history of
depression and anxiety (n=30), Sylvester and colleagues
found reduced RSFC of the task-positive network, compared
with findings in healthy controls (n=42) [56]. Another study
found that maltreatment in childhood was associated with
decreased RSFC between the hippocampus and the sgACC
in both males and females with internalizing symptoms at the
age of 18 years (n=64) [57••]. Decreased RSFC between the
amygdala and the sgACC was also found but only in females
[57••]. RSFC in this study was found to mediate the relation-
ship between childhood maltreatment and later internalizing
symptoms, suggesting that childhood maltreatment may lead
to disrupted connectivity of the fear circuit, which may lead to
increased levels of internalizing symptoms.

Attention-Deficit/Hyperactivity Disorder

Of all psychiatric disorders diagnosed in youth, ADHD has
been the best studied, in terms of RSFC. A multi-site data-
sharing effort, termed ADHD-200 [58•], has recently resulted
in publications with very large samples. For example, ADHD
brains (n=757) exhibited altered RSFC between the default
network and ventral attention networks [59••]. Specifically,
diminished anti-correlation was observed between the poste-
rior cingulate cortex (DMN) and the anterior insula and sup-
plementary motor area (ventral attention network).
Additionally, the DMN was hypoconnected within-network
and had abnormal interconnections between several other
networks. This paper replicated similar DMN-related findings
from other papers with smaller sample sizes [60, 61]. Given
that these regions are involved in directing and sustaining
attention, it is logical that they are found to be abnormal in a
disorder with inattention as one of its hallmark symptoms.

Clinically meaningful applications of RSFC in ADHD
have also begun to appear. Methylphenidate, a primary treat-
ment for ADHD, has been found to influence RSFC of mul-
tiple regions, including the dorsolateral prefrontal, parietal,
and visual cortices [62] and the DMN and task-positive net-
work [63] in pediatric samples. Similarities between RSFC
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networks have been identified between disorders with shared
symptoms (e.g., autism and ADHD) [64], providing neurobi-
ological substantiation for disorder-crossing traits. Clinically
observed symptoms have been linked to specific RSFC net-
works. For example, youth with ADHD and high parent
ratings of emotional lability have been found to have abnor-
mal amygdala RSFC, even after accounting for hyperactivity
[65]. Finally, RSFC has been used to test models to diagnose
ADHD, using brain activity alone, although with mixed suc-
cess [66, 67]. Research geared toward clinical applications of
RSFC is still in its infancy, but it appears that such studies are
likely to emerge in other psychiatric disorders affecting youth,
as more publications emerge.

Psychotic Disorders

The use of fMRI in individuals with psychotic disorders is
limited by the cognitive dysfunction associated with these
illnesses, making performance on in-scanner experimental
tasks difficult to interpret [68, 69]. Resting state fMRI circum-
vents the issue of in-scanner task performance and has proven
to be a useful tool in schizophrenia research, revealing new
information about the functional organization and connectiv-
ity of the brain [70–72].

There is increasing interest in studying individuals at ultra-
high risk (UHR) for psychosis or those in their first episode of
psychosis (FEP), as they consist of younger individuals with
fewer confounding factors associated with chronically ill psy-
chotic populations, such as antipsychotic drug exposure or
medical comorbidities. Many studies in these early popula-
tions have examined RSFC of the DMN, finding abnormal
coherence within DMN structures such as the medial prefron-
tal cortex, lateral temporal cortex, precuneus, posterior cingu-
late cortex, and parietal cortex [73–77]. Studies have also
examined RSFC between DMN structures and other brain
regions, finding abnormal connectivity with task-positive net-
works [74], as well as the dorsolateral prefrontal cortices [78].
Some of these studies have also examined inter-hemispheric
connectivity, finding decreased RSFC in the frontal and tem-
poral regions, and associations between aberrant connectivity
and positive and negative symptoms, as well as cognitive
dysfunction [73, 79].

A study by Lui et al. utilized resting state fMRI to inves-
tigate the effects of antipsychotic medication on regional and
neural network function in treatment-naïve FEP subjects (n=
34), examining RSFC both before and 6 weeks after the
initiation of second-generation antipsychotic medication
[80•]. The findings revealed that after this short duration of
antipsychotic treatment, participants exhibited increased spon-
taneous regional neural activity in association with symptom
improvement, as well as an attenuation of connectivity across
widely distributed neural networks. These results may help
explain the beneficial effects of antipsychotic medication,

hypothetically because of improvements in neurons’ ability
to function more synchronously with other regions.
Importantly, this study highlights the promise that resting state
fMRI may hold for strategic development of novel therapeutic
agents, as well as for study of biomarkers of patient response
to medication in psychotic illness [80•].

Conclusions

RSFC has been used to study the major child and adolescent
psychiatric disorders, albeit with mixed conclusions. The field
is still in its infancy, and all findings reviewed here require
replication. However, as the methodology continues to ad-
vance, RSFC is a promising tool for populations that struggle
to comply with tasks and is well suited to large-scale, multi-
site, and longitudinal studies, such as those characterizing
child and adolescent development. Despite these advantages,
aspects of RSFC have been met with skepticism among some
researchers [69, 81], as discussed in more detail below.

Limitation 1: What Are People Actually Doing at
Rest? Interpretation of RSFC findings is subject to the limi-
tation that investigators cannot be sure what their subjects are
thinking about or feeling while they are resting. Of particular
concern for studies with psychiatric populations, anxiety may
be induced by the scanner experience and may be difficult to
account for without a “control” task, as in task-based fMRI.
Concerns have also been raised that research participants may
sleep through scans and may not be aware of when they drift
off, even if investigators inquire about this.

Limitation 2: Head Motion Two influential papers document-
ed the serious impact of head motion during the MRI scan on
RSFC results [82, 83]. Then, Satterthwaite and colleagues
called the validity and replicability of previous developmental
connectivity studies into question [84••]. They noted that in
prior work on age-related increases in long-distance, within
network connectivity and decreases in short-distance,
between-network connectivity, the opposite pattern was seen
for head motion. They reported that increased head motion is
associated with younger age and that when connectivity anal-
yses are conducted with rigorous correction of head motion
effects, the developmental findings are still present but sub-
stantially tempered. That publication highlighted the impor-
tance of correcting for head motion in developmental studies
of RSFC.

In summary, clinicians will likely encounter publications or
presentations utilizing RSFC, an innovative fMRI technique.
RSFC refers to spontaneous brain fluctuations, organized into
functional communication networks, which are quantifiable
when subjects are at rest. RSFC can reveal novel information
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about how brain networks develop and how that development
can go awry in various psychiatric disorders. The RSFC
literature is still at an early stage, as illustrated by the fact that
vast networks of abnormalities have been implicated for most
disorders. Few findings have been replicated; this may be
because many of the initial studies have included small sam-
ples and the methodologies to process and analyze the data
have varied widely. RSFC is a technique that is quite suscep-
tible to motion artifact, leading to some recent skepticism
about the initial findings from pediatric studies, given the large
degree of motion in children and adolescent participants.
However, recent work has incorporated more robust tech-
niques to address motion. Moving forward, studies with larger
samples that incorporate uniform methods across studies will
be most useful for advancing the field. There is strong interest
in gaining insight into how RSFC changes across normal and
abnormal development, thus longitudinal research is needed.
RSFC is likely to continue to serve as an important neuroim-
aging modality as findings are reproduced, clinical interven-
tions are tested, and analytic techniques improve.
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