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Abstract

Mechanotransduction in bone is fundamental to proper skeletal development. Deficiencies in 

signaling mechanisms that transduce physical forces to effector cells can have severe 

consequences for skeletal integrity. Therefore, a solid understanding of the cellular and molecular 

components of mechanotransduction is crucial for correcting skeletal modeling and remodeling 

errors and designing effective therapies. In recent years, progress has been made on many fronts 

regarding our understanding of bone cell mechanotransduction, including subcellular localization 

of mechanosensitive components in bone cells, the discovery of mechanosensitive G-protein-

coupled receptors, identification of new ion channels and larger pores (eg, hemichannels) involved 

in physical signal transduction, and cell adhesion proteins, among others. These and other recent 

mechanisms are reviewed to provide a synthesis of recent experimental findings, in the larger 

context of whole bone adaptation.
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Introduction

Mechanical loading of the skeleton through exercise and/or physical activity presents the 

resident bone cell populations with a potent stimulus for improving bone health and fracture 

susceptibility. Improvements in skeletal health associated with mechanical loading come 

largely from load-induced increases in bone formation, reductions in bone resorption, and 

changes in the physical properties of the bone matrix itself. Mechanical loading of bone 

through voluntary exercise is perhaps the most cost-effective method for improving fracture 

susceptibility, with the least degree of unwanted side effects. Despite the numerous and 

well-known positive side effects that accompany vigorous exercise (improvements in 

cardiovascular health, immune function, glucose metabolism, to name a few), isolation of 
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the specific cellular and molecular mechanisms of mechano-transduction in bone remains a 

heavily pursued area of investigation in order to someday selectively mimic the effects of 

loading on bone pharmacologically, while leaving other physiologic systems undisturbed.

The ability to harness the anabolic and anti-catabolic potential of the mechanotransduction 

pathways in bone requires a detailed understanding of signaling cascades that are activated, 

the receptors that activate them, and the downstream changes in gene expression and protein 

translation/degradation that are manifest. These processes are not completely understood, 

but significant progress is being made in unraveling the complexity of mechanotransduction 

in bone. The goal of this review is to provide some discussion of recent findings related to 

the cellular mechanisms of bone cell mechanotransduction. These recent discoveries warrant 

particular discussion and synthesis because they have already begun to reshape the type of 

questions and hypotheses in current bone mechanobiology experiments. The scope of this 

review is therefore limited, in most areas of research, to developments that have been 

communicated in the past several years. For a more general discussion of 

mechanotransduction pathways and processes that include a more historical and 

fundamental treatment of the subject, the reader is referred to several excellent reviews [1–

3].

The Osteocyte as the Mechanosensor: The Long Arm(s) of the Law

Many decades ago, it was postulated that the osteocytes were the best candidate for a sensor 

cell type in bone [4]. They are ideally situated to sense small changes in the mechanical 

environment of all the skeletal elements, owing to their sheer number, pervasive presence in 

all parts of the skeletal elements, and their connectivity and ability to communicate with one 

another (Fig. 1). Several recent studies have supported, with convincing data, this view of 

the osteocyte in mechanotransduction. While earlier studies demonstrated that osteocytes are 

required for mechanotransduction to occur [5], more recent studies have focused on how 

osteocytes might differ from their precursor cells—the osteoblasts—in terms of sensitivity to 

mechanical stimulation. For example, Kamel et al. [6] investigated whether the osteocytic 

cell line MLO-Y4 is more sensitive to fluid flow than two other osteoblast models—2T3 

osteoblastic cells and primary neonatal calvarial osteoblasts. The osteocytic cultures released 

significant amounts of prostaglandin E2 (PGE2) into the media during fluid flow stimulation 

at very low levels of shear stress (~2–8 dyn/cm2), whereas the PGE2 response in the 2T3 

cells was undetectable at similar levels of shear stress. Increasing the shear stress to a level 

that did elicit a response from the osteoblastic models (16–24 dyn/cm2) revealed an 

eightfold greater response in the osteocytes. Moreover, translocation of β-catenin to the 

nucleus, a marker of Wnt signaling and mechanotransduction in bone cells [7], was observed 

after low levels of shear stress in the osteocyte line but not in the osteoblast lines. A similar 

conclusion regarding the sensitivity of osteocytic versus osteoblastic cell culture models was 

reached recently by Lu et al. [8]. They cultured osteoblastic MC3T3 and osteocytic MLO-

Y4 cells on a very cleverly engineered substrate that permitted cell adherence and only in 

specified locations. These micropatterned substrates allowed for networks of cells to be 

developed, with cell bodies separate from one another. When exposed to low-velocity fluid 

flow (generating 5 dyn/cm2), the MLO-Y4 cells exhibited significantly greater Ca2+ 

responses, as measured using the Fura-2 system, than was recorded for the MC3T3 cells. As 
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shear stress was increased, the two cell types exhibited less difference in responsiveness. 

Interestingly, the MC3T3 cells exhibited an enhanced ATP response compared to MLO-Y4 

cells in response to fluid shear, so it appears that the osteocyte lines might not be more 

sensitive to shear for all outcome measures.

Beyond the recent studies aimed at determining whether osteocytes might be more sensitive 

to mechanical stimulation than osteoblasts, an intriguing study looked at whether the 

osteocyte’s cell processes or the cell body is primarily responsible for mechanical signal 

reception. Burra et al. [9] developed a transwell filter system for culturing MLO-Y4 and 

primary osteocytes that allowed them to mechanically stimulate the osteocyte cell body 

(which resided on one side of the membrane) or the cell processes (which extended through 

to the opposing side of the membrane) via dropping a bolus of liquid from a specified 

height. When they stimulated the cell-body side of the membrane, hemichannels on the cell 

body opened (as monitored microscopically via entrance of an extracellular dye into the cell) 

but those on the cell processes did not. When they flipped the membranes over and dropped 

media onto the cell process side of the membrane, the same result was found—opening of 

hemichannels on the cell body but not the cell processes. Adachi et al. [10] took a different 

approach to probe the osteocyte for local differences in sensitivity to mechanical 

stimulation. They cultured primary chick osteocytes with Phex antibody-coated 

microparticles, which facilitated adherence of the particles to the osteocyte membranes. The 

microparticles could then be used to apply mechanical stimulation locally by manipulating 

them with a glass microneedle, and the calcium response was measured. Generation of a 

Ca2+ transient required more than twice as much deformation when applied at the cell body 

versus application to the cell process. These results, in conjunction with recent computer 

modeling simulations [11], suggest that the osteocyte cell process might be the site of 

activity for mechanical signal reception in the osteocyte.

Mechanical Signal Transduction: Connexing the Dots

One of the hallmarks of the osteocyte network, which makes it such an attractive candidate 

for the mechanosensory apparatus in bone, is its ability to rapidly communicate and transmit 

cell-to-cell information. That communication is facilitated by the presence of gap junctions 

where osteocyte processes from neighboring cells touch one another. Gap junctions in bone 

are formed by opposing connexons, and each connexon is formed by an arrangement of six 

connexin molecules. In bone cells, connexin 43 (Cx43) is highly expressed compared to the 

other known connexins. Because efficient communication among osteocytes is a prerequisite 

for mechanotransduction to work, a number of investigators have looked into the role that 

Cx43 might play in mechano-transduction. It should be pointed out that connexons can exist 

unopposed from a neighboring cell, in which case the connexon is considered to be a 

hemichannel. In fact, hemi-channels have been proposed as the mechanism by which bone 

cells release PGE2 upon mechanical stimulation (Fig. 1). Siller-Jackson et al. [12] showed 

that PGE2 release from fluid-sheared MLO-Y4 cells could be nearly completely inhibited 

when the cells were pretreated with a blocking antibody specific for Cx43 hemichannels. 

Further, mechanically induced opening of the Cx43 hemichannel appears to be controlled by 

physical perturbation of the α5β1 integrin through a direct mechanical linkage [13••]. This 

view is not without controversy, as Li et al. [14] have reported that another pore-forming 
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protein—the ATP-gated P2X7 receptor—is likely the mechanism by which PGE2 might be 

released from the cell in response to mechanical stimulation.

In vivo models of mechanotransduction have shed additional light on the role of Cx43 in 

bone mechanobiology. Three independent studies have recently been completed that 

employed the same floxed loss-of-function Cx43 mouse model in conjunction with skeletal 

loading. The loxP sites were cut using different Cre drivers, including Dermo1/Twist2-Cre 

[15], Osteocalcin-Cre [16•], and Dmp1-Cre [17], but all three studies revealed a gain of 

mechano-responsiveness on the periosteal surface when Cx43 is deleted from the bone. It is 

difficult to rationalize why disruption of an important communication apparatus among 

osteocytes would have positive effects on mechanotransduction. Nevertheless, while the 

function of Cx43 in load-induced periosteal bone gain appears to be consistent across these 

three studies, the role of Cx43 more broadly in mechanotransduction is still unclear as two 

studies have shown that Dermo1/Twist2-Cre [15] and Col2.3-Cre [18] -mediated deletion of 

the allele results in a loss of mechano-responsiveness on the endocortical surface. Moreover, 

although disruption of Cx43 resulted in reduced load-induced bone gain on the endocortex, 

it also resulted in osteoprotective effects from disuse on the same surface [19]. Clearly, the 

complexity of these outcomes highlights the realization that there is a great deal yet to learn 

about how Cx43 regulates mechanobiology in bone.

Developments in Physical Signal Reception: Making Sense of the Sensors

The mechanoreceptor in bone has long eluded skeletal biologists. The protein (or proteins) 

that senses the mechanical perturbation in the local environment, and transforms that 

physical signal into a biochemical cascade, has been a mystery for many years. 

Mechanosensors have historically fallen into one of three main categories: ion channels, G-

protein-coupled receptors (GPCRs), and cytoskeletal/integrin complexes. In the realm of ion 

channels, several new reports have expanded our view of mechanoreception. The first is 

from the transient receptor potential (Trp) family of channels. Specifically, TrpV4, a 

receptor known to be sensitive to mechanical perturbation (most notably, cell swelling) and 

osmolarity in other tissues, was recently shown to modulate the response to mechanical 

disuse in mice. Mizoguchi et al. [20] subjected TrpV4 knockout and wild-type (WT) mice to 

tail suspension for 2 weeks and measured changes in bone mass and formation rates. Tail-

suspended TrpV4 knockout mice failed to lose bone and did not exhibit reduced bone 

formation rates as was observed in tail suspended WT mice. The TrpV4 channel has been 

shown to be sensitive to shear stress in other cell types [21], thus its role in bone as a 

mechanosensor is worth further investigation.

Another Trp channel that has received significant attention in bone cell 

mechanotransduction is TrpP1, also known as Pkd1. Several years ago, it was convincingly 

demonstrated that that Pkd1 and Pkd2 regulate mechanotransduction in kidney epithelial 

cells. Pkd1 and Pkd2 reside largely on the primary cilium—a nonmotile ~250-nm thick 

“antenna” that extends into the tubular lumen. Deflection of the cilium from fluid movement 

in the renal tubules activates Pkd1, which causes the Pkd2 channel to open, kicking off a 

Ca2+ cascade that has multiple downstream effects. This mechanism was recently 

investigated in bone by Xiao et al. [22•]. In this experiment, the Dmp1-Cre transgene was 
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used to inactivate floxed Pkd1 alleles in osteocytes. Mutant mice subjected to in vivo ulnar 

loading exhibited a ~70 % reduction in load-induced apposition rates compared to control 

mice, indicating that osteocytic polycystin-1 is an important protein in the anabolic response 

to skeletal loading. Similar effects have been found in vitro, where cilium disruption via 

chemical treatment or gene silencing inhibits the response to fluid flow [23, 24]. The 

primary cilium, and its compliment of associated proteins, is an attractive candidate for 

mechanosensing in the osteocytes, in light of the importance of fluid movement in the 

canaliculolacunar network. But it is difficult to envisage how the cilium would physically fit 

in the extracellular space. The distance between the canalicular wall and the osteocyte cell 

process/body is typically 50 to 80 nm [25] and could be much smaller if measured on 

sections processed with newly refined fixation techniques that reduce cell shrinkage [26]. In 

culture, MC3T3 and MLO-Y4 cells exhibit primary cilia that are ~1–3 μm in length [27]. If 

this structure is acting as a flow sensor, as it appears to do in other cell types that have an 

adjacent lumen to project into, it would have very little room to do so.

A channel protein that can be removed from the list of candidates is the α1 subunit of the L-

type voltage-sensitive calcium channel (VSCC) (cav1.3). The L-type VSCC has been shown 

previously in cell culture models to regulate shear-induced nitric oxide and PGE2 release 

[28], but deletion of the α1 pore-forming subunit of this channel in mice did not alter the 

anabolic response to mechanical loading, despite having a significant effect on skeletal 

development [29]. This result does not exclude a role for the L-type VSCC in 

mechanotransduction, but if the L-type VSCC plays a prominent role in the process, it is 

likely that other pore-forming subunits can substitute for cav1.3.

G-protein signaling mechanisms in mechanotransduction are beginning to become clearer. 

Earlier, in a cleverly designed set of experiments, Gudi et al. [30] showed that when purified 

G-proteins are reconstituted into otherwise empty phospholipid vesicles, they could be 

activated (GTP hydrolysis) almost immediately upon fluid shear. This flow-induced 

activation was independent of a GPCR presence, but rather, was modulated by membrane 

stiffness. Living cell membranes are peppered with GPCRs, and so this group next asked 

whether the receptors themselves are responsive to ligand-independent mechanically 

induced activation. Here, they focused on the parathyroid hormone receptor 1 (PTHR1), as 

Chow et al. [31] showed earlier that parathyroidectomized rodents have impaired bone 

mechanotransduction. Using GPCR conformation-sensitive fluorescence resonance energy 

transfer in MC3T3 cells, Zhang et al. [32•] found that fluid shear stress leads to ligand-

independent response (conformational change) of the PTHR1, similar to that found when the 

cells were treated with PTH 3–34 (Fig. 1). This response occurred within seconds and was 

modulated by membrane fluidity/stiffness. Similar conformational changes in the 

endothelial B2 bradykinin GPCR were reported earlier by the same group [33], thus the 

mechanosensitive nature of many GPCRs might be fairly widespread.

Our understanding of integrin/cytoskeletal-mediated mechanotransduction has also 

expanded in the past several years. Most notably, the β1 integrin subunit appears to be 

emerging as a crucial mechanical signaling/sensing molecule (Fig. 1). Litzenberger et al. 

[34] showed that MLO-Y4 cells stably transfected with a dominant-negative fragment of the 

β1 subunit exhibited reduced PGE2 release, deficient cyclooxygenase-2 upregulation, and 
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blunted receptor activator of NF-κB ligand/osteoprotegerin responses to oscillatory fluid 

flow, compared to control-transfected cells. Similar results were found by Watabe et al. [35], 

who subjected primary mandibular, long bone, and calvarial osteoblasts to pulsed ultrasound 

stimulation. They reported that antibody-mediated blockade of the β1 subunit (in conjunction 

with the α5 subunit) inhibited β-catenin, Akt, Bcl-2, and mTOR responses to mechanical 

stimulation. In vivo, Col2.3-Cre-mediated deletion of floxed β1 integrin alleles had little to 

no effect on the skeletal phenotype. However, a bizarre phenotypic result was reported when 

the mice were subjected to disuse. Phillips et al. [36] reported that osteoblast/osteocyte 

deletion of β1 not only protected mice from the normal (as was observed in the WT) tail 

suspension-induced deterioration of bone mechanical properties, but mechanical properties 

were actually improved by tail suspension in the mutants.

Conclusions

The past several years have witnessed a multitude of studies aimed at sorting out many of 

the complexities of mechanobiology in bone. Some of these studies have provided new 

experimental support for very old ideas (e.g., that the osteocyte is the mechanosensory cell 

type in bone), further clarification of more recently discovered phenomena (e.g., integrin-

mediated and ion channel-mediated mechanotransduction), and the introduction of novel 

mechanisms for bone mechanobiology (e.g., ligand-independent GPCR mechanical 

signaling, primary cilium effects). These advances in our understanding of 

mechanotransduction have opened up new avenues of investigation, and provided a better 

understanding of how mechanotransduction might integrate into general skeletal 

development and maintenance. Moreover, elucidation of the normal mechanisms of 

mechanotransduction can help us understand disease processes at the cellular level. The 

ultimate goal of these studies—a detailed understanding of the precise cellular and 

molecular mechanisms involved in mechanical signal processing—moves closer to a reality 

every year.
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Fig. 1. 
Top right, Osteocytes are likely the mechanosensory cell type in bone. Osteocytes reside in 

a mineralized matrix, and have long cytoplasmic processes that allow communication with 

one another and with cells on the bone surfaces. Bottom right, As bone is loaded in 

bending, extracellular fluid (light blue) movement occurs between the osteocyte cell body/

processes (light green) and the lacuno-canalicular walls (pale yellow). The fluid movement 

in those spaces creates drag forces that pull on tethering structures (purple bands extending 

from the cell process to the canalicular wall) of the glyco-calyx, which suspend the 

osteocyte from the bony walls. Those drag forces create radial strains on the cell processes, 

and induce mechano-sensory proteins to signal. Bottom left, A potential candidate for a 

mechanosensor in bone is G-protein signaling, which can become activated (GTP-bound) by 

ligand-independent mechanical perturbation of the G-protein-coupled receptor (GPCR, 

shown in green), or by GPCR-independent mechanical perturbation of the membrane. Top 
left, The α5β1 integrin was recently shown to directly promote opening of Cx43 

hemichannels (shown in light purple) in the membrane, which allow mechanical signaling 

molecules to act on key receptors
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