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Abstract

Major aspects of neuronal function are regulated by Ca2+ including neurotransmitter release,

excitability, developmental plasticity, and gene expression. We reported previously that sensory

neurons isolated from a mouse model with a heterozygous mutation of the Nf1 gene (Nf1+/−)

exhibited both greater excitability and evoked release of neuropeptides compared to wildtype

mice. Furthermore, augmented voltage-dependent sodium currents but not potassium currents

contribute to the enhanced excitability. To determine the mechanisms giving rise to the enhanced

release of substance P and calcitonin gene-related peptide in the Nf1+/− sensory neurons, the

potential differences in the total voltage-dependent calcium current (ICa) as well as the

contributions of individual Ca2+ channel subtypes were assessed. Whole-cell patch-clamp

recordings from small diameter capsaicin-sensitive sensory neurons demonstrated that the average

peak ICa densities were not different between the two genotypes. However, by using selective

blockers of channel subtypes, the current density of N-type (Cav2.2) ICa was significantly larger in

Nf1+/− neurons compared to wildtype neurons. In contrast, there were no significant differences

in L-, P/Q- and R-type currents between the two genotypes. Quantitative real-time PCR

measurements made from the isolated but intact dorsal root ganglia indicated that N-type (Cav2.2)

and P/Q-type (Cav2.1) Ca2+ channels exhibited the highest mRNA expression levels although

there were no significant differences in the levels of mRNA expression between the genotypes.

These results suggest that the augmented N-type (Cav2.2) ICa observed in the Nf1+/− sensory

neurons does not result from genomic differences but may reflect post-translational or some other

non-genomic modifications. Thus, our results demonstrate that sensory neurons from Nf1+/−

mice, exhibit increased N-type ICa and likely account for the increased release of substance P and

calcitonin gene-related peptide that occurs in Nf1+/− sensory neurons.
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Introduction

Neurofibromatosis type 1 (Nf1) is a common genetic disorder characterized by tumor

formation. People with Nf1 also experience a more intense painful response to stimuli than

do unaffected individuals. It is likely that these abnormal painful states involve the

sensitization of small diameter nociceptive sensory neurons that are known to mediate the

transmission of pain and itch. Previously, we demonstrated that small diameter capsaicin-

sensitive sensory neurons isolated from mice with a heterozygous mutation of the Nf1 gene

(coding for the protein neurofibromin) have augmented excitability compared to wildtype

neurons (Wang et al., 2005). Consistent with this enhanced excitability, the peak current

densities for both tetrodotoxin-sensitive and –resistant sodium currents (Wang et al., 2010a)

as well as the expression of mRNA for specific sodium channel subtypes (Hodgdon et al.,

2012) were significantly larger in Nf1+/− sensory neurons. However, neither delayed

rectifier nor A-type potassium currents were altered in Nf1+/− neurons (Wang et al., 2010a).

Furthermore, stimulus-evoked release of the neuropeptides, substance P and calcitonin gene-

related peptide (CGRP), was significantly higher from sensory neurons isolated from Nf1+/−

mice (Hingtgen et al., 2006). Therefore, it is reasonable to speculate that the calcium

currents and/or expression of these channels is higher in adult sensory neurons with

heterozygous mutation of the Nf1 gene (Nf1+/−) than that of wildtype cells.

Multiple experimental approaches established that voltage-dependent Ca2+ channels are

important for neurotransmitter release (Catterall, 2000; Catterall et al., 2005; Catterall and

Few, 2008; Neher and Sakaba, 2008; Atlas, 2013) and nociceptive neurotransmission

(Malmberg and Yaksh, 1994; Kim et al., 2001; Saegusa et al., 2001; Winquist et al., 2005;

Cregg et al., 2010; Todorovic and Jevtovic-Todorovic, 2011; Lipscombe et al., 2013). Based

on molecular, biophysical, and pharmacological properties, high threshold voltage-activated

Ca2+ channels have been classified into L, N, P/Q and R subtypes (Fox et al. 1987; Diochot

et al., 1995; Jones 1998; Triggle, 1999; Dolphin, 2009). The variety of Ca2+ channels found

in neuronal membranes suggests that each type plays a distinct physiological role. For

instance, L- and N-type currents are considered to play key roles in dendritic spiking as well

as neurotransmitter release. Sensory neurons of the dorsal root ganglia (DRG) are

functionally diverse and contain various neurotransmitters as well as receptors and ion

channels. Our previous work demonstrated that both the excitability and transmitter release

of sensory neurons are enhanced in sensory neurons isolated from Nf1+/− mice compared to

the wildtype (Wang et al., 2005; Hingtgen et al., 2006). Although multiple classes of Ca2+

channels are expressed in DRG sensory neurons, the contribution of each specific channel

subtype to the total Ca2+ current in Nf1+/− sensory neurons has not been established. To

determine this, we used whole-cell patch clamp recordings and real-time quantitative PCR to

assess the extent of different subtypes of calcium channels from small-diameter wildtype

and Nf1+/− sensory neurons. In this report, we demonstrate that the average peak ICa

densities were not different between the two genotypes. However, N-type currents were
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significantly larger in Nf1+/− neurons although the mRNA levels were not different

between the genotypes. These results demonstrate that sensory neurons from Nf1+/− mice,

exhibit increased N-type Ca2+ currents and this likely accounts for the increased release of

neuropeptides that occurs in Nf1+/− sensory neurons. Part of this work has been published in

abstract form (Duan et al., 2010).

Experimental Procedures

Animals

Mice, a C57BL/6J background, were heterozygous for the Nf1 mutation; these mice were

originally created by Dr. Tyler Jacks (Jacks et al., 1994). Mice were housed and bred in the

Indiana University Laboratory Animal Research Center and had free access to food and

water. These mice were used according to the guidelines in the National Institute of Health

Guide for Care and Use of Laboratory Animals (NIH Publications No. 80-23) revised 1996.

Isolation and maintenance of mouse sensory neurons

With some modifications to the protocol developed by Lindsay (1988), sensory neurons

were isolated from young adult mice (1–2 months of age). In our studies, both wildtype and

Nf1+/− mice were littermates. Male mice were killed by putting them in a chamber

containing CO2. The dorsal root ganglia (DRG) were harvested from the isolated spinal

column, the ganglia were placed in a culture dish containing sterilized Pucks solution that

was composed of (in mM): 171 NaCl, 6.7 KCl, 1.6 Na2PO4, 0.5 KH2PO4, 6 D-glucose, and

0.01% phenol red, pH 7.3. The ganglia were placed into a conical tube containing Pucks

solution and papain (10 ng/ml); ganglia were digested for 10–12 min at 37º C after which

they were moved to a conical tube containing F-12 medium with 1 mg/ml collagenase 1A

and 2.5 mg/ml dispase. After an incubation for 10–15 min at 37º C, the tube was centrifuged

at low speed (2000 x g) for 30 s, whereupon the enzyme-containing supernatant was

removed. F-12 medium was used to resuspend the pellet, which was then mechanically

dissociated with fire-polished pipettes. Cells were plated onto poly-D-lysine- and laminin-

coated plastic cover slips. The cells were bathed in F-12 medium supplemented with 10%

horse serum, 100 μg/ml normocin, 50 μM 5-fluoro-2′-deoxyuridine, 50 μg/ml penicillin and

streptomycin, 2 mM glutamine, 150 μM uridine at 37° C and 3% CO2. The cells were used

within 12–48 hr for electrophysiological recordings. The Animal Use and Care Committee

of the Indiana University School of Medicine approved all procedures.

Electrophysiology

The whole-cell patch-clamp recording technique was used as previously described (Wang et

al. 2010a). Neurons were bathed in normal Ringers of the following composition (mM): 140

NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES and 10 glucose, pH adjusted to 7.4 with NaOH.

A VC-8 bath perfusion system (Warner Instruments, Hamden, CT) was used to superfuse

the recording chamber. An Axopatch 200B amplifier (Molecular Devices, Sunnyvale, CA)

was used to record whole-cell currents, which were established in normal Ringers. The data

were obtained as well as analyzed with the pCLAMP 9.2 suite (Molecular Devices).
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To isolate ICa, neurons were superfused with a Ringers solution composed of (in mM):

NMG-Cl 110, TEA-Cl 30, CaCl2 2, HEPES 10, glucose 10, pH 7.4, adjusted with TEA-OH;

500 nM TTX was added to this solution on the day of recording. Pipettes used in these

recordings were pulled from capillary glass tubing (Model G85165T-4, Warner

Instruments); resistances of 1–3 MΩ were determined when filled with the following

solution (mM): CsCl 100, EGTA 10, MgCl2 1, Na3GTP 0.3, Na2ATP 4, HEPES 30; pH 7.2,

adjusted with CsOH. The data were acquired at 10 kHz and filtered at 5 kHz. Leakage

currents were subtracted by using the P/4 protocol. Series resistance was compensated

between 60–80%. Cell capacitance was determined by using the membrane test feature of

Clampex. The peak current amplitude established the current-voltage relation for ICa.

Activation of ICa was measured by using a holding voltage of −90 mV with voltage steps

200 ms in duration applied at 5 s intervals in +10 mV increments from −90 to +60 mV.

Current density was calculated as peak ICa/cell capacitance. Steady-state inactivation of ICa

was determined by applying an 800 ms conditioning prepulse (−100 to −20 mV in +10 mV

increments) after which the voltage was stepped to −20 mV for 200 ms; a 15 s interval

separated each acquisition.

To determine the relative contribution of individual Ca2+ channel subtypes to the total ICa,

the following selective blockers were used: 5 μM nifedipine (L-type, Cav1), 200 nM ω-

agatoxin IVA (AgTx, P/Q-type, Cav2.1), 200 nM ω-conotoxin GVIA (CTx, N-type,

Cav2.2), and 200 nM SNX-482 (R-type, Cav2.3). In this series of experiments, the current-

voltage relation for ICa was assessed under control conditions. Upon determining the voltage

at which the peak ICa was obtained, a single voltage step (typically −20 mV from a holding

potential of −90 mV) was repeated every 15 s to establish the total ICa and then the

subsequent remaining current after exposure to the various blockers. For each condition,

steady-state inhibition (a minimum of 3 consecutive current recordings showing no further

inhibition) was achieved before the neuron was exposed to a different blocker. In all

experiments, CTx and nifedipine were applied in different orders via external superfusion of

the recording chamber, whereas AgTx and SNX-482 were applied directly to the bath from

concentrated stock solutions. At the termination of a recording, the cell was exposed to

normal Ringers containing 1 μM capsaicin. Responsivity to capsaicin has been used as a

measure of nociceptive sensory neurons (Holzer 1991). Neurons were determined to be

sensitive to capsaicin if the membrane depolarized and/or the cell fired action potentials in

response to this agent. However, the correlation between capsaicin sensitivity and a

nociceptor is not absolute as some nociceptive neurons are insensitive to capsaicin and some

capsaicin-sensitive neurons lack nociceptive properties (see Petruska et al., 2000). Thus,

capsaicin sensitivity defined a population of small diameter sensory neurons that could

function in a nociceptive capacity. The results described were obtained from only capsaicin-

sensitive neurons. All experiments were performed at room temperature (~23° C).

Real-Time quantitative PCR (qPCR)

The DRG were isolated from young adult mice (~2 months old). The wildtype and Nf1+/−

mice used in these studies were littermates. Briefly, mice were killed by placing them in a

CO2 chamber and the spinal column was removed. Lumbar, cervical and thoracic DRG were

collected and trimmed in cold, sterilized Puck’s solution. The ganglia were then transferred
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to a conical tube and washed with sterilized PBS. Tissues were stored at −80° C and

processed within two days. The methods for isolation of total RNA and the protocols used

for the SYBR® Green quantitative PCR (qPCR) are described in detail in Zhang et al.

(2012) and Hodgdon et al. (2012). Calcium channel primers were designed and targeted

against mouse transcripts using PrimerExpress® software v3.0 (Applied Biosystems) and

were based on previous publications (Chameau et al., 2006; Andrade et al., 2007; Grimm et

al., 2008). As reference genes for normalization of the qPCR results, both hypoxanthine-

guanine phosphoribosyl transferase (HPRT) and acidic ribosomal protein P0 (Arbp) were

used. Table 1 describes the accession number(s), amplicon size and position, primer

sequences, and efficiencies for all genes targeted in this study. Analysis of the levels of

expression for the Cav subtypes and the statistical analysis of the differences in expression

are described in detail in Hodgdon et al. (2012).

Data analysis

All values represent the mean ± S.E.M, unless noted otherwise. The Boltzmann relation was

used to determine the voltage dependence for activation of ICa wherein the conductance-

voltage curve was fit by the equation G/Gmax = 1/ [1 + exp (V0.5 − Vm)/k], where G is the

conductance G=I/(Vm−ECa), Gmax is the maximal conductance obtained from the

Boltzmann fit under control conditions, V0.5 is the voltage for half-maximal activation, Vm

is the membrane potential, and k is a slope factor. ECa is the reversal potential for ICa and

was determined for each individual neuron. The values of ICa around the reversal potential

were fit with a linear regression line to establish the voltage at which the current was zero.

The Boltzmann parameters were determined for each individual neuron and then used to

calculate the mean ± S.E.M. Fits were performed using SigmaPlot 9.0 (Systat Software Inc.,

San Jose, CA). To fit the inactivation curves, the Boltzmann relation G/Gmax = c + {(1− c) /

[1 + exp (V0.5 − Vm)/k]} was used where c is the fraction of non-inactivating current. For

ICa, c is defined by the peak current obtained at −20 mV for the prepulse to −20 mV. The

other parameters are as defined above. Statistical differences between the two genotypes

were determined by using a Student’s t-test or an ANOVA whenever appropriate. Values of

P<0.05 were judged to be statistically significant.

Chemicals

Tissue culture supplies were purchased from Invitrogen (Carlsbad, CA, USA). Papain was

purchased from Worthington Biochemical Corp. (Lakewood, NJ) and dispase was obtained

from Roche Diagnostics Corp. (Indianapolis, IN). ω-conotoxin GVIA, ω-agatoxin IVA, and

SNX-482 were purchased from Alomone Laboratories (Jerusalem, Israel). All other

chemicals were obtained from Sigma Chemical Corp. (St Louis, MO). Capsaicin and

nifedipine were dissolved in 1-methyl-2-pyrrolidinone (MPL) to obtain stock solutions;

these were diluted to yield final concentrations. Stocks were aliquoted and stored at −20° C

until immediately prior to use. Our earlier studies demonstrated that MPL does not affect the

potassium or sodium currents in the DRG sensory neurons (Zhang et al. 2002, 2006a/b)
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Results

The total ICa is not different in wildtype and Nf1+/− neurons

We previously showed that the capsaicin-evoked release of substance P and calcitonin gene-

related peptide (CGRP) from sensory neurons isolated from Nf1+/− mice was greater than

that measured in wildtype mice (Hingtgen et al., 2006). To determine whether this resulted

from differences in ICa between the two genotypes, whole-cell patch-clamp recordings were

performed to assess the total ICa in sensory neurons. A representative recording from a

wildtype sensory neuron is illustrated in Fig. 1A wherein the peak amplitude was −1305 pA

for a voltage step to –10 mV. For voltage steps between −60 and −30 mV, this neuron

exhibited a prominent rapidly inactivating T-type ICa. The current-voltage relations for the

total ICa obtained from 57 wildtype and 31 Nf1+/− sensory neurons are summarized in Fig.

1B (left panel). For wildtype neurons, the average peak value of total ICa was −1678 ± 178

pA for the step to −20 mV, whereas in Nf1+/− neurons the total ICa had an average peak

value of −2414 ± 455 pA for the step to −20 mV. To account for the variations in cell size,

ICa was normalized to cell capacitance and shown as the current density-voltage relation

summarized in the right panel of Fig. 1B. The cell capacitance for the isolated neurons was

not different between the two genotypes (wildtype 38.1 ± 2.1 pF, range 12.3–94.8, vs. Nf1+/

− 43.1 ± 4.3 pF, range 18.7–133.5; P=0.49 t-test). There was no significant difference

between the average peak current densities in wildtype compared to Nf1+/− neurons (−47.3

± 5.3 vs. −59.3 ± 9.5 pA/pF, respectively, for steps to −20 mV, P=0.21, t-test). Note that

between the voltages of −70 and −30 mV in the current-voltage relations, there is a clear

indication of T-type ICa activation, which was not different between the genotypes. The

number of neurons exhibiting T-type currents was similar between the two genotypes; for

the wildtype only 19 of 57 neurons (33%) compared to 9 of 31 (29%) for the Nf1+/−

neurons. When the current values were transformed to conductance (G), the conductance-

voltage relation was fit with the Boltzmann relation, and the conductance for each neuron

was then normalized to the maximal value of G (Gmax) obtained from the fit. The G/Gmax-

voltage relation is summarized in Fig. 1C and indicates that the voltage-dependence for

activation of Gmax was nearly identical between the two genotypes.

However, the values of G/Gmax between the voltages −70 and −40 mV were not well fit by

the single Boltzmann, which otherwise described the results. To better fit these values, the

points between −90 and −40 mV were fit with a single Boltzmann for a G/Gmax of 0.201

(see panel D) for the wildtype neurons (similar results were obtained for the Nf1+/− neurons

where G/Gmax was fitted for a value of 0.190). The predicted values from this fit were then

subtracted from the G/Gmax values over the range of voltages from −90 to +45 mV; these

results were then fitted by another single Boltzmann. The Boltzmann fitting parameters, V0.5

and k, for the single fits shown in panel C and the double fits shown in panel D are

summarized in Table 2; these results demonstrate that there were no significant differences

between the wildtype and Nf1+/− neurons. Similarly, measurements of steady-state

inactivation for ICa demonstrated that there were no differences in the properties of

inactivation between the genotypes (see Fig. 1C and Table 2). For example, in wildtype

cells, ICa was inactivated by 68.9 ± 3.5% (n = 8) after the conditioning prepulse to −20 mV,

which was not different from the 75.1 ± 8.8%, (n = 8) in Nf1+/− neurons. Because of the
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very similar relations between the wildtype and Nf1+/− neurons for the current-voltage, the

G/Gmax-voltage, and steady-state inactivation it seems unlikely that the voltage dependence

of activation/inactivation of ICa was altered in Nf1+/− neurons and therefore differences in

the total ICa do not account for the enhanced excitability or augmented release of

neuropeptides previously shown (Wang et al., 2005; Hingtgen et al., 2006).

Contribution of channel subtypes to the total ICa in wildtype and Nf1+/− neurons

Ca2+ channels have been delineated into different subtypes; L-type (Cav1 family), N-type

(Cav2.2), P/Q-type (Cav2.1), R-type (Cav2.3), T-type (Cav3 family). These subtypes have

different physiological roles in regulating neuronal activities. Although the results presented

above demonstrate that the total ICa was not different between the two genotypes, the

contribution of each subtype may be altered and thus account for the enhanced release of

neuropeptides. To test this idea, blockers of specific subtypes were used to assess their

contribution to the total ICa. The top panel of Fig. 2 illustrates representative current traces

obtained from an isolated wildtype neuron for the control condition (1); for inhibition of ICa

after exposure to 200 nM CTx (2); and then subsequent exposure to 5 μM nifedipine (3).

Maximum activation of ICa was obtained with a 200 ms voltage step to −20 mV from a

holding voltage of −90 mV which was repeated every 15 s. The bottom panel of Fig. 2

shows the time course for inhibition produced by CTx (42% of the total current) and by

nifedipine (37% of the total current) in this sensory neuron. The successive addition of these

blockers provides a measure of the proportion of total current carried by each channel

subtype. To exclude the possible interaction of each blocker on ICa, CTx and nifedipine

were applied in a random order for each recording. From a number of experiments such as

those described above, the contribution of each channel subtype to the total ICa could be

established in wildtype and Nf1+/− sensory neurons. Figs. 3A/B show scatter plots for the

CTx and nifedipine sensitivities, respectively, exhibited by the two genotypes wherein the

neurons were ranked by their fractional sensitivities (low to high). Based on the overall

distribution for the sensitivity to CTx it appears that these neurons can be separated into

three groups exhibiting low, intermediate, and high sensitivities to CTx (Fig. 3A). In 26

wildtype neurons, 18 neurons (69.2%) exhibited a low fractional sensitivity to CTx and had

an average value of 0.192 ± 0.018 (range 0.038–0.288); 7 neurons (26.9%) exhibited

intermediate fractional sensitivity that averaged 0.501 ± 0.041 (range 0.399–0.640); and 1

neuron (3.8%) exhibited high sensitivity of 0.864. In contrast, of the 21 Nf1+/− neurons, 6

(28.6%) exhibited low sensitivity (average 0.181 ± 0.025, range 0.079–0.246); 12 (57.1%)

exhibited intermediate sensitivity (average 0.495 ± 0.018, range 0.411–0.597); 3 (14.3%)

exhibited high sensitivity (average 0.766 ± 0.074, range 0.691–0.839). Although the average

sensitivities for the low and intermediate groups were similar, the proportion of cells

exhibiting either low or intermediate sensitivity to CTx was significantly different between

the wildtype and Nf1+/− neurons (P=0.03, χ2 test). The high sensitivity groups were not

tested because of the small sample size. Based on the distribution of the fractional

sensitivities to nifedipine, the notion of differential sensitivity was not tested. These results

suggest that the sensitivity of Nf1+/− sensory neurons to CTx was higher than that of the

WT neurons whereas the nifedipine sensitivities were similar. The large variation in

individual sensitivity of sensory neurons to CTx is similar to that reported in neurons

isolated from mouse superior cervical ganglia ranging from 12–73% (Namkung et al., 1998).
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These results are summarized in the box plot shown in panel C. The average CTx sensitivity

of the Nf1+/− neurons was significantly higher than the wildtype neurons (44.4 ± 4.5%,

n=21 vs. 30.1 ± 3.9%, n=26, respectively, P=0.019 t-test). However, there was no difference

in the average sensitivity to nifedipine (29.6 ± 3.8%, n=15 vs. 36.5 ± 6.9%, n=15,

respectively, P=0.39 t-test). To determine the contributions of P/Q-type (Cav2.1) and R-type

(Cav2.3) channels to the total ICa, 200 nM AgTx or SNX-482 were applied directly to the

recording chamber. Fig. 4 summarizes the sensitivities of ICa to these blockers. Although the

mean sensitivity to AgTx was higher in wildtype neurons (27.1 ± 6.8%, n=12) it was not

significantly different than that exhibited by the Nf1+/− neurons (14.3 ± 5.1%, n=8,

P=0.191 t-test). The sensitivities to SNX-482 were nearly the same between the genotypes

(wildtype 18.3 ± 3.2%, n=10 vs. Nf1+/− 14.5 ± 1.9%, n=12, P=0.339 t-test). Thus, these

results demonstrate that there is a significantly larger contribution of N-type (Cav2.2) Ca2+

channels to the total ICa in Nf1+/− neurons and may account for the enhanced release of

substance P and CGRP.

The mRNA expression of Cav subtypes is not different between wildtype and Nf1+/−
neurons

To determine whether the larger contribution of N-type (Cav2.2) channels to the total ICa in

Nf1+/− neurons resulted from increased expression of mRNA for this subtype, SYBR-green

qPCR was used to assess mRNA levels in the DRG isolated from the two genotypes. Table 3

summarizes the mean values of Cq for some of the different Ca2+ channel subtypes as well

as the reference genes HPRT and Arbp; since there was no apparent difference in the T-type

(Cav3 family) ICa from the current-voltage relations shown in Fig. 1 these mRNA levels

were not determined. Based on the Cq values, the P- and N-types (Cav2.3 and Cav2.2,

respectively) exhibited the highest levels of expression in the isolated but intact mouse

DRG. The lowest level of expression was obtained for the L-type subtype Cav1.3. Although

the mRNA was obtained from the intact DRG containing different neuronal subtypes as well

as support cells as compared to the isolated neurons from which the pharmacological

sensitivities of ICa were obtained, the levels of mRNA expression correlate, for the most

part, with the percentage of the total ICa that was sensitive to their respective antagonist. Fig.

5 (panel A) demonstrates the mRNA expression levels relative to the reference gene HPRT

for both genotypes and is similar to the profile indicated by the Cq values. The profile for

the Cav subtypes relative to Arbp was quite similar to HPRT (data not shown). Panel B

shows that there were no significant differences in the relative expression for the different

Cav subtypes between the wildtype and the Nf1+/− mice (REST analysis). Although the

sensitivity to CTx was significantly higher in the Nf1+/− neurons, there appears to be no

difference in the levels of mRNA expression for Cav2.2 between the two genotypes. This

suggests that Cav2.2 may undergo post-translational modifications in the Nf1+/− neurons

(but see the Discussion below) and thus account for the larger contribution of Cav2.2 to the

total ICa in these neurons. This is an important area for future investigation that could

explore the role of neurofibromin-dependent signaling pathways in regulating ion channel

activity.
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Discussion

In this report, we demonstrate that the contribution of N-type/Cav2.2 Ca2+ channels to the

total ICa was significantly higher in sensory neurons isolated from Nf1+/− mice compared to

the wildtype. Based on the well-established role of Cav2.2 in synaptic release mechanisms,

this finding suggests that the augmented Cav2.2-dependent current could account for the

enhanced release of the neuropeptides substance P and CGRP from sensory neurons isolated

from Nf1+/− mice (Hingtgen et al., 2006). In contrast, the contributions of L- (Cav1), P/Q-

(Cav2.1), or R-type (Cav2.3) voltage-dependent Ca2+ channels were not different between

the two genotypes. Surprisingly, the levels of mRNA for the α subunits of Cav2.2 were not

different between the genotypes, suggesting that neurofibromin-dependent pathways may

alter the activity of Cav2.2 in a non-genomic manner. Although neither the voltage

dependence for activation nor inactivation for ICa was different between the two genotypes,

the enhanced Cav2.2-mediated current could result from modification of the processes that

control the probability of channel opening or the kinetics of channel inactivation. It is

possible that the level of neurofibromin, which is an established GTPase accelerating protein

(GAP), could modulate the activity of RGK proteins (Rad, Rem, Rem2, Gem/Kir). These

proteins comprise four members of a Ras subfamily that are known to inhibit Cav1/Cav2

calcium channels (Yang and Colecraft, 2013) and Rem2 is expressed in sensory neurons of

the dorsal root ganglion (Chen et al., 2005). However, a neurofibromin/Rem2 mediated

regulation of ICa seems unlikely since the only known GAP for RGK proteins is nm23

(Yang and Colecraft, 2013). Alternatively, the levels of neurofibromin could modify the

expression of mRNA/protein or the activity of the β and/or the α2δ auxiliary subunits. Both

the β and the α2δ subunits can enhance the functional expression and current density of the α

subunits of Cav1 (L-type), Cav2.1 (P/Q-type), and Cav2.2 (N-type) calcium channels (see

reviews by Dolphin, 2012; Buraei and Yang, 2013). In contrast to the results obtained for

calcium channel subtypes, we previously reported that the enhanced sodium currents

exhibited by small diameter sensory neurons isolated from Nf1+/− mice may result, in part,

from the increased mRNA expression of specific sodium channel subtypes (Hodgdon et al.,

2012). Studies examining the multiple mechanisms of post-translational modifications to

calcium channel subtypes as well as the possible roles that these auxiliary subunits play in

the regulation of ICa in Nf1+/− neurons are an important area for future investigation.

We demonstrated that the proportions of the total ICa carried by the different types of Ca2+

channels were: N-type ~30%, L-type ~30%, P/Q-type ~28%, and R-type ~18% in wildtype

neurons (Fig. 3). These values are similar to those found in previous studies on sensory

neurons isolated from the mouse DRG (CB57BL/6J and Short sleep strains) wherein the

contribution of N-type ranged from 19–50%, L-type from 10–35%, P/Q-type from 5–40%,

and R-type from 10–15% (see Huang and McArdle 1992, Wilson et al., 2000, Yang and

Stephens 2009, Fukumoto et al., 2012). Such variation in the sensitivities to the different

channel subtype blockers may arise from the heterogeneous nature of the neuronal

population comprising the DRG. Recently, the levels of ICa were examined in hippocampal

neurons isolated from wildtype and Nf1+/− mice (Wang et al., 2010b). Using Ba2+ as the

charge carrier, the peak current density for the Nf1+/− neurons was significantly higher than

that measured in the wildtype neurons. The peak current density for the Nf1+/−
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hippocampal neurons was similar to the levels that we measured in both Nf1+/− and

wildtype sensory neurons, whereas, the density value for the wildtype hippocampal neurons

was much smaller compared to that in sensory neurons (approximately −22 vs. −47 pA/pF,

respectively). Similar to our findings reported above, there were no significant differences

for the voltage dependence of ICa (IBa) current activation or inactivation between the

genotypes. Treatment with 10 μM nifedipine reduced the current density of IBa in the Nf1+/

− hippocampal neurons (about 37%) to levels that were similar to the wildtype neurons;

surprisingly nifedipine had no effect on the current density in wildtype hippocampal

neurons. These results suggest that the enhanced IBa in Nf1+/− neurons was conducted by

L-type channels but that there was little to no L-type Ca2+ channels in wildtype neurons,

however, the sensitivity of these hippocampal neurons to different Ca2+ channel blockers

(e.g., CTx) was not examined. The release of glutamate evoked by elevated potassium (50

mM) was significantly larger in the Nf1+/− hippocampal neurons compared to the wildtype

neurons. These findings are consistent with the enhanced release of substance P and CGRP

observed in Nf1+/− sensory neurons as previously reported by Hingtgen et al. (2006).

The contribution of L-type channels to the total ICa in isolated sensory neurons is not

different for these two genotypes (Fig. 3). One possibility is that L-type channels are present

in greater proportions in the dendrites which are lost during dissociation (Martínez-Pinna et

al., 2002); our recordings were obtained within 24 hrs of isolation providing little

opportunity for regrowth. Furthermore, L-type Ca2+ channels do not appear to play an

important role in the hypersensitivity resulting from inflammation or neuropathic injury

(discussed below, but also see Fossat et al., 2010). In contrast, N-type channels are more or

less equally expressed in both the cell body and proximal dendrites (Westenbroek et al.,

1998). Many studies have identified N-type Ca2+ channels (Cav2.2) as the primary

contributor to the increased excitability and neurotransmitter release in chronic and

neuropathic pain syndromes from many different types of neurons (Dunlap et al., 1995;

Catterall., 2000; Reid et al., 2003; Winquist et al., 2005; Gray et al., 2007). Cav2.2 channel

knock-out mice have decreased pain responses in several models of neuropathic and

inflammatory pain (Saegusa et al., 2001; Hatakeyama et al., 2001; Kim et al., 2001).

Moreover, Bell et al. demonstrated that the DRG-specific exon, e37a, is preferentially

present in Cav2.2 mRNAs expressed in nociceptive neurons and cell-specific inclusion of

exon 37a correlates closely with significantly larger N-type currents in nociceptive neurons

(Bell et al., 2004). In addition, knockdown of the e37a- and e37b-containing channels

reduces Cav2.2 protein expression and blocks substance P release from cultured DRG

neurons (Altier et al., 2007).

Our results demonstrate that sensory neurons isolated from Nf1+/− mice exhibit an

augmented N-type ICa. These results strongly support that N-type Ca2+ channels are

responsible for enhanced release of neuropeptides in nociceptive neurons. Recent studies

have demonstrated that N-type Ca2+ channels may play a significant role in the heightened

sensitivity that results from inflammation and/or neuropathic pain. Seminal studies

demonstrated that intrathecal delivery of SNX-111 (ziconotide, a synthetic analog of ω-

conotoxin MVIIC) significantly reduced in a dose-dependent manner the hypersensitivity

resulting from either formalin injection into the rat’s hindpaw (Malmberg and Yaksh 1994)
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or spinal nerve ligation (L5/L6) (Chaplan et al., 1994). Later clinical studies established that

SNX-111 effectively reduced the pain associated with cancer or AIDS (Staats et al., 2004).

More recently, intrathecal administration of SNX-111, but not the L-type blockers diltiazem

or verapamil, suppressed the internalization of neurokinin-1, the G-protein coupled receptor

that is activated by substance P (Takasusuki and Yaksh 2011). These results demonstrate

that N-type Ca2+ channels play a key role in the transmission of nociceptive signaling in the

spinal cord. The reader is referred to the following reviews for additional information

regarding the therapeutic potential for Ca2+ channel blockers (Miljanich 2004, Schmidtko et

al., 2010, Todorovic and Jevtovic-Todorovic 2011, Vink and Alewood 2012). Although,

NF1-related pain syndromes are not well characterized, there is clearly pain that is not

directly related to tumor burden (Creange et al., 1999). Indeed, 63% of surveyed families

who have been involved in NF1 research studies at the NIH, recommended that future NF1

research should focus on pain (Martin et al., 2011). This was second only to learning

disabilities in the areas of research recommended by those families affected by NF1.

In conclusion, the major finding of this study is that the N-type Ca2+ current in small-

diameter Nf1+/− sensory neurons is significantly enhanced compared to wildtype neurons.

Given that N-type channels are important for the release of neurotransmitters and key

mediators of nociceptive signaling, the augmentation of this particular Ca2+ channel subtype

likely accounts for the enhanced release of substance P and CGRP from Nf1+/− sensory

neurons and may contribute to the intensified sensations observed in NF1 patients in

response to painful stimuli.

Acknowledgments

Grants

This investigation was conducted in a facility constructed with support from Research Facilities Improvement
Program Grant Number C06 RR015481-01 from the National Center for Research Resources, NIH. This work was
supported by grants from the Department of Defense W81XWH-09-1-0174 (GDN) and NIH NINDS NS51668
(CMH).

Abbreviations

ANOVA analysis of variance

Arbp acidic ribosomal protein P0

CGRP calcitonin gene-related peptide

Cq quantification cycle

DRG dorsal root ganglia

ECa reversal potential for ICa

EGTA ethylenediamine tetraacetic acid

G conductance

Gmax maximal conductance

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
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HPRT hypoxanthine-guanine phosphoribosyl transferase

ICa Ca2+ current

k slope factor

MPL 1-methyl-2-pyrrolidinone

Nf1 Neurofibromatosis type 1

qPCR real-time quantitative polymerase chain reaction

ΔRn change in SYBR green fluorescence emission

TEA tetraethyl ammonium

TTX tetrodotoxin

V0.5 voltage for half-maximal activation

Vm membrane potential

ω–AgTx ω-agatoxin IVA

ω-CTx ω-conotoxin GVIA
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Highlights

Peak ICa densities were not different between wildtype and Nf1+/− sensory neurons

N-type (Cav2.2) ICa was significantly larger in Nf1+/− sensory neurons

No differences in L-, P/Q- and R-type currents between the two genotypes

Using qPCR, Cav2.2 and Cav2.1 exhibited the highest mRNA levels in the DRG

No differences in the levels of channel subtype mRNA expression between the

genotypes
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Figure 1.
The total ICa and the average peak current densities in wildtype and Nf1+/− neurons are not

different. Panel A shows representative current traces obtained from a wildtype mouse

where the neuron was held at −90 mV with 10 mV incrementing steps to +30 mV. The

voltage steps are noted as the numbers next to the current traces. Note the smaller amplitude,

rapidly inactivating current traces which are indicative of T-type currents. The line

designated as 0 indicates the zero current level. Panel B, left, illustrates the current-voltage

relations obtained for the peak ICa elicited by depolarizing steps from holding of voltage of

−90 mV for 57 wildtype (WT) and 31 Nf1+/− sensory neurons. The right panel shows the

current density (pA/pF)-voltage relations of the peak ICa for the same wildtype and Nf1+/−
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neurons. The values represent the means ± SEM. Panel C shows the G/Gmax-voltage

relations for the voltage dependence of activation and the steady-state inactivation of ICa in

the two genotypes. The continuous lines through the data points represent the Boltzmann fits

for the wildtype and Nf1+/− neurons. Panel D shows the separation of the single Boltzmann

fit for the voltage-dependent activation in panel C into two distinct profiles. The values of

G/Gmax between −90 and −40 mV were fit by a single Boltzmann where Gmax was set to

0.201 and is shown as the dark gray line through the data points. The predicted values of

G/Gmax from this fit were subtracted from the total G/Gmax (filled circles, dotted black line)

for voltages between −90 and +45 mV; this subtraction yielded the G/Gmax relation

represented by the open diamonds and fitted by the single Boltzmann relation (dotted gray

line). These fitting parameters are described in Table 2.

Duan et al. Page 18

Neuroscience. Author manuscript; available in PMC 2015 June 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
The whole-cell ICa is sensitive to the blockers CTx and nifedipine. Panel 1 shows that under

control conditions, a voltage step from −90 to −20 mV evokes a representative trace for the

peak ICa (−1.99 nA); panel 2: the same voltage step recorded after perfusion with 200 nM

CTx reduced ICa to −1.15 nA; panel 3: the peak ICa is further reduced to −0.42 nA in the

combined presence of CTx and 5 μM nifedipine. The bottom panel shows the cumulative

blockade of ICa by the successive perfusion of CTx and nifedipine obtained from the same

wildtype neuron. The break in ICa occurring just after the application of nifedipine resulted

from the saving and initiating a new acquisition file. After the application of CTx and

nifedipine, a small ICa remains that is likely carried by P/Q- and/or R-type channels.
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Figure 3.
Sensory neurons isolated from Nf1+/− mice exhibit significantly higher sensitivity to CTx

but not to nifedipine. Panel A shows a scattergram for the fractional sensitivities of ICa to

200 nM CTx for individual sensory neurons isolated from either wildtype (WT, n=26) or

Nf1+/− (n=21) mice. The fractional sensitivities have been ranked from lowest to highest.

Panel B shows a scattergram for the sensitivities of ICa to 5 μM nifedipine for individual

sensory neurons isolated from either wildtype (WT, n=15) or Nf1+/− (n=15) mice. The

fractional sensitivities have been ranked from lowest to highest. Panel C shows box plots

summarizing the results from panels A and B. The sensitivity to CTx was significantly

higher in Nf1+/− neurons compared to wildtype (P=0.019 t-test, represented by the

asterisk), however, the sensitivity to nifedipine was not different (P=0.389). The mean is

represented by the dotted line; the median by the solid line; the upper and lower bars are

95% and 5% percentiles, respectively.
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Figure 4.
The sensitivities of ICa to AgTx and SNX-482 in Nf1+/− sensory neurons are not different

compared to wildtype neurons. Shown are box plots for the sensitivities of ICa to 200 nM

AgTx for wildtype (WT, n=12) and Nf1+/− (n=8) neurons; these values were not different

(P=0.19, t-test). For 200 nM SNX-482, the sensitivities were also not different (P=0.34, t-

test) between wildtype (n=10) and Nf1+/− (n=12) sensory neurons. The mean is represented

by the dotted line; the median by the solid line; the upper and lower bars are 95% and 5%

percentiles, respectively.
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Figure 5.
mRNA expression levels for the Ca2+ channel subtypes in the isolated but intact DRG from

wildtype and Nf1+/− mice. Panel A shows the relative expression levels of different Ca2+

channel subtypes for the wildtype and Nf1+/− DRG. Cav1.2 and 1.3 are L-type channels;

Cav2.1 is P/Q-type; Cav2.2 is N-type; and Cav2.3 is R-type. As described in the Methods,

copy numbers for these channel subtypes were normalized to the value of either HPRT or

Arbp (not shown) for each respective DRG. The values represent the means ± standard

deviations obtained from 4 mice of each genotype. Panel B shows a box plot summarizing

the mRNA expression levels for the different Ca2+ subtypes in Nf1+/− DRGs relative to the

those expression levels determined in the wildtype (WT) mice. Results are shown for both

reference genes, HPRT and Arbp. There were no significant differences in expression levels

between the genotypes for each Ca2+ channel subtype (P>0.05, REST analysis). The mean is

represented by the dotted line; the median by the solid line; the upper and lower bars of each

box are the 75% and 25% percentiles, respectively.
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Table 3

Cq values for Ca2+ channel subunits

WT Nf1+/−

mCav1.2 25.89 ± 0.55 25.43 ± 0.38

mCav1.3 29.46 ± 0.36 29.39 ± 0.12

mCav2.1 23.95 ± 0.49 23.78 ± 0.52

mCav2.2 24.59 ± 0.58 24.28 ± 0.44

mCav2.3 27.94 ± 0.53 27.52 ± 0.54

HPRT 21.42 ± 0.64 21.43 ± 0.75

Arbp 18.33 ± 0.82 18.37 ± 1.07

Mean ± SD, n=4 mice for each genotype
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