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Abstract

A multi-modal mass spectrometry imaging (MSI) and profiling approach has been applied to 

assess the partitioning of the anti-TB fluoroquinolone levofloxacin into pulmonary lesions. 

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and a 

commercial liquid microjunction surface sampling technology (LMJ-SSP), or flowprobe, have 

been used to both spatially profile and image drug distributions in lung tissue sections from TB-

infected rabbits following oral administration of a single human-equivalent dose.

Levofloxacin levels were highest at 6 h post-dose in normal lung, cellular granuloma, and necrotic 

caseum compartments. The drug accumulated in the cellular granuloma regions with lower 

amounts partitioning into central caseous compartments. Flowprobe imaging at 630 μm (limited 

by the probe tip diameter) enabled visualization of drug distribution into lesion compartments, 

including limited differentiation of relative drug abundance in cellular versus caseous regions of 

the lesions.

MALDI-MSI analysis at 75 μm provided more detailed drug distribution, which clearly 

accumulated in the cellular region immediately surrounding the central caseum core. Imaging and 

profiling data acquired by flowprobe and MALDI-MSI were validated by quantitative LC/MS/MS 

analysis of lung and granuloma homogenates taken from the same animals.

The results of the investigation show flowprobe imaging and sampling as a rapid and sensitive 

alternative to MALDI-MSI for profiling drug distributions into tissues when spatial resolution of 

data below the threshold of the probe diameter is not required.
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1. Introduction

Mass spectrometry imaging (MSI) has been comprehensively demonstrated to be a powerful 

analytical technique for the localization of compounds within biological tissue sections [1–

3]. It has several significant advantages to traditional whole-body autoradiography 

compound imaging, in that MSI does not require the synthesis of labeled compounds, which 

can prove costly and difficult to synthesize, and offers enhanced specificity as compounds 

and their metabolites are resolved through their specific mass [4]. However, WBA enables 

fully quantitative and (in most instances) higher spatial detail than MSI.

Of all the MS imaging modalities, MALDI has been the most applied technology for direct 

compound imaging in tissue [5–11]. Significant advantages include the sensitivity, potential 

high spatial resolutions (sub 10 μm [12]) and recently full on-tissue quantitation through the 

use of surface-spotted standards [13,14] or adjacently positioned spiked tissue homogenates 

to generate calibration curves [15]. However, the technology has a number of limitations, 

among which ion suppression occurring due to the inherent heterogeneity of the tissue 

during direct tissue analysis. The lack of a chromatographic separation step during the 

MALDI-MSI experiment compounds this problem as the presence of heavily abundant 

species such as lipids and salts can result in a marked reduction in the detected ion signal for 

the compound of interest. Another important consideration in the sample preparatory steps is 

the ability to extract the compound of interest from the tissue and into applied surface matrix 

crystals without losing spatial integrity due to analyte delocalization. Careful optimization of 

any `wet' matrix application technique must be performed as inhomogeneous extraction can 

lead to erroneous interpretation of ion images of drug distribution, particularly in 

heterogeneous tissue types such as tumors or lesions.

We have previously applied MALDI-MS imaging utilizing a QqQ mass spectrometer to 

image the distribution of Moxifloxacin (a synthetic broad-spectrum fluoroquinolone 

antibiotic) in rabbit lung biopsies from Tuberculosis (TB)-infected rabbits following oral 

dosing [8].

While MALDI has been the most commonly applied ionization method for drug and 

compound MS imaging in biological tissues, more recently, multiple alternative MS imaging 

modalities have emerged. Of particular interest are ambient electrospray ionization methods, 

which enable rapid, direct tissue imaging analysis outside of the vacuum chamber and 

without the requirement for time-consuming matrix application steps [16,17]. Of these 

techniques, Desorption Electrospray Ionization (DESI) is the most widely developed and has 

been applied to imaging of drugs, metabolites and lipids in a range of biological tissues [18–

22]. Recently there has been increased adoption of methods for spatial profiling of analytes 

in tissue using liquid-microjunction based surface analysis. The in situ microextractions 

from these liquid microjunction surface sampling probes (LMJSSP) closely integrate 

sampling and ionization via liquid pumped to and aspirated away from the tissue surface 

prior to electrospray. The commercial and continuous iterations of these probes consist of 

two coaxial tubes, the internal of which is connected to the nebulizer at the site of 

electrospray to the MS inlet. Using the venturi created by the spray, the aspirated flow rate 

can be modified to balance the flow of solution pumped down the outer capillary, enabling a 
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constant volume at the probe tip. When brought in proximity to the surface, this volume of 

extraction solvent forms a liquid microjunction between probe and sample, dissolving and 

entraining soluble analyte in the solution to be delivered to the ionization source. The 

technology has been applied to multiple surface analysis applications including thin layer 

chromatography plates, blood spots, microbial colonies and biological tissue sections [23–

27]. The distribution of sulforaphane and its glutathione and N-acetyl cysteine conjugates 

was determined in whole body sections from a Sulforaphane-dosed mouse by selected 

sampling over the entire section. Whilst not generating a whole-body chemical image, this 

`spatial profiling' method enabled rapid acquisition of localization information for both the 

drug and its metabolites without sample pre-treatment [23]. Recent enhancements include 

the incorporation of high-pressure liquid chromatography separation into the extraction 

workflow enabling isomeric drug metabolites to be resolved [28].

In this paper we present the comparative application of MALDI-MS imaging and a 

commercial LLMJSSP to profile and image the distribution of the fluoroquinolone antibiotic 

levofloxacin in lung biopsy sections from orally-dosed TB-infected rabbits. The ability of 

anti-TB drugs to penetrate into the pulmonary granuloma and central necrotic caseum is of 

critical importance as insufficient drug exposure to these areas can result in incomplete 

sterilization of resident bacteria and emergence of resistant mutants [29,30].

2. Method

2.1. Animal experiments and tissue collection

Experiments utilizing New Zealand White (NZW) rabbits were performed with the approval 

of the Institutional Animal Care and Use Committee (IACUC) of Rutgers University under 

assurance #A-3158-01 and protocol #13034. Female rabbits used in infection studies were 

housed in individual cages in a biosafety level 3 (BSL3) animal facility approved for the 

containment of Mycobacterium tuberculosis (MTB).

Aerosol infection of rabbits was performed using a BioAerosol Nebulizing Generator 

(BANG) nebulizer delivering 18 L/min of filtered air and 6.4 L/min of aerosol (2.5 × 106 

CFU/L in phosphate-buffered saline) to the CH Technologies inhalation system (Westwood, 

NJ). The infection was allowed to develop for 16–21 weeks prior to drug administration, by 

which time numerous (>50) granulomas with diverse pathology (cellular, necrotic, caseating 

and fibrous) could be harvested from the lungs.

Rabbits were dosed by oral gavage with levofloxacin (Sigma, St Louis, MO) at a final 

concentration of 75 mg/kg, the human-equivalent dose. The animals were randomly 

assigned to necropsy at 2 h, 6 h or 24 h after drug administration. For MS imaging 

experiments, small pieces of lung tissue containing a minimum of one well-developed 

necrotic lesion were excised and immediately flash frozen in liquid nitrogen vapor. Samples 

for LC-MS/MS drug quantitation were removed and prepared as previously described [8].

All MTB infected rabbit tissues were processed in a certified BSL3 facility until the viable 

micro-organisms had been inactivated. Sterilization of samples for imaging studies was 

performed by γ-irradiation. Rabbit lung biopsies were arranged in a single vertical layer in 
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dry ice and exposed to γ-irradiation in a 60Co irradiator using the nearest position and all 

three rods until 3 MRad was delivered. The procedure was validated internally to 

demonstrate that all MTB bacilli are killed upon delivery of such dose of γ-rays.

2.2. Tissue sectioning and matrix application

Twelve micrometer thick tissue sections were prepared using a Leica CM1850 cryostat 

(Buffalo Grove, IL) and mounted onto stainless steel slides (for MALDI-MSI analysis) or 

frosted glass microscope slides (for flowprobe imaging, profiling and histology). After 

sectioning, tissue sections were immediately transferred to a −80 C freezer for storage.

Prior to MALDI-MSI analysis, tissue sections were removed from the −80 °C freezer and 

allowed to reach room temperature for 15 min. Three milliliter of 50% methanol containing 

2 pmol/μL levofloxacin-d3 (C/D/N Isotopes, Quebec, Canada) was applied to the surface by 

airspray deposition at 40 psi, followed by 25 mg/mL DHB (50% methanol, 0.1% TFA). The 

airbrush (Paasche Model VL, Chicago, IL) was positioned at a distance of 30 cm from the 

tissue and 20 passes over the tissue were performed with the tissue being allowed to fully 

dry between coatings. This approach was chosen as applying the internal standard 

independently of the matrix application has been shown to produce a more homogeneous 

signal for normalization purposes [31]

2.3. MALDI-MSI analysis

Optimization of MALDI Orbitrap XL instrument parameters was performed by spiking 1 μl 

of a 10 pmol/μL levofloxacin standard (in 50% methanol) onto the surface of 12 μm thick 

control rat lung sections. DHB (25 mg/mL in 50% methanol) was applied by airspray as 

described in the previous paragraph. Laser energy, number of laser shots, and number of 

microscans were selected to maximize signal to noise for the levofloxacin m/z 362.150 peak 

and the deuterated levofloxacin standard at m/z 365.168.

MALDI-MSI analysis was performed using a MALDI LTQ Orbitrap XL mass spectrometer 

(Thermo Fisher Scientific, Bremen, Germany) with a resolution of 60,000 (at m/z 400, full 

width half maximum (FWHM)). The resolution was sufficient to resolve the desired 

levofloxacin and levofloxacin-d3 peaks from background without the requirement for 

MS/MS and subsequent loss of signal.

Spectra were acquired in the m/z 100–650 range, using a laser energy of 7.5 μJ and 35 laser 

shots were fired at each position (total of 1 microscan per position). The laser step size was 

set at 75 μm, at which small necrotic areas within lesions could easily be resolved and no 

overlapping of the laser spot on adjacent acquisitions was observed. Total image acquisition 

times ranged between 9 (raster area 9.6 × 9.9 mm) and 19 (raster area 16 12 mm) h.

Data visualization was performed using Thermo ImageQuest software. Normalized ion 

images of levolfloxacin were generated by dividing levofloxacin signal (m/z 362.149 

±0.003) by levofloxacin-d3 signal (m/z 365.168 ±0.003). Extracted ion images were 

interpolated using the linear interpolate function.
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2.4. Flowprobe imaging analysis

The continuous in situ microextraction and electrospray ionization flowprobe source 

(Prosolia, Indianapolis) was mounted onto an exactive orbitrap mass spectrometer (Thermo 

Fisher Scientific, Waltham, MA) for ultrahigh resolution mass analysis. The flowprobe is 

based on liquid microjunction surface sampling technology, where an optimized extraction 

solvent is pumped to the probe tip which is positioned above the sample of interest while the 

inner coaxial electrospray capillary draws solvent away based on the venture-assisted 

electrospray at the mass spectrometer inlet (Fig. 1). An acidified 90:10 methanol/water 

mixture was pre-optimized for extraction.

Single spot, scanned profile and array, analyses were arranged using the graphical user 

interface of the NMotion software set up in tandem with Xcalibur to relay contact closure 

signals for automated data acquisition. The probe was set to extract from the surfaces for 10 

s with the subsequent 20 s collected into the data file as an integrated wash step. Spectra 

were acquired from 100–1000 Da in positive ion mode. Imaging data was converted into the 

analyze format for visualization with BioMAP3x, using Firefly 2.2 for Thermo with 0.03 

m/z units per mass bin, and 630 μm separating rows and columns: a no overlap/no gap 

surface analysis. Due to the non-destructive nature of the analysis, the same sections were 

stained with Hematoxylin and Eosin per standard clinical protocol.

2.5. Drug quantitation by LC-MS/MS

Naïve matrix for calibration curves was sourced from in-house MTB-infected rabbit tissues 

(normal lung or dissected granulomas) and gamma irradiated for handling outside of a BSL3 

environment. Tissue samples were combined 1:9 with PBS buffer to form a homogenate i.e. 

100 mg tissue: 900 μL PBS buffer and pulverized at a rate of 1500 RPM for 5 min using a 

SPEX Sample Prep Geno/Grinder 2010 (Metuchen, NJ).

Levofloxacin tissue levels were quantified by LC/MS/MS analysis following protein 

precipitation. Fifty microliter of homogenate was added to 450 μL of acetonitrile/methanol 

[1:1] containing internal standard (500 ng/mL Diclofenac) and centrifuged at 4000 rpm for 5 

min at room temperature. Standards, quality control samples and blanks in the matrix of 

interest were used.

LC/MS/MS analysis was performed on an AB Sciex API4000 QqQ MS (Ontario, Canada) 

coupled to an Agilent 1260 Infinity HPLC system. Gradient elution conditions were used on 

a Hypersil Gold C18 2.1 × 50 mm 3 μm column (Thermo). The mobile phase A was 0.1% 

formic acid and the mobile phase B was 0.1% formic acid in methanol. A 2 μl injection 

volume was loaded onto the column at 600 μL/min.

The QTRAP 4000 was operated in MRM mode with a 100 ms dwell time and quantitation 

of drug levels in tissue was conducted using the transition m/z 362.0 → 318.0 for 

levofloxacin. Diclofenac (500 ng/mL) was used as internal standard and transition m/z 296.0 

→ 215.0 was monitored. Mass spectrometer source conditions were optimized for the 

compound. Analyst software version 1.6.2 was used to perform data processing.
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3. Results and discussion

3.1. Aerosol infection of rabbits

Aerosol infection of the rabbits, followed by disease progression for 16–21 weeks, produced 

numerous well-developed granulomas containing cellular (macrophage- and lymphocyte-

rich) and heavily necrotic (caseous) central regions. Detailed information regarding 

pulmonary TB lesion development and its role in TB drug discovery and development is 

discussed in detail by Dartois [29]. In summary, granulomas arise from the host immune 

response to inhaled MTB. They are initially cellular in morphology and comprised of 

lymphocytes, macrophages, foamy macrophages and neutrophils. At this stage they are well 

vascularized, facilitating drug distribution into the lesion. As the granuloma matures, it 

begins to necrotize from the centre outwards, and vascularization is gradually destroyed, 

although the fibrotic rim and cellular layer remain densely vascularized. The rabbit model of 

TB disease has been used in drug distribution studies because it recapitulates the diverse 

disease pathology seen in human TB, including advanced lesion morphology with a cellular 

region surrounding a necrotic or caseous center [32].

3.2. MALDI-MSI analysis

MALDI mass spectra taken from levofloxacin standard, 2 h post-dose biopsy tissue and 

undosed control are shown in Fig. 2. Positive mode MALDI-MS analysis of levofloxacin 

produces a primary [M + H]+ ion at m/z 362.150 (Fig. 2A). This ion was clearly observed in 

the tissue section along with the externally applied standard levofloxacin-d3 at m/z 365.168 

(Fig. 2B). At the selected mass resolving power of 60,000 at m/z 400 (FWHH), no 

interfering or overlapping background peaks were observed in the biopsy section taken from 

the undosed animal.

Differential distributions of levofloxacin were observed in biopsy sections at all time points 

analyzed (Fig. 3). The summed intensity of normalized levofloxacin signal over the entire 

tissue followed the 6h > 2h > 24 h order. At the earliest time point analyzed (2 h post-dose), 

the drug primarily accumulated in the granuloma area immediately surrounding the necrotic 

caseum. Fig. 4 shows an enlarged region of the MALDI-MS image with corresponding 

optically scanned tissue prior to matrix application and adjacent H&E stained histological 

reference. Penetration of levofloxacin into the caseum is occurring, but at lower levels than 

into the surrounding cellular area. Drug accumulation into granulomas was highest at 6 h 

and the drug appeared to be more homogeneously distributed throughout the cellular regions 

where it was accumulating in comparison to uninvolved lung tissue. Levofloxacin signal 

could still be observed at the 24 h time point. In agreement with the previous time points, it 

was observed at higher levels in the cellular lesion surrounding the caseum. The distribution 

data confirm our previous findings for moxifloxacin (another fluoroquinolone anti-

tuberculosis compound) where we also observed accumulation of the drug within the 

cellular granuloma regions [8].

Cholesterol was evaluated as a marker of necrotic granuloma tissue. Neutral lipids including 

cholesterol, cholesterol esters (CE) and triglyceride (TAG) have been shown to be present 

within caseum and foamy (lipid-laden) macrophages transitioning to becoming necrotic 
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[33]. The dehydrated cholesterol ion ([M + H− H2O]+) at m/z 369.354 strongly co-localizes 

with caseum and the immediately surrounding cellular lesion containing abundant foamy 

macrophages (Fig. 5). Fig. 5A–C shows the co-registered ion images for levofloxacin and 

cholesterol. The differential distributions clearly show levofloxacin accumulation in the 

cellular area surrounding the cholesterol-rich caseum. This ability to use cholesterol as a 

marker for necrotic and pre-necrotic granuloma regions – as an alternative to traditional 

H&E histology during a full-scan imaging experiment – enables rapid co-localization of 

drug and caseous foci.

3.3. Spatial profiling and imaging by flowprobe-MS

A static liquid extraction surface sampling approach has previously been applied to spatially 

profile drug distributions in whole body sections and the data was found to correlate well 

with MALDI-MSI, autoradiography and LC/MS/MS data [34]. In this experiment we 

applied a continuous in situ microextraction approach using the commercial flowprobe to 

provide relative quantitation of levofloxacin within cellular granuloma, caseum and 

uninvolved lung tissue on biopsy sections adjacent to those used for MALDI-MSI. After 

careful optimization with levofloxacin-spiked tissues, an extraction solvent system of 90:10 

methanol/water containing 0.1% FA and a 10 s extraction with 20 μL/min solvent flow rate 

was selected.

Three serial spots were extracted from different locations within cellular, caseum or 

uninvolved lung for each biopsy section. The sampling locations are shown in Fig. 6 in 

tandem with images of the stained tissue slices following flowprobe analysis. It is notable 

that flowprobe analysis does not affect further processing within the analytical workflow of 

this sample. Areas of normal, cellular and caseum tissue were initially identified by careful 

examination of the optical image. However, small tissue compartments (such as small 

`islands' of caseum) proved difficult to resolve by use of optical scans alone, and H&E 

stained serial sections were required to gain a greater understanding of pathological changes 

occurring in the advanced lesion. Careful positioning of the probe was necessary to avoid 

potential crossover of signal from the cellular border into caseum and vice versa.

A chart of the resulting data is displayed in Fig. 7. In agreement with the MALDI-MSI data, 

the drug signals were detected in the order 6h > 2h > 24h. The levofloxacin signal was 

approximately twice as high at 6 h than at 2 h in both granuloma and caseum tissue. In 

normal lung tissue a much smaller increase in levofloxacin signals occurred between the two 

time-points. Significantly lower signal was detected at 24 h and no significant difference in 

drug partitioning was observed between lesion compartments at that time. The data was in 

contrast to the MALDI-MS image of an adjacent tissue section, in which higher drug signals 

were detected in the cellular lesion than caseum and normal lung. This may be due to 

placement of the probe such that granuloma and caseum were both sampled within the 600 

μm sampling spot. The upper and lower sampling positions (indicated by the pink circles in 

Fig. 6F) are from small areas of caseum surrounded by cellular lesion. It is possible that 

some drug was extracted from the cellular border during sampling of the caseous spots. As 

shown in the MALDI imaging datasets, levofloxacin has a heterogeneous drug distribution 

within the tissues (even within the same cellular granuloma). Due to this heterogeneity, three 
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samplings per tissue compartment may not have been sufficient to provide accurate 

localization/quantitation at the low drug concentrations present at 24 h.

The same flowprobe extraction parameters were used to generate ion maps by surface 

sampling (sampling over the entire tissue section at 630 μm spacings). An automated 

experiment was set up to collect data from a 20 × 20 spot array (2 h post-dose tissue) or 20 × 

27 spot array (24 h post-dose tissue), in which 10 s extractions were performed at each 

sampling position. This generated 400 and 540 files, respectively, for Firefly conversion to 

Analyze format with 0.03 m/z units per mass bin, and 650 μm separating rows and columns. 

Acquisition of the imaging datasets took 1.5–2.5 h depending upon the total number of 

extractions required.

Extracted ion images of levofloxacin (m/z 162.10–162.20) created in BioMAP (Novartis, 

Switzerland) are shown in Fig. 8. In the 2 h biopsy the drug was observed at higher levels in 

cellular granuloma areas than either caseum or normal lung. Given the 630 μm pixel size, we 

could not establish precise co-localization of the highest drug signal with the cellular rim 

directly surrounding the caseum, as was observed in the MALDI-MS image from the 2 h 

post-dose sample. Levofloxacin signals were low in the 24 h tissue. However, the 

distribution appeared to correlate well with the MALDI-MS image with higher levels 

observed in the cellular granuloma than in normal lung and little to no signal observed in the 

caseum. By sampling an array over the entire tissue (versus a small number of discrete 

extractions in specific localizations) there is less potential of acquiring a misrepresentative 

dataset from highly-localized `hot' or `cold' spots occurring within the tissue.

Whilst lacking the spatial resolution achievable by MALDI-MSI (up to 50 μm on the 

MALDI Orbitrap XL), flowprobe-MS imaging provided a rapid method for evaluating drug 

distribution in dosed tissue sections without the need for advanced sample preparation. It has 

potential for use as an alternative to MALDI for profiling or imaging drugs in tissue which 

may not ionize well by MALDI or may suffer severe in-source fragmentation as a result of 

UV laser excitation. Due to the ability of ESI to generate multiply charged ions, future 

application to the direct-tissue imaging of larger protein-based biopharmaceuticals is also a 

possibility.

The flowprobe analysis did not involve normalization of extracted drug signal to a reference 

standard. Tomlinson et al. recently evaluated potential ion suppression effects in static 

liquid-surface extraction by the incorporation of an internal standard into the solvent system 

used to extract a compound from lung and non-lung tissue sections [35]. They recorded 

reproducible extractions from both tissue types with no difference in ionization recorded 

between them. However, due to the vast heterogeneity observed in TB-infected lung 

biopsies, a suitable normalization method would minimize ion-suppression effects resulting 

from the different tissue compositions and enable more accurate quantitation of drug signal.

Further experiments will focus on the development and validation of a normalization 

method to compensate for ion suppression and surface extraction effects either by use of an 

internal standard (spiked into the extraction solvent) or externally applied standard (e.g. 

sprayed onto the tissue surface).
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3.4. Levofloxacin quantitation by LC/MS/MS

The imaging and surface sampling data was validated by quantitative analysis of 

homogenates of dissected granulomas and normal lung tissue taken from the same animals 

(Fig. 9). Between six and eighteen granulomas and healthy lung samples from each animal 

were used. As entire granulomas (consisting of both cellular and necrotic compartments) 

were homogenized, sub-lesional distribution could not be quantified.

Peak levels of levofloxacin in lung and granuloma were recorded at 6 h post-dose and tissue 

concentrations followed the same 6h > 2h > 24 h order as observed in the MALDI-MSI and 

flowprobe-MS spatial profiling experiments. Mean levofloxacin levels were higher in 

lesions than normal lung at all three time points investigated.

Whilst the LC/MS/MS data provides full quantitation of levofloxacin in lung and lesion, the 

method applied in isolation is limited by the lack of sub-lesional resolution. MTB is known 

to be present in high numbers within the necrotic caseum [36] and determination of drug 

partitioning into this compartment is vital for both optimizing existing and developing novel 

drug regimens. If sufficiently large caseous lesions are present within the animal lungs 

(typically >0.8 cm) the caseum can be manually dissected out and drug levels quantified. 

However, in this study such lesions were not present in significant numbers. Hence, the 

presented quantitative LC/MS/MS data should be considered corrobative to the relatively 

less quantitative, but much more spatially informative MALDI-MSI, and flowprobe-MS 

profiling and imaging results.

4. Conclusion

A multi-modal MS approach has been successfully applied to image the distribution of 

levofloxacin in TB-infected rabbit lung sections. MALDI-MSI, flowprobe profiling, and 

imaging have been utilized to generate extracted ion images detailing localizations of the 

drug within normal lung, cellular granuloma and caseum. The observed tissue distribution of 

levofloxacin was consistent through all the applied analysis modalities. Peak levels of 

levofloxacin in lung and lesions were recorded at 6 h post-dose and the drug was observed 

to accumulate in cellular granuloma regions in comparison to normal lung and necrotic 

caseum. Imaging and profiling data was validated by quantitative LC/MS/MS of lung and 

granuloma homogenates.

MALDI-MSI produced the most spatially-detailed images and, when operated in full scan 

MS mode, allowed for co-localization of drug signals with endogenous markers of diseased 

tissue morphology. It remains the most suitable approach for finely localizing compounds in 

tissues with highly-heterogeneous morphology. However, acquisition on the MALDI 

Orbitrap is a relatively slow process with full biopsy sections requiring upwards of 15 h 

analysis time when imaged at <100 μm spatial resolution. Reducing the laser raster spacing 

to match that achievable by the flowprobe (600 μm) would vastly decrease the acquisition 

time, enabling images to be acquired in less than 1 h. However, only material within the 

dimensions of the laser spot would be ablated (approximately 50 μm diameter).
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Flowprobe imaging or profiling coupled to a high mass resolving Orbitrap Q Exactive was 

shown to be a rapid and sensitive method for visualizing drug-distributions in tissue. 

Although spatial resolution capabilities are limited in comparison to established MS-

imaging based approaches (such as MALDI, SIMS or DESI), the selected spatial resolution 

was capable of producing pharmacologically-relevant images of levofloxacin within lung 

and lesion compartments. The speed of analysis and lack of advanced sample processing 

requirements (outside of preparing tissue cryosections) make the technique a good choice 

for high-throughput compound imaging or profiling applications when detailed localization 

information is not required or when the objective is to rank-order compounds from the same 

class based on their relative distribution into specific tissues. Additionally, as the flowprobe 

utilizes ESI, it may enable imaging of compound classes that can be difficult or impossible 

to ionize by MALDI. Due to the analysis being conducted at atmospheric pressure, there is 

also potential to analyze compounds and tissues that would be prove unstable in a typical 

high-vacuum MALDI approach. Future work will focus on incorporating internal standards 

and normalization methodologies to enhance the quantitative capabilities of the technique.
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Fig. 1. 
Schematic of the flowprobe device. Gas and voltage are applied at the sprayer end of the 

system to generate both an electrospray and venturi-induced pressure drop resulting in 

aspiration of solvent at a rate matched to that of the extraction solvent pumped into the 

probe.
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Fig. 2. 
MALDI mass spectra averaged from a section taken from a 2 h post dose tissue (A) and 

undosed control (B). The [M + H]+ levofloxain ion at m/z 362.150 is clearly detected in the 

dosed tissue and absent in the control. Levofloxacin-d3 (applied to the tissue as internal 

standard) is observed in both spectra at m/z 365.169. The structure of levofloxacin is shown 

in the inset figure.
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Fig. 3. 
MALDI-MS images showing levofloxacin distributions within dosed tissues at 2, 6 and 24 h 

post-dose (A–C). The same tissue sections prior to matrix application are shown in D–F, 

areas of cellular lesion are outlined in white and central caseous regions are highlighted in 

red. Adjacent H&E-stained reference sections are shown in G–I, in which cellular 

granuloma tissue stains red/purple and caseum light red/pink. The highest levofloxacin 

signals are observed in the 6 h tissue. The drug is accumulating in the cellular region of the 

granuloma in the area immediately surrounding the central caseum. Scale bar = 5 mm. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 4. 
Close up of levofloxacin distribution at 2 h post-dose. The granuloma contains a large area 

of central caseum around which the drug is observed to accumulate. The highest signals 

correlate to the thin layer of cellular tissue (marked by black arrowheads in B and C) which 

appears darker in the optical scanned image (B) and dense pink in the adjacent H&E stained 

reference (C). Scale bar = 1 mm. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 5. 
Co-localization of levofloxacin with cholesterol as a marker of necrotic tissue. Intense 

cholesterol signals ([M + H− · H2O]+) were recorded in the necrotic, caseous granuloma 

compartments (green signal in A–C). Levofloxacin signal is shown in red and overlapping 

regions appear yellow. Optical scans of the same tissue sections prior to matrix application 

are shown in D–F; areas of cellular lesion are outlined in white and central caseous regions 

are highlighted in red. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.)
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Fig. 6. 
Tissue areas selected for surface sampling by flowprobe. Three discrete analyses were 

performed in normal lung, granuloma, and caseum on each tissue section resulting in a total 

of 9 extractions per tissue. Sampling positions are displayed in D–F. Normal lung: light blue 

in D, dark blue in E and green in F; cellular granuloma: purple in D, yellow in E and red in 

F; caseum: green in D, orange in E and pink in F. Scale bar = 5 mm.(For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 7. 
Mean levofloxacin ion counts from flowprobe analysis of rabbit lung tissue sections. The 

highest levels of levofloxacin were observed at 6 h post-dose. The drug was observed to 

accumulate within cellular granuloma at the 2 and 6 h time-points with lower levels 

partitioning into the caseum. n = 3.
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Fig. 8. 
Flowprobe imaging of tissues obtained at 2 h (A) and 24 h (B) post-dose from infected 

rabbits dosed with levofloxacin. Interpolated images, created using the interpolation 

function within BioMap software, are shown in A and B. Raw images are shown in C and D. 

H&E-stained tissues for 2 h (E) and 24 h (F) are provided for reference. The sampling area 

used to construct the flowprobe images shown in A and C is outlined in green. The 

arrowheads point to the caseous granuloma regions. Scale bar = 5 mm. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 9. 
Graph showing the concentrations of levofloxacin within normal lung and homogenized 

granuloma (unresolved for caseum and cellular material) as determined by LC/MS/MS. In 

agreement with the flowprobe data, the highest levels of levofloxacin were observed at 6 h 

post-dose and the drug was observed to accumulate within cellular granuloma at the 2 and 6 

h time-points with lower levels partitioning into the caseum. n = 6–18.
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