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Abstract

BACKGROUND—Hypokalemia and sympathetic activation are commonly associated with

electrical storm (ES) in normal and diseased hearts. The mechanisms remain unclear.

OBJECTIVE—To test the hypothesis that late phase 3 early afterdepolarization (EAD) induced

by IKATP activation underlies the mechanisms of ES during isoproterenol infusion and

hypokalemia.

METHODS—Intracellular calcium (Cai) and membrane voltage were optically mapped in 32

Langendorff-perfused normal rabbit hearts.

RESULTS—Repeated episodes of electrically-induced VF at baseline did not result in

spontaneous VF (SVF). During isoproterenol infusion, SVF occurred in 1 of 15 hearts (7%)

studied in normal extracellular potassium ([K+]o) (4.5 mmol/L), 3 of 8 hearts (38%) in 2.0 mmol/L

[K+]o, 9 of 10 hearts (90%) in 1.5 mmol/L [K+]o, and 7 of 7 hearts (100%) in 1.0 mmol/L [K+]o

(P<0.001). Optical mapping showed isoproterenol and hypokalemia enhanced Cai transient

duration (CaiTD) and heterogeneously shortened action potential duration (APD) after

defibrillation, leading to late phase 3 EAD and SVF. IKATP blocker (glibenclamide, 5 μmol/L)

reversed the post-defibrillation APD shortening and suppressed recurrent SVF in all hearts studied

despite no evidence of ischemia. Nifedipine reliably prevented recurrent VF when given before,

but not after, the development of VF. IKr blocker (E-4031) and small conductance calcium

activated potassium channel blocker (apamin) failed to prevent recurrent SVF.
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CONCLUSION—Beta-adrenergic stimulation and concomitant hypokalemia could cause non-

ischemic activation of IKATP, heterogeneous APD shortening and prolongation of CaiTD to

provoke late phase 3 EAD, triggered activity and recurrent SVF. IKATP inhibition may be useful in

managing ES during resistant hypokalemia.
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Introduction

Electrical storm (ES) describes a clinical condition characterized by multiple spontaneous

ventricular fibrillation (SVF) episodes that necessitate repeated defibrillation. While ES

usually occurs in patients with serious organic heart diseases, it is not rare in patients with

structurally normal hearts and genetic arrhythmias such as Brugada and early repolarization

syndromes. It is known that hypokalemia is a common trigger of ES.1, 2 Bansch et al3

reported that the recurrence risk of ES was highest in cardiomyopathic patients with

hypokalemia and associated conditions such as diarrhea and vomiting. Hypokalemia is also

associated with ES in structurally normal hearts and correction of hypokalemia can prevent

the recurrent ventricular fibrillation (VF).4, 5 However, because rapid and safe correction of

serum potassium is often difficult, additional drug therapy is often necessary to manage the

ES. Sympathetic blockade, while not always effective, is commonly used in the management

of ES.6 This clinical practice is consistent with the observation that sympathetic nerve

activity is a direct and immediate trigger of ventricular tachycardia (VT) and ventricular

fibrillation (VF).6 Hypokalemia alone does not enhance VF inducibility in normal dogs.7

However, sympathetic stimulation with isoproterenol and concomitant hypokalemia can

induce VF in a rat model.8 Massive reactive sympathetic activation9 and the frequent use of

epinephrine during fibrillation-defibrillation episodes10 may also induce hypokalemia in

patients with ES, because beta adrenergic stimulation itself can elicit hypokalemia.11 We

have shown that heart failure in rabbits upregulate a small conductance calcium activated

potassium current (IKAS) and promote late phase 3 early afterdepolarization (EAD) leading

to ES.12, 13 However, as far as we know, there are no animal models of ES in ventricles

without chronic structural remodeling.

To test the importance of hypokalemia and sympathetic activation in the development of ES,

we aim to develop a model of ES in normal rabbit ventricles in the presence of hypokalemia

during isoproterenol infusion. This animal model is then used to test the hypothesis that late

phase 3 EAD is important in the recurrence of SVF after defibrillation, similar to that occurs

after electrical shocks in normal canine atria.14 We then tested a third hypothesis that

glibenclamide, an IKATP blocker, is effective in preventing ES in this model.

Methods

The details of experimental methods and protocol are available at Online Data Supplement.

The isolated rabbit hearts (n=32) were perfused to maintain a perfusion pressure above 70
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mmHg throughout the study. Intracellular calcium (Cai) and membrane voltage (Vm) were

simultaneously mapped using optical mapping techniques as described previously.12

VF was electrically-induced and allowed to persist for 3 min under maintained coronary

perfusion, followed by defibrillation. The set of 3-min VF and 1-min observational period

was repeated up to 5 times unless SVF occurred. VF induction and defibrillation were

repeated in control and during isoproterenol infusion (0.3 μmol/L) to determine the role of

beta-adrenergic stimulation in the action potential duration (APD) shortening after VF

episodes (n=5). Thereafter, we tested various levels of [K+]o (4.5, 2.0, 1.5, and 1.0 mmol/L)

during beta-adrenergic stimulation (n=17). In an additional 10 hearts, pharmacological

interventions were applied to identify the mechanism of the post-defibrillation APD

shortening during beta-adrenergic stimulation at the normal [K+]o level. APD was measured

at 50% (APD50) and 80% (APD80) repolarization. Continuous variables were expressed as

mean ± SEM. P≤0.05 was considered statistically significant.

Results

A Model of ES in Normal Ventricles

We successfully developed a model of ES in these normal ventricles. We defined ES as

multiple (≥3) consecutive episodes of SVF recurrences after initial successful defibrillation.

In control, no SVF was observed with 5 attempts of the induced VF-defibrillation episodes.

During isoproterenol infusion, SVF occurred in 1 of 15 hearts (7%) studied in normal [K+]o

(4.5 mmol/L), 3 of 8 hearts (38%) in 2.0 mmol/L [K+]o, 9 of 10 hearts (90%) in 1.5 mmol/L

[K+]o, and 7 of 7 hearts (100%) in 1.0 mmol/L [K+]o (P<0.001). The SVF episodes evolved

into ES in 0 of 15 hearts (0%), 1 of 8 hearts (13%), 8 of 10 hearts (80%), and 6 of 7 hearts

(86%) studied in the [K+]o of 4.5 mmol/L, 2.0 mmol/L, 1.5 mmol/L, and 1.0 mmol/L,

respectively (P<0.001). The ES developed after the 2.7 ± 1.1th episodes of electrically-

induced VF. In the majority of ES (13/15 hearts, 87%), VTs (cycle length: 345 ± 10 ms)

were observed between the SVF episodes. Figure 1A shows a typical example of ES

observed under isoproterenol infusion in 1.0 mmol/L [K+]o. First, a pacing-induced VF was

successfully defibrillated. VT followed the successful defibrillation, and then SVF occurred.

Despite multiple attempts of defibrillation, all subsequent shocks seemed to fail to

defibrillate the SVF on pseudo-ECG. However, optical recordings revealed that each shock

actually terminated the SVF successfully, followed by immediate recurrences of SVF. A

large difference between APD and Cai transient duration (CaiTD) was noted during the ES.

The initiation of the SVF was associated with a short-coupled ventricular ectopy (Figure

1B). The coupling interval of the ectopic beat that initiated SVF was significantly shorter

than that of the ectopic beat not initiating SVF (150 ± 5 ms versus 239 ± 6 ms, P<0.001).

There was no apparent QRS or T wave alternans during VT before transition to SVF.

Repeated defibrillation (5 ± 2 successful defibrillation, shock intensity: 177 ± 6 V) alone

terminated ES in only 2 hearts (14%).

Post-defibrillation VT (Online Figure I) was observed only during isoproterenol infusion

and more frequently with a lower [K+]o (VT incidence: 17%, 33%, 60%, and 71% at [K+]o

of 4.5, 2.0, 1.5, and 1.0 mmol/L, respectively). Spontaneous Cai elevations preceded the VT
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beats, and the VT was effectively suppressed by 10 μmol/L nifedipine but not by ventricular

overdrive pacing.

Post-Defibrillation Action Potential Triangulation during Beta-Adrenergic Stimulation

In control, APD was modestly shortened after defibrillation of 3-min electrically-induced

VF, which is likely due to dependence of APD on the entire activation history (i.e. short-

term memory effect). However, iteration of VF episodes did not further shorten the post-

defibrillation APD, probably because the memory of the APD reached a steady state. This is

consistent with our previous results which showed that no marked APD shortening occurred

after defibrillation in non-failing hearts.12, 13 In contrast, the post-defibrillation APD was

progressively shortened as VF episodes were repeated during isoproterenol infusion (0.3

μmol/L) even using normal hearts (Figure 2A). The magnitude of the post-defibrillation

APD shortening at 50% and 80% repolarization were similar in control, while repeated VF

episodes during isoproterenol infusion accelerated early repolarization of the post-

defibrillation beats, resulting in more shortening of APD50 than APD80 and triangulation of

the action potential (AP) in some epicardial sites (Figure 2B and 2C).

Non-Ischemic Activation of ATP-Sensitive Potassium Current

Since the AP triangulation is often observed in an ischemic condition which causes IKATP

activation, we tested the effect of an IKATP blocker, glibenclamide (5 μmol/L, n=6). The

dominant frequency of pseudo-ECG during VF decreased after administration of

glibenclamide (13.7 ± 2.1 Hz to 8.3 ± 0.9 Hz, P<0.005). After defibrillation, glibenclamide

prolonged the APD and abolished the post-defibrillation AP triangulation (Figure 3A),

suggesting activation of IKATP as the mechanism of the APD shortening. However, under

maintained coronary perfusion, a significant myocardial ischemia could not be detected after

multiple VF episodes by measuring lactate concentrations in coronary sinus effluent (pre-

VF: 0.36 ± 0.16 mmol/L versus post-VF: 0.36 ± 0.15 mmol/L, P=0.947). The reversal of the

post-defibrillation APD shortening was unlikely to result from a non-specific effect of

glibenclamide on other ionic currents such as cystic fibrosis transmembrane regulator

chloride current (ICFTR) which is known to be activated by isoproterenol and blocked by a

higher dose of glibenclamide, since a potent inhibitor of ICFTR, CFTRinh-172, (10 μmol/L,

n=5)15 did not affect the post-defibrillation APD (Figure 3B). Also, IKAS blocker, apamin

(100 nmol/L, n=5) did not prolong the post-defibrillation APD. Thus IKAS plays a role only

in failing hearts,12 but not in the post-defibrillation APD shortening during beta-adrenergic

stimulation.

Mechanisms of ES Induced by Hypokalemia and Isoproterenol Infusion

We analyzed simultaneous Vm and Cai optical recordings to identify how hypokalemia

promoted the occurrences of SVF and ES. Figure 4 shows the effects of repeated episodes of

induced-VF on post-defibrillation APD and CaiTD. In control (normal [K+]o, no

isoproterenol), multiple VF episodes homogeneously shortened APDs of post-defibrillation

beats. CaiTD was shortened by 10 to 20% corresponding to the APD shortening. As stated

above, APD50 was progressively shortened during isoproterenol infusion with the AP shape

being triangulated. In contrast, CaiTD50 was not altered, and the difference between
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CaiTD50 and APD50 (ΔCaiTD50–APD50) was increased in the area with the AP

triangulation. When [K+]o was reduced, pre-VF APD was prolonged. However, the APD

was shortened again after VF episodes in some sites, thereby enhancing the APD dispersion.

In addition, CaiTD was progressively prolonged after induced-VF episodes by reduced

[K+]o and isoproterenol, leading to a larger ΔCaiTD50–APD50. Of initial 5 hearts, SVF

occurred during isoproterenol infusion at a low [K+]o after the 2nd induced-VF in one heart,

and after the 5th induced-VF in 4 hearts. The increased ΔCaiTD50–APD50 and APD

dispersion were associated with the recurrent SVF.

Figure 5A shows an example of SVF after defibrillation. SVF occurred with a short-coupled

ventricular ectopy (filled circle) similar to that seen in ES of human patients.16 A focal

activation arising from the anterior surface of the left ventricle (site (a)) preceded the QRS

onset of the first SVF beat by 34 ms, indicating that the SVF originated from this site. The

AP triangulation was seen only around the site of origin with increased APD dispersion.

Notably, a high Vm gradient area secondary to the heterogeneous APD coincided with a

functional block line for the initial SVF beat, but not with the site of origin where

ΔCaiTD50–APD50 was increased. These findings suggest that Cai-dependent phase 3 EADs

may underlie the mechanism of the first SVF beat, but the increased APD heterogeneity and

conduction block facilitated the development of reentry and wavebreak that promoted the

development of SVF. In spite of a large Vm gradient, there was no evidence of phase 2

reentry. Furthermore, a spatial distribution of dominant frequency during this SVF episode

displayed a focal source pattern with the highest dominant frequency site near the site where

SVF started, indicating that repetitive focal activations as well as reentry both contributed to

the maintenance of the SVF in this case.

We acquired optical data during 59 episodes of SVF. Sixteen episodes of the SVF were

initiated by a focal activity arising from the mapped field. In 11 of 16 (69%) episodes, the

earliest site for the focal activation had the maximal or submaximal value of ΔCaiTD50–

APD50 (Figure 5B).

Pharmacological Interventions on ES

We sought a novel therapeutic target for controlling ES by testing the effect of

pharmacological interventions. Since IKATP activation is responsible for post-defibrillation

APD shortening during sympathetic stimulation, we examined the effect of 5 μmol/L

glibenclamide on ES (n=4). Of note, glibenclamide diminished ΔCaiTD50–APD50 (128 ± 15

ms to 53 ± 12 ms, P<0.05) and terminated all the ES episodes (Figure 6). In 7 hearts, we

transiently increased the coronary perfusion pressure to determine if a relative ischemia that

could not be detected by the lactate assay contributed to the ES. The increase in the

perfusion pressure by 59 ± 5 mmHg did not change the APD50 and never terminated the ES,

confirming that IKATP activation cannot be attributed to ischemia in this model.

Glibenclamide did not terminate VT except in one heart where VT stopped spontaneously

42 sec after termination of ES with glibenclamide (Figure 6). The remaining VT was

suppressed with a selective L-type Ca2+ channel blocker, nifedipine (10 μmol/L, Online

Figure I).
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Because Cai overload seems essential for the development of SVF, we also tested the effect

of nifedipine (10 μmol/L, n=8) on ES. When nifedipine was given before VF induction (pre-

treatment group, n=3), VT and SVF were prevented even under isoproterenol infusion at 1.0

mmol/L [K+]o. When pre-treated with nifedipine, APD50 was still shortened in some sites

after VF episodes (-57 ± 9% of the pre-VF values after 5th VF episode), but concomitant

shortening of CaiTD kept ΔCaiTD50–APD50 small (11 ± 4 ms, Figure 7A). In contrast,

responses to nifedipine varied when nifedipine was administered after ES developed (post-

treatment group, n=5). Nifedipine suppressed VT/SVF in one heart that had a long period of

VT prior to SVF recurrence (Figure 7B). The maximal ΔCaiTD50–APD50 was reduced as a

result of shortened CaiTD by nifedipine (124 ms to 32 ms). The other 4 hearts showed

immediate recurrences of SVF before nifedipine treatment (upper panel in Figure 7C).

Nifedipine was not effective in 2 of 4 hearts (ΔCaiTD50–APD50: 101 ± 5 ms to 95 ± 11 ms,

P=0.50). In the remaining 2 hearts, nifedipine inhibited post-defibrillation VT, which

prolonged the interval from defibrillation to SVF recurrence. In this case, repeated

defibrillation finally terminated the ES (lower panel in Figure 7C). The suppression of post-

defibrillation VT allowed Cai overload to be more alleviated during the slower escape

rhythm, which is the likely mechanism underlying termination of ES. Remarkably,

glibenclamide terminated the ES resistant to nifedipine treatment (n=2, Online Figure II).

APD shortening was a critical component for ES. Therefore, we tested the effect of IKr

blockade with E-4031 (1 μmol/L, n=4), because most of class I and III antiarrhythmic drugs

used in the clinical practice prolong APD mainly by blocking IKr. Contrary to our

expectation, E-4031 failed to prolong APD50 and to terminate the ES (Figure 8). E-4031 did

not change the maximal ΔCaiTD50–APD50. E-4031 also failed to suppress VT between SVF

episodes. However, rescue dosage of glibenclamide (5 μmol/L) abolished the SVF in all

hearts refractory to IKr blockade.

Discussion

Mechanisms of SVF in Normal Hearts with Hypokalemia and Beta-Adrenergic Stimulation

Because beta-adrenergic stimulation can by itself induce hypokalemia,11, 17 it is difficult to

test the influence of hypokalemia on isoproterenol proarrhythmia in vivo. Langendorff

perfusion allowed us to control the potassium levels in the perfusate. With this method, we

showed that isoproterenol infusion and concomitant hypokalemia could cause ES in normal

rabbit ventricles. During beta-adrenergic stimulation, prolonged VF episodes increased APD

dispersion after defibrillation and elicited short-coupled ectopic beats, both of which

contributed to SVF. Although the SVF arose from the site where APD was shortened, the

APD shortening alone did not cause the SVF. Hypokalemia enhances calcium entry into

cardiomyocytes during VF by suppressing sodium-potassium ATPase activity and

consequent reverse mode of sodium-calcium exchanger.18 The Cai overload resulted in

prolongation of CaiTD, which was necessary for the development of SVF. One may assume

that heterogeneous APD shortening cause phase 2 reentry,19 but there was no evidence of

phase 2 reentry in our model. Rather, APD dispersion was related to the formation of

unidirectional conduction block (Figure 5). Although a positive Vm slope representing the

late phase 3 EAD did not always precede the upstroke of triggered activities, the maximal
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ΔCaiTD50–APD50 predicted the origin for the first SVF beat better than the minimal APD50

(Figure 5B). This strongly supports late phase 3 EAD as the underlying mechanism in which

persistence of elevated Cai with accelerated repolarization promotes inward sodium-calcium

exchanger currents. In our experimental setting, optical signal from one pixel reflects

activities of hundreds of cardiomyocytes, which may obscure the deflection of late phase 3

EAD in some cases by an averaging effect.

Role of Beta-Adrenergic Stimulation in IKATP Activation

With beta-adrenergic stimulation, APD50 was more shortened than APD80 after VF

episodes, resulting in AP triangulation. The AP triangulation disappeared with 5 μmol/L

glibenclamide, which mainly blocks IKATP at this concentration. Glibenclamide also blocks

ICFTR and IKr at higher concentrations.20 Because we observed no effects of ICFTR or IKr

blockade on the shortened APD, we excluded major contribution of these ionic currents to

the effects of glibenclamide. Therefore, we conclude that IKATP activation is responsible for

the AP triangulation. A high metabolic demand with rapid activation during VF under beta-

adrenergic stimulation might reduce intracellular ATP and activate the IKATP in spite of a

negligible lactate production. KATP channel was thought to open only when exposed to

severe metabolic stress such as ischemia, since a relatively low level of intracellular ATP

can inhibit the activation of IKATP in cell-free, inside-out patch-clamp studies.21 However,

ATP sensitivity of KATP channel is lower in intact cells than that of excised inside-out

patches because of the presence of intracellular cofactors including ADP, G-protein, H+,

extracellular adenosine,22 and membrane phospholipid.23 Also, beta-adrenergic-induced

cAMP-dependent phosphorylation of channel proteins activates KATP channel.24 Recent

evidence from mice lacking Kir6.2 that encodes pore-forming subunit of cardiac KATP

channel demonstrated that isoproterenol-induced APD shortening observed in wild-type

mice was absent in Kir6.2-knockout mice, indicating that stress by beta-adrenergic

stimulation alone can activate IKATP.25 Furthermore, prolonged rapid ventricular pacing (30

min) was reported to induce non-ischemic activation of IKATP.26 Taken together, rapid

activations during VF under beta-adrenergic stimulation would activate IKATP even in the

absence of ischemia. Although VF in in-vivo hearts is inevitably followed by myocardial

ischemia that activates IKATP, our results uncovered physiological impacts of sympathetic

activation during prolonged VF per se. Insufficient coronary perfusion during

cardiopulmonary resuscitation would further promote IKATP activation and Cai overload,

which might shorten the VF duration necessary for the development of recurrent VF. It is

true that APD shortening by IKATP activation protects cardiomyocytes by limiting calcium

entry, especially during severe metabolic stress.25 However, our results indicate that

excessive APD shortening due to IKATP activation can be critically arrhythmogenic and

exacerbates Cai overload by facilitating VF sustenance. A recent experimental study using

cardiomyopathic human hearts also has shown that IKATP blockade has an antiarrhythmic

effect on VF even in the presence of myocardial ischemia.27

Intervening VTs in ES

Although SVF recurred during post-defibrillation VT in a majority of ES episodes, SVF also

occurred in the absence of VT (i.e. during escape rhythm), indicating that VT is not

prerequisite for SVF recurrence. It follows that degeneration of VT into VF28 is an unlikely
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mechanism of SVF in this model. We found that a late phase 3 EAD is responsible for SVF,

while a delayed afterdepolarization was a likely mechanism of the post-defibrillation VT

since spontaneous Cai elevations occurred before the VT beats (Online Figure 1). Cai

overload is essential for both SVF and post-defibrillation VT; however, APD shortening

with IKATP activation is also required for the development of SVF. Recovery from the APD

shortening is time-dependent and influenced by the activation cycle length during the post-

defibrillation period (Online Figure III). A higher heart rate during VT seems to promote

SVF occurrence by preventing sufficient recovery of APD shortening and Cai overload.

Suppression of VT with nifedipine both reduced the heart rate and reduced Ca2+ entry into

the cells, allowing the heart to better recover from Cai overload and the APD shortening

during the post-defibrillation periods, and terminated ES as long as ΔCaiTD50–APD50

sufficiently decreased.

Clinical Implications

Even if patients have normokalemia at baseline, a high sympathetic tone during ES may

cause hypokalemia through beta 2 adrenoreceptor stimulation.11 It is imperative to maintain

a high serum potassium level to prevent ES especially when catecholamine is administered.

If a quick restoration of serum potassium level is difficult, IKATP inhibition may be useful in

managing this life-threatening condition. Amiodarone, the first-line therapy for ES1 and

shock-resistant VF29 may in part achieve its antiarrhythmic effects by inhibiting

sarcolemmal IKATP
30 in addition to its beta-blocking effect.

Conclusion

Despite maintained tissue perfusion, prolonged episodes of VF under beta-adrenergic

activation and hypokalemia could cause heterogeneous APD abbreviation due to non-

ischemic IKATP activation and CaiTD prolongation, leading to late phase 3 EAD, triggered

activity and SVF. Importantly, once the heart develops recurrent VF, DC shocks alone may

not be sufficient to restore normal rhythm. Rapid correction of hypokalemia and IKATP

inhibition would be useful in controlling ES.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

AP action potential

APD action potential duration

Cai intracellular calcium

CaiTD duration of Cai transient

EAD early afterdepolarization

ES electrical storm

ICFTR cystic fibrosis transmembrane regulator chloride current

IKAS small conductance calcium activated potassium current

IKATP ATP-sensitive potassium current

IKr rapid component of delayed rectifier potassium current

[K+]o extracellular potassium concentration

SVF spontaneous ventricular fibrillation

VF ventricular fibrillation

Vm membrane voltage

VT ventricular tachycardia
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Figure 1.
SVF and ES. (A) (upper panels) Pseudo-ECG (pECG) during a typical example of ES. SVF followed post-defibrillation VT. All

subsequent shocks seem to fail on the ECG, which is compatible with shock-resistant VF. Simultaneous recordings of Vm and

Cai obtained at time points indicated in alphabets on ECG revealed that all the shocks successfully defibrillated, but SVF

emerged immediately. (B) Left panel shows pECGs for ventricular ectopy with (filled circle) and without (unfilled circle) a

transition to VF. Right panel shows scatterplot for the coupling interval of ventricular ectopy with and without VF induction.

*P<0.001.
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Figure 2.
Post-defibrillation APD shortening during sympathetic stimulation. (A) Optical Vm signals during successful defibrillation in

control (upper panel) and during isoproterenol infusion (ISO, lower panel). Right panels show superimposed optical APs for the

beat before VF and immediately after defibrillation of first, third and fifth 3-min VFs. (B) APD50 and APD80 maps for the post-

VF beat in control and during ISO. Optical Vm tracings in panel (A) were taken at the minimal APD50 site. (C) Alteration in

mean ± SEM values of APD50 (black) and APD80 (red) for the post-VF beat as VF induction-defibrillation sequences were

repeated in control (triangles) and during ISO (circles) (n=5). *P<0.05; **P<0.01 versus APD80 of the counterpart during ISO.
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Figure 3.
IKATP activation with VF and sympathetic stimulation. (A) (Left panel) Shown are superimposed optical APs at baseline, during

isoproterenol (ISO), for the 1st beat after defibrillation of 5th induced-VF during ISO (ISO post-VFs), and for the 1st beat after

defibrillation of 6th induced-VF during ISO plus glibenclamide (Glib). (Right panel) Changes in mean ± SEM values of the

minimal APD50 and the maximal ΔCaiTD50−APD50 (n=6). ‡P<0.001 versus ISO; ‡‡P<0.005 versus ISO post-VFs; †P<0.005

versus baseline; ††P<0.001 versus ISO; †††P<0.001 versus ISO post-VFs. (B) Effects of CFTRinh-172 (n=5), apamin (n=5), and

Glib (n=6) on AP shape and APD50. *P<0.001 versus control.
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Figure 4.
APD and CaiTD after repeated VF episodes. (A) Vm and Cai tracings, APD50 maps, CaiTD50 maps, and ΔCaiTD50−APD50

maps are shown. ISO = isoproterenol. (B) %Changes in maximal CaiTD50 after repeated VFs (n=5). †P<0.05; ††P<0.01 versus

pre-VF. (C) Effect of repeated VFs on the maximal ΔCaiTD50−APD50 (n=5). #P<0.01 versus control; ‡P<0.05 versus ISO. (D)
Changes in APD dispersion at 50% and 80% repolarization. APD dispersion was defined as the difference between maximal and

minimal APDs in the mapped area. *P<0.05; **P<0.01 versus control.
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Figure 5.
Optical mapping of SVF. (A) Initiation of SVF. The timing of the QRS onset for the first VF beat (filled circle) is indicated with

a dashed vertical line. Vm and Cai tracings were recorded at sites in the alphabets on the maps. APD50, ΔCaiTD50−APD50, and

Vm gradient maps were constructed for the last VT beat and isochronal map for the first SVF beat. Dominant frequency (DF)

map shows DF distribution during SVF. Note that the SVF initiation site (site (a)) has a high ΔCaiTD50−APD50 and a high DF

during VF. (B) Relationship among the first activation site of SVF (arrowheads), APD50, and ΔCaiTD50−APD50 in 4 different

episodes. Note that the maximal ΔCaiTD50−APD50 sites coincide the VF initiation site.

Maruyama et al. Page 15

Heart Rhythm. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6.
Glibenclamide (Glib) terminates ES. Pseudo-ECGs (upper panels) and Vm/Cai tracings at the maximal ΔCaiTD50−APD50 site

(squares) before and after addition of Glib are shown. Note that Glib prolonged the post-defibrillation APD50, which decreased

ΔCaiTD50−APD50 and prevented SVF.
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Figure 7.
Effects of ICa,L blockade. (A) No VT or SVF occurred after multiple induced-VFs in the hearts pre-treated with nifedipine.

Ventricular pacing (S) after shock was performed to assess APDs. Vm and Cai tracings were obtained at the minimal APD site

on the maps for the first paced beat (squares). (B) Nifedipine suppressed VT and SVF when administered for ES with a long-

lasting intervening VT. Optical tracings were recorded at the maximal ΔCaiTD50−APD50 site (squares) before (upper panels)

and after (lower panels) treatment with nifedipine. (C) (Upper panel) Pseudo-ECG during ES with immediate recurrences of

SVF. (Lower panel) Successful termination of ES with nifedipine and repeated shocks.
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Figure 8.
Failure to terminate ES with IKr blockade. (A) Pseudo-ECGs and optical tracings during ES before and after IKr blockade with

E-4031, and addition of glibenclamide (Glib). (B) APD50 maps, ΔCaiTD50−APD50 maps, and isochrones of the 1st VF beat.

Optical tracings in panel A were obtained at the maximal ΔCaiTD50−APD50 sites (squares on each map). (C) Changes in the

minimal APD50 and the maximal ΔCaiTD50−APD50 (n=4). *P<0.05; **P<0.01.
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