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Abstract

The class IV alcohol dehydrogenase gene ADH7 encodes an enzyme that is involved in ethanol

and retinol metabolism. ADH7 is expressed mainly in the upper gastrointestinal tract and not in the

liver, the major site of expression of the other closely related ADHs. We identified an intergenic

sequence (iA1C), located between ADH7 and ADH1C, that has enhancer-blocking activity in

liver-derived HepG2 cells that do not express their endogenous ADH7. This enhancer blocking

function was cell- and position-dependent, with no activity seen in CP-A esophageal cells that

express ADH7 endogenously. iA1C function was not specific to the ADH enhancers; it had a

similar cell-specific effect on the SV40 enhancer. The CCCTC-binding factor (CTCF), an

insulator binding protein, bound iA1C in HepG2 cells but not in CP-A cells. Our results suggest

that in liver-derived cells, iA1C blocks the effects of ADH enhancers and thereby contributes to

the cell specificity of ADH7 expression.
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1. INTRODUCTION

The alcohol dehydrogenases (ADHs) are a family of metalloenzymes that reversibly oxidize

various primary and secondary alcohols. The class IV alcohol dehydrogenase, ADH7 (σ–

ADH, μ–ADH), efficiently metabolizes ethanol to the known toxin and carcinogen

acetaldehyde (Kedishvili et al., 1995, Yin et al., 1990), and is involved in the first-pass

metabolism of alcohol (Pond and Tozer, 1984). ADH7 also metabolizes retinol to retinal
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(Yang et al., 1994, Yin et al., 2003), the precursor to the anti-carcinogen and signaling

molecule retinoic acid (Rhinn and Dollé, 2012, Uzzaman et al., 2011). ADH7 has been

associated with alcohol metabolism (Birley et al., 2009, Birley et al., 2008), alcoholism (Han

et al., 2005, Osier et al., 2004), drug dependence (Levran et al., 2009) and cancers of the

upper aero-digestive tract (McKay et al., 2011, Wei et al., 2010). It is therefore important to

understand the regulation of ADH7.

ADH7 lies at one end of a cluster of ADH genes all oriented in the same direction

(Edenberg, 2007, Edenberg, 2012, Hurley and Edenberg, 2012), and is unique among the

ADHs in being expressed mainly in the esophagus and gastric mucosa but not in the liver,

the primary site of expression of the other 6 ADHs (Engeland and Maret, 1993, Kedishvili et

al., 1995). Regulatory elements extending up to −799 bp are active in HeLa, CV-1 monkey

kidney, and H4IIE3 rat liver cells (Kotagiri and Edenberg, 1998). The promoter and other

regulatory elements in the ADH7 proximal region extending 12.5 kb upstream from the

translation start site are also active in both CP-A esophageal cells that express ADH7 and

HepG2 hepatoma cells that do not, although there are cell-specific differences in the level of

transcriptional activity (Jairam and Edenberg, 2014). They are also active in mouse MEF

cells (unpublished data). This suggests that other, more distant factors contribute to the cell-

specific expression of ADH7.

Enhancers can activate promoters over long distances (Arnosti and Kulkarni, 2005, Bulger

and Groudine, 2011, Chin-Tong and Victor, 2011). Several ADH enhancers have been

identified that activate more than one ADH promoter. The potent FOXA-dependent liver-

specific enhancer located upstream of ADH4 is capable of activating both ADH4 and

ADH1B promoters in vitro (Pochareddy and Edenberg, 2010). An HNF1-bound enhancer,

located 8.5 kb downstream of ADH7 in the 59.5 kb intergenic region between ADH1C and

ADH7, was both necessary and sufficient for expression of all three class I ADHs in the liver

(Su et al., 2006). Yet, despite the presence and proximity of functional ADH enhancers,

ADH7 is not expressed in the liver, suggesting the possibility of an element that blocks the

effect of these enhancers on ADH7.

The eukaryotic genome is organized into domains comprised of individual genes or clusters

of genes with distinct patterns of expression (Kadauke and Blobel, 2009, Lunyak, 2008).

Active and inactive chromatin domains are often in close proximity to one another, and

enhancer and silencer elements operate over large distances to regulate the genes in these

domains. Insulators or boundary elements function to prevent regulatory elements within a

domain from promiscuously activating or suppressing the expression of genes located in

adjacent domains (Barkess and West, 2012, Bushey et al., 2008, Moltó et al., 2009).

Insulators typically exhibit either one or both of two characteristics 1) “enhancer blocking”

function, i.e., when placed between the enhancer and promoter they block enhancers from

activating the promoter and 2) “barrier” function of protecting transgenes from position

effects. In vertebrates, most known insulators function by binding the CCCTC-binding

factor (CTCF), a zinc finger protein that can recognize diverse DNA elements (Holwerda

and de Laat, 2013, Phillips and Corces, 2009). CTCF can function as both a transcriptional

activator (Vostrov and Quitschke, 1997) and repressor (Filippova et al., 1996), and is
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involved in insulation, genomic imprinting and X-chromosome inactivation (Filippova,

2008). CTCF binding is, therefore, a marker for potential regulatory function.

Bioinformatics analyses suggested that a region between the ADH class I enhancer and

ADH7 was potentially an insulator element that can prevent the HNF1-bound enhancer from

activating ADH7. We have analyzed the function of this region in cell systems that replicate

the cell-specific pattern of endogenous ADH7 expression observed in vivo: CP-A esophageal

cells that express ADH7 and HepG2 hepatoma cells that do not. We have demonstrated that

it can function as an insulator element that can contribute to cell-specific ADH7 expression.

2. MATERIALS AND METHODS

2.1. Bioinformatics

The insulatordb database (Bao et al., 2008) was used to identify potential CTCF binding

sites in the vicinity of ADH7. The International HapMap database (International HapMap

Consortium, 2010) was used to obtain information on haplotypes and the DNA samples that

could be used for cloning specific haplotypes.

2.2. Cloning of test fragments

The rs2851028-A haplotype of the 841 bp ADH7 promoter (A7P-A, referred to henceforth

as A7P; −19 to −859 bp relative to the ADH7 translation start site; chr4:

100,356,409-100,357,249 in GRCh37/hg19) was cloned into HindIII and BglII sites in the

multiple cloning site of the pXP2 luciferase vector (Nordeen S. K., 1988) to drive luciferase

expression. Restriction sites for NcoI, Acc65I, NotI and XhoI were included in the forward

primer of A7P to facilitate further subcloning. The approximately 240 bp fragment

corresponding to the class I specific HNF1-bound enhancer (ENH) (Su et al., 2006) was

cloned into PciI and NdeI sites approximately 1 kb upstream of the A7P promoter fragment

in pXP2. ENH forward primer contained restriction sites for MluI, BssHII, NruI and the

reverse primer had AsiSI, AfeI, NgoMIV restriction sites to facilitate further sub-cloning.

The 946 bp test fragment (iA1C; located 2 kb upstream of HNF1 bound enhancer and

identified as a potential CTCF binding site in silico) and its two sub-fragments 1 and 2 were

cloned into the AsiSI and NgoMIV sites, and/or the MluI and NruI sites for the enhancer

blocking assays. DNA samples used as templates in PCR amplification of the three naturally

occurring haplotypes of iA1C were obtained from the Coriell Institute for Medical Research

(Camden, New Jersey, USA). The AC haplotype at SNPs rs1442490 and rs1442489 was

used unless otherwise noted.

For tests with non-homologous elements, iA1C was cloned into the pGL3 control vector

(Groskreutz et al., 1995) containing the luciferase reporter gene driven by the SV40

promoter, with the SV40 enhancer 2 kb upstream of the SV40 promoter. Lambda DNA of

size 1216 bp (7716 to 8931 bp relative to translation start site, GenBank: J02459.1)

amplified from the plasmid was used as control. The test and control elements were placed

between the promoter and enhancer using the MluI and BglII sites in the multiple cloning

site (MCS) immediately upstream of the SV40 promoter.

Jairam and Edenberg Page 3

Gene. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2.3. Cell culture and Transient transfections

HepG2 human hepatoma cells (HB-8065; ATCC, Manassas, VA) were cultured in MEM

(ATCC) with 10% fetal bovine serum (Invitrogen, Carlsbad, CA), 4 mM glutamine (Thermo

Scientific Hyclone, Waltham, MA) and 1X Penicillin and Streptomycin (Thermo Scientific

Hyclone) on cell bind surface plates (Corning Inc., Tewksbury, MA; CLS3296) at 37°C.

Transient transfections in HepG2 cells were done by seeding 0.8 × 105 cells per well in

Corning cell bind surface 12-well plates (Corning Inc., Tewksbury, MA; CLS3336).

Medium was changed 24 h after seeding, and cells were transfected with 1.52 pmoles of test

DNA, 15 ng of pCMV β-galactosidase plasmid (Clontech, Mountain View, CA) and enough

pUC19 DNA to get a total DNA amount of 1000 ng per well. Fugene HD (Roche,

Indianapolis, IN) was used at 2 μl per well for the transfection reagent.

CP-A (ATCC, CRL-4027) is an hTERT immortalized cell line obtained from a non-

dysplastic Barrett’s Esophagus tissue. CP-A cells were cultured in Keratinocyte-SFM

(Invitrogen, Carlsbad, CA; 17005-042) at 37 °C. Each 500 ml was supplemented with 25 mg

Bovine pituitary extract and 2.5 μg human recombinant epidermal growth factor supplied

with the medium plus 10% FBS and 1% Penicillin-Streptomycin (ATCC, 30-2300). For

transient transfections, CP-A cells were seeded at 3.75 × 105 cells per well in 12-well cell

bind plates (Corning Inc., Tewksbury, MA; CLS3336). Transfections were done 24 h after

seeding as described above.

Luciferase activities were normalized to the internal β-galactosidase control, and the relative

activity of each test fragment was measured as the ratio of normalized luciferase value of

test construct to that of the corresponding promoter. P-values were calculated using the

student’s two-tailed t-test.

2.4. Chromatin immunoprecipitation (ChIP)

ChIP assays were done in HepG2 and CP-A cells with Anti-CTCF (Millipore; 07-729),

positive control anti-H3 and negative control IgG antibodies supplied with the SimpleChIP

Enzymatic Chromatin IP kit (Cell Signaling Technology, Danvers, MA; 9003). Assays were

done following the manufacturers protocol, with sonication conditions optimized for the two

cell types. CP-A cells were sonicated 3 times for 7 s each and HepG2 cells were sonicated 5

times for 15 s each, with a 60 second interval on ice between sonication bursts. The

immunoprecipitations were done overnight at 4 C with gentle rotation, followed by

incubation with magnetic beads for 3 h at 4 C. Following DNA elution, quantification was

done by qPCR and standard PCR. Eleven primer pairs amplifying overlapping iA1C sub-

fragments approximately 100 bp in size were tested for enrichment in the Anti-CTCF IP

sample with yields calculated as % input. Human RPL30 primers (Cell Signaling

Technology, Danvers, MA; 7014S) specific to exon 3 of the RPL30 gene, known to be

bound by Histone H3 in most cells, served as a positive control for the ChIP protocol with

anti-H3 and as a non-specific control for CTCF binding.

2.5. RNA extraction and purification, Real time PCR

HepG2 and CP-A RNA samples were extracted using Trizol and purified using the Qiagen

RNeasy mini kit (Qiagen, Germantown, MD; 74106) following the manufacturer’s protocol.
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RNA concentrations were determined by absorbance at 260 nm using a Nanodrop

spectrophotometer (Thermo Scientific, Waltham, MA). Superscript III First-strand synthesis

system (Invitrogen, Carlsbad, CA; 18080-051) was used to synthesize cDNA from 1 μg

RNA following the manufacturer’s protocol. qPCR assays were performed using 10 μl of 2X

Power SYBR Green mastermix (Life technologies, Carlsbad, CA; 4367659), 2 μl of 3 μM

primers, 3 μl of 2X diluted cDNA and water in the StepOnePlus Real-time PCR system

(Life Technologies, Carlsbad, CA; 4376598). Controls with no reverse transcription and

with no DNA were included in each experiment. For semi-quantitative PCR, 10 μl of

Bullseye R-Taq 2X mastermix (Midwest Scientific, MO; BE180301), 2 μl of 5 μM primers,

2 μl of DNA template and water were amplified according to the SimpleChIP Enzymatic

Chromatin IP protocol (Cell Signaling Technology, Danvers, MA; 9003). The amplified

products were run on a 2% agarose gel with the appropriate controls.

3. RESULTS

3.1. Identification of iA1C, an enhancer blocker with cell-specific function

The class I ADH enhancer ENH, located approximately 8.5 kb downstream of the ADH7

gene, does not activate the ADH7 promoter in the liver (Su et al., 2006), leading us to

hypothesize an enhancer blocking element between the enhancer and ADH7 promoter. Since

vertebrate insulator elements containing enhancer-blocking activity are typically associated

with the CCCTC binding factor (CTCF), we searched the insulatordb database (Bao et al.,

2008) for potential CTCF binding sites in the vicinity of ADH7 and found a 946 bp sequence

we called iA1C in the intergenic region between the enhancer and ADH7 (Figure 1A).

To test the potential enhancer blocking activity of the iA1C fragment, we cloned it upstream

of the ADH7 promoter (A7P, with allele A at the functional SNP rs2851028 (Jairam and

Edenberg, 2014) on either or both sides of the enhancer ENH (Figure 1B). Constructs were

tested for effect on enhancer function in CP-A cells that express endogenous ADH7 (Jairam

and Edenberg, 2014) and in HepG2 cells that do not. ENH increased A7P promoter activity

2.4 fold in CP-A cells and 3.4 fold in HepG2 cells. In CP-A cells, iA1C significantly

increased transcriptional activity of the enhancer-containing plasmids independent of its

placement with respect to ENH (Figure 2A). In HepG2 cells, iA1C caused a 60% reduction

in enhancer activity when placed between ENH and A7P (Figure 2A). When placed outside

the enhancer, iA1C had a significant but much smaller effect on activity. Flanking ENH by

iA1C on both sides had a dramatic and nearly complete block on ENH function, with the

luciferase expression of the flanking construct only slightly higher (1.17 fold) than that of

the promoter construct alone. Thus, iA1C had enhancer-blocking activity in HepG2 cells,

and this activity was cell-specific and dependent on the placement of iA1C with respect to

the enhancer.

To localize the enhancer blocking activity, iA1C was divided into two overlapping shorter

fragments of 641 bp and 305 bp and tested for function in HepG2 cells. Enhancer activity

was reduced by about 75% when flanked by either sub-fragment (Figure 2B). The full-

length iA1C was a more potent enhancer blocker than its sub-fragments, nearly completely

eliminating enhancer effect (Figure 2B).
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3.2. iA1C function with heterologous elements

To test whether iA1C acted on heterologous regulatory elements, we examined its effects on

the SV40 enhancer and SV40 promoter driving luciferase expression in the pGL3 control

vector (Groskreutz et al., 1995). The SV40 promoter and enhancer typically work well in

nearly all cell types (Schirm et al., 1987). The enhancer increased SV40 promoter activity

180 fold in CP-A cells, and iA1C had little effect on activity (Figure 3A). The enhancer

increased SV40 promoter activity 10-fold in HepG2 cells; the AC haplotype of iA1C used in

earlier experiments reduced enhancer activity by 44% (Figure 3B). We tested two additional

haplotypes of iA1C (Table 1) in this system. The iA1C-GC haplotype had a similar effect

while iA1C-GT had a slightly (but significantly) greater effect, reducing enhancer activity

by 50% (Figure 3B). The control plasmid containing lambda DNA had little effect on

enhancer activity in HepG2 cells indicating the insulator function was specific to iA1C.

3.3. CTCF binds multiple sites within iA1C

Since vertebrate enhancer blockers are typically bound by CTCF, chromatin

immunoprecipitation (ChIP) assays were performed in HepG2 cells to identify potential

CTCF binding sites within the endogenous iA1C sequence. Of the eleven iA1C sub-

fragments (Figure 4A) tested for CTCF binding by ChIP, the greatest binding was seen for

fragment D, with the adjacent sub-fragment C also showing high yield (Figure 4B). Another

spike in yield was seen for fragment J, indicating multiple binding sites for CTCF within

iA1C. Fragment K (adjacent to the iA1C region) and a sequence from exon 3 of RPL30

tested as a control did not bind CTCF in HepG2 cells, indicating the binding was specific.

By contrast, iA1C did not detectably bind CTCF in CP-A cells (Figure 4B).

4. DISCUSSION

In this report, we have identified an intergenic element, iA1C, located between the ADH7

gene and the class I ADH specific enhancer ENH (Su et al., 2006), that blocks ENH activity

on the ADH7 promoter in HepG2 cells. While all chromatin insulators do not have enhancer

blocking activity in vitro, enhancer blocking sequences identified in the relevant

physiological cell systems also function as chromatin insulators in vivo (Wallace and

Felsenfeld, 2007, Herold et al., 2012). Thus, although transient in vitro systems cannot

duplicate the full complexity of in vivo systems, they are a good indication of insulator

function. The enhancer blocking activity was dependent on the placement of iA1C with

respect to the enhancer and promoter, acting only when iA1C was placed between the two

elements. This function was cell specific, with no enhancer blocking activity in ADH7-

expressing CP-A cells. Correspondingly, we found cell-specific binding of CTCF to

multiple sites within iA1C in HepG2 cells. No binding was seen in CP-A cells, suggesting

CTCF binding may be required for iA1C insulator function. Since all known vertebrate

insulators bind CTCF (Kim et al., 2007), our finding that CTCF binding to iA1C in vivo

correlates with its cell specific enhancer blocking activity also supports its function as an

endogenous insulator. iA1C showed cell-specificity even on a widely expressed

heterologous promoter-enhancer pair from SV40. Thus, the cell-specificity resides within

iA1C itself. These findings together strongly suggest that iA1C plays a role in tissue specific
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expression of ADH7, particularly its lack of expression in the liver, by serving as an

insulator element.

ADH7 is divided into 2 distinct Linkage Disequilibrium (LD) blocks, with the recombination

hotspot within the gene (Edenberg et al., 2006, Han et al., 2005, Osier et al., 2004). Single

nucleotide polymorphisms (SNPs) in the 5′ LD block of ADH7 are associated with

alcoholism (Levran et al., 2009), alcohol metabolism (Birley et al., 2008, Birley et al.,

2009), cancers (McKay et al., 2011, Wei et al., 2010) and drug dependence (Levran et al.,

2009). Studies have shown that regulatory elements upstream of ADH7, including the

promoter, are active in various cell types including HepG2, CV-1, H4IIE3 and CP-A cells

(Kotagiri and Edenberg, 1998; Jairam and Edenberg, 2014). Variants of these regulatory

elements can affect function depending on cell type and DNA sequence, and are in LD with

SNPs associated with alcohol dependence, alcohol metabolism and cancer (Jairam and

Edenberg, 2014). The 3′ ADH7 LD block ends in a region intergenic between ADH7 and

ADH1C, with little LD with the rest of the ADH cluster. iA1C and the class I enhancer fall

within the 3′ LD block, which has reported disease associations, including rs284787 with

cancer of the upper aerodigestive tract (Oze et al., 2009) and rs284786 with personality traits

and substance dependence (Luo et al., 2008), but none with the variants of iA1C. One of the

common iA1C variants we tested, iA1C-GT, had a slightly stronger effect on insulator

function, likely due to the T variant at rs1442489 (C/T). iA1C insulator function and cell-

specificity with the potent SV40 enhancer suggests that it protects the ADH7 promoter from

not just the proximal class I ADH enhancer, but from other distal enhancers as well.

Chromatin insulators have emerged as important factors in the spatial and topological

organization of higher order chromatin structures and functional transcriptional domains

(Phillips-Cremins and Corces, 2013, Van Bortle and Corces, 2012). Insulators can employ

any one or a combination of mechanisms depending on cell type and target enhancers and

promoters (Bushey et al., 2008, Herold et al., 2012, Valenzuela and Kamakaka, 2006,

Wallace and Felsenfeld, 2007, Zhu et al., 2007). CTCF can interact with itself forming

homodimers, with other regulatory proteins (Merkenschlager and Odom, 2013, Weth and

Renkawitz, 2011), and also with the nuclear lamina causing DNA looping and formation of

cis- and trans- chromatin domains and influencing cross talk between gene promoters and

regulatory elements (Phillips and Corces, 2009, Williams and Flavell, 2008). Cell specific

interactions between CTCF bound sequences are known to regulate the cell specific

expression of linked genes such as the β-globin cluster (Junier et al., 2012, Ren et al., 2012).

Since our results show that unbound iA1C correlates with a lack of enhancer blocking

activity, it is likely that CTCF binding is a necessary event for iA1C function as an insulator.

We have shown that iA1C insulates the ADH7 gene from the class I ADH enhancer ENH,

and also the heterologous SV40 enhancer, in liver-derived cells. Thus it should potentially

insulate ADH7 from other enhancers including the potent liver-specific ADH4 enhancer 4E3

(Pochareddy and Edenberg, 2010) further downstream. We demonstrate that the function of

iA1C is cell-specific, as is the binding of CTCF to iA1C. Thus we conclude that the

insulator iA1C helps determine the tissue specificity of ADH7 expression. There is a small

but significant difference in function due to genetic variation at rs1442489. Earlier work

demonstrated cell specificity and significant effects of genetic variations in several more
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proximal elements, including an enhancer 7P10 and the ADH7 promoter itself (Jairam and

Edenberg, 2014). Thus, a combination of factors is important for the overall and precise

regulation of ADH7 transcription.
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Highlights

• iA1C is a cell-specific insulator with enhancer blocking activity for ADH7.

• iA1C functions with homologous and heterologous elements.

• The CCCTC binding factor (CTCF) binds iA1C in the cell type in which iA1C

is active, and not in the cell in which it is inactive.

• Genetic variation leads to a small but significant difference in function.
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Figure 1.
A) Location of the ADH class I enhancer (ENH) and iA1C. At the top is the part of

chromosome 4 containing ADH7 and ADH1C; distances in kb are measured from the ends

of ADH7 and ADH1C respectively. Below, iA1C and ENH are expanded; distances (bp) are

measured from the ADH7 translation start site (TSS, +1). iA1C is the sequence from

29277:30222 with respect to the ADH7 TSS (chr4:100356390) as +1.

B) Map of the pXP2 plasmid construct used for insulator assays, with the enhancer cloned 1

kb upstream of the ADH7 promoter A7P. Test fragments were cloned into sites on either

side of ENH. Map is drawn to scale, distances in bp.
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Figure 2.
Cell-specific insulator function. A) Effects of iA1C in HepG2 and CP-A cells. Constructs

with iA1C cloned on either or both sides of ENH as depicted were transiently transfected

into the cells. Relative activities were the ratios of normalized luciferase activity of each

construct to that of the promoter (A7P) construct shown at top in the same cell line. Error

bars indicate standard errors of the mean. T-tests were done for the differences between the

normalized luciferase activity of each construct and the enhancer construct in the

corresponding cell type. P-values: * ≤ 0.006, ** ≤ 5 × 10−6, *** ≤ 8 × 10−8 (n = number of

replicates, n ≥ 24).

B) Effects of iA1C sub-fragments iA1C-1 and iA1C-2 containing the sequences from

29277: 29917 and 29918:30222 with respect to ADH7 TSS. Relative activities in HepG2

cells were determined as the ratio of normalized luciferase activity of each construct to that

of the promoter vector. Standard errors of mean are shown (n ≥ 24). P-values reflect the

differences between the normalized luciferase activity of each construct and the enhancer

construct: * ≤ 1 × 10−6, ** ≤ 8 × 10−9, *** ≤ 3 × 10−10.
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Figure 3.
iA1C functions with heterologous enhancer and promoter. A) Transient transfections in CP-

A cells with pGL3 promoter vector (containing the SV40 promoter SVp), pGL3 control

vector (containing SVp and the SV40 enhancer SVe), and iA1C cloned between SVp and

SVe in the pGL3 control vector. Relative activities represent the ratio of normalized

luciferase activity of each construct to that of the pGL3 promoter vector. P-values are the

differences between the normalized luciferase activity of each construct and the SVe

construct: ** ≤ 2.5 × 10−5, *** ≤ 1 × 10−9 (n ≥ 36).

B) Effects of different naturally occurring haplotypes of iA1C and 1.2 kb lambda control

(represented as λ) on SV40 enhancer activity in HepG2 cells. iA1C-AC is the haplotype

used in earlier assays. Standard errors of mean are shown. P-values represent the differences

between the normalized luciferase activity of each construct and SVe construct containing

SV40 enhancer: * ≤ 5 × 10−5, ** ≤ 1.75 × 10−6, *** ≤ 1 × 10−9 (n ≥ 36).
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Figure 4.
iA1C binds CTCF cell-specifically. A) iA1C subsequences used in Chromatin

immunoprecipitation (ChIP) assays. iA1C- A to J are 100–150 bp sequences encompassing

the full length of iA1C. K is immediately downstream of iA1C and serves as a control, along

with human RPL30. The targets C, D and J with the greatest enrichment for CTCF in HepG2

cells are depicted on sequence, with other targets above sequence.

B) CTCF binding to iA1C subsequences in HepG2 and CP-A cells, determined by ChIP. A

random sequence (Cell Signaling Technology, Danvers, MA; 7014) in the housekeeping

gene RPL30 serves as a control. Yields = 2(Input Ct-IP Ct), and represent the ratio of signals

obtained from ChIP to signals from a 4% input sample, which is the non-

immunoprecipitated chromatin sample and serves as a control and as a measure of starting

DNA material relative to which the immunoprecipitated chromatin can be measured. Means

and standard errors from two or three biological replicates and at least 12 technical

replicates are shown. Statistical significance between yields of each target and RPL30

control were calculated by t-tests: * ≤ 0.015, ** ≤ 0.002, *** ≤ 1 × 10−5, **** ≤ 4 × 10−7

Jairam and Edenberg Page 16

Gene. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Jairam and Edenberg Page 17

Table 1

The alleles of the two SNPs making up the naturally occurring haplotypes of iA1C, their haplotype

frequencies in Northern and Western European populations from Utah (CEU) and the DNA templates from

Coriell Institute for Medical Research used for obtaining the sequences are listed.

rs1442490 rs1442489 Haplotype frequency DNA source

A C 30.8 NA07000

G T 63.4 NA12248

G C 5.8 NA12248
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