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Highlights: 12 

1. A participatory design tool that uses interactive and human-guided approaches to13 

simulation-optimization has been developed for planning of conservation practices14 

2. Users can be engaged to view and evaluate designs based on quantifiable and un-15 

quantifiable criteria16 

3. The software is web-based and can be used for engagement with individual users or17 

multiple users18 

19 

ABSTRACT: WRESTORE (Watershed Restoration Using Spatio-Temporal Optimization of 20 

Resources) is a web-based, participatory planning tool that can be used to engage with watershed 21 

stakeholder communities, and involve them in using science-based, human-guided, interactive 22 

simulation-optimization methods for designing potential conservation practices on their 23 

landscape. The underlying optimization algorithms, process simulation models, and interfaces 24 

allow users to not only spatially optimize the locations and types of new conservation practices 25 

based on quantifiable goals estimated by the dynamic simulation models, but also to include their 26 

personal subjective and/or unquantifiable criteria in the location and design of these practices. In 27 

this paper, we describe the software, interfaces, and architecture of WRESTORE, provide 28 

scenarios for implementing the WRESTORE tool in a watershed community’s planning process, 29 

and discuss considerations for future developments. 30 
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SOFTWARE AVAILABILITY 35 

Name of software: WRESTORE (Watershed REstoration using Spatio-Temporal Optimization 36 

of Resources) 37 

Developers: Vidya Bhushan Singh, Meghna Babbar-Sebens, Adriana Debora Piemonti, and 38 

Snehasis Mukhopadhyay 39 

First available year: 2014 40 

Software requirements: Web-browser  41 

Programming language: Java 42 

Language: English 43 

Minimum hardware requirements: Intel Pentium II, 200 MHz, 128 MB RAM  44 

Contact person: Meghna Babbar-Sebens (Corresponding author) 45 

URL: http://wrestore.iupui.edu/  46 

 47 

1. INTRODUCTION 48 

Recently, there has been an increased effort to help mitigate the effects of increased climate 49 

change induced flooding by restoring degraded upland and downstream storage capacities of 50 

watersheds via conservation practices.  For example, Hey et al. (2004) reported that the 80-day 51 

Mississippi River flood in 1993 – which generated 48 billion cubic meters (or, 39 million acre-52 

feet) of floodwaters at St Louis, MO – could have been contained within the 49 billion cubic 53 

meters (or, 40 million acre-feet) storage that could have been provided by adding storage 54 

capacities of the drained wetlands to the existing levees and existing wetlands. Lemke and 55 

Richmond (2009) and Babbar-Sebens et al. (2013) have also suggested that re-naturalization of 56 

the hydrologic cycle with best management practices (or, conservation practices) on the 57 

landscape can solve both water quantity and water quality problems in mixed land use 58 

watersheds. However, design of a system of conservation practices for upland storage is a 59 

complex process because there can be a large number of alternative sites, scales, and mitigation 60 

methods, and because – with multiple stakeholders – there can be multiple criteria and 61 

constraints for selection among alternatives.  Additionally, achieving the desired level of 62 

http://wrestore.iupui.edu/


restoration in a watershed will depend not only on the diverse costs and benefits of modifying the 63 

landscape but also on whether the landowners and other stakeholders will find prescribed 64 

practices acceptable when they are constrained by their subjective perceptions, uncertainty in 65 

human behavior, and local field-scale conditions (Wilcove, 2004). Therefore, successful 66 

restoration of hydrology requires obtaining a thorough understanding of the people and 67 

ecological processes that are unique to the watershed system, and then using this understanding 68 

in the design of appropriate management alternatives for restoring/creating upland storage 69 

systems.  70 

 71 

Designing or generating alternatives is an integral part of problem-solving and decision making 72 

processes. In commonly used models (and their adaptations) of decision-making processes, such 73 

as those proposed by Mintzberg et al. (1976) and Simon (1977), the design of alternatives 74 

usually occurs in the second phase of a three phase process that includes – (1) problem 75 

identification and definition phase, (2) problem development and alternatives generation phase, 76 

and (3) negotiation and selection phase. The first phase involves interaction with stakeholders 77 

and experts to identify, structure, and define the problem. For example, for the restoration 78 

problem, this would involve developing a conceptual model of the combined human-physical 79 

system, and quantitatively defining the various objectives and constraints of the restoration 80 

project based on projects costs, economic benefits, environmental benefits, and stakeholder 81 

values and preferences. Conducting interviews with stakeholders and constructing quantitative 82 

economic valuation of the various ecosystem services provided by the upland storage systems 83 

would be an integral part of this phase. The second phase involves use of various computational 84 

tools, such as, simulation models and search/optimization algorithms. These models and 85 

algorithms along with the parameters of the search/optimization algorithm, and quantitative 86 

representations of the problem objectives and constraints defined in Phase 1, are then used to 87 

generate optimized sets of alternatives (or, scenarios of solutions) that would satisfy or 88 

outperform the problem objectives. When multiple conflicting objectives exist in a natural 89 

resource planning and management problem, a non-dominated set of alternatives are generated 90 

by the optimization algorithms, which is also called the Pareto-optimal set or a tradeoff curve. 91 

This phase is computationally intensive, and generally assumes that multiple stakeholder values 92 

and preferences obtained in Phase 1 can be quantified and reliably used to search for alternatives 93 



and to generate a search outcome for Phase 3. Once, the search has ended in Phase 2, the 94 

alternatives are then presented to the stakeholders in Phase 3 for decision making and selecting a 95 

final alternative for implementation. Many multi-criteria decision aid techniques exist in the 96 

literature (Haimes and Hall, 1974; Soncini-Sessa et al. 2007; Assaf et al. 2008; Castelletti and 97 

Soncini-Sessa (2006, 2007)), which can be used to include stakeholder feedback to select the 98 

“final” alternative in Phase 3 from a set of optimized non-dominated optimal alternatives, based 99 

on multiple quantitative and qualitative criteria. However, by the time the stakeholders reach 100 

Phase 3 for decision making it is typically assumed that the search/optimization process in Phase 101 

2 has used an accurate or close to accurate representation of the stakeholder criteria, and, 102 

therefore, alternatives optimized for these quantitative representations will be “optimal” 103 

solutions to the problem. This is, however, not true since in real-world watershed problems there 104 

can also be local knowledge, non-quantifiable beliefs and values, and incomplete/unstated 105 

preferences of the stakeholders that may not be captured in simulation-optimization models 106 

(Andradóttir, 1998; Fu, 1994, 2002; Gosavi, 2003; Law and Kelton, 2000). This can lead to 107 

stakeholders’ dissatisfaction with the optimized alternatives and poor adoption of prescribed 108 

alternatives (Soncini-Sessa et al. 2007). In summary, though many methods in the literature have 109 

been developed for incorporating active stakeholder involvement in Phases 1 and 3, active 110 

involvement of stakeholders has been limited in the search and design process (i.e., Phase 2). 111 

 112 

 With the current trend of water resources planning and management approaches becoming more 113 

“bottom-up” or participatory (Assaf et al. 2008; Voinov and Bousquet, 2010; McIntosh et al., 114 

2011; Döll et al. 2013; Hamilton et al., 2015), where stakeholders are involved in all stages of 115 

modeling and planning, the need for better understanding of people-related processes in design 116 

of alternatives has become ever more crucial. Involving stakeholders in the multiple steps of the 117 

decision making process, including the alternatives generation phase (i.e. Phase 2), can yield 118 

multiple benefits (Bierle, 1999; Daniels and Walker, 2001; Selin et al., 2007). For example, 119 

stakeholder involvement (a) gives individuals a sense of ownership in the decision process by 120 

allowing them to directly influence the problem-solving process, (b) provides a platform for open 121 

and honest expression of stakeholder views, and (c) improves the legitimacy of the planning and 122 

management process, while also conveying the complexities and uncertainties associated with 123 

this process to the public. With ongoing developments in Web technologies, the internet has the 124 



potential to be a robust medium for supporting participation of and communication between 125 

stakeholders in natural resources management (Esty, 2004; Rinner et al., 2008; Kelly et al., 126 

2012). Kelly et al. (2012) reports that most of the current research in using the Web in natural 127 

resources management has been focused on (a) information delivery to the public by government 128 

agencies, with the ability for public to comment on on-line documents (e.g., Beckley et al., 2006; 129 

Conrad and Hilchey, 2011), (b) interactive social-web tools for harnessing (or “crowd-sourcing”) 130 

feedbacks from large groups of individuals via on-line dialogues and discussions (e.g., Kangas 131 

and Store, 2003; O’Reilly, 2007; Hudson-Smith et al., 2009), and (c) development of mapping 132 

and other spatial decision support tools for effectively communicating spatial data to support 133 

decision making (e.g., Kearns et al., 2003; Sheppard and Meitner, 2005; Brown and Reed, 2009; 134 

Brown and Weber, 2011). It is worthwhile to note that none of the existing technologies and 135 

software cited in these studies provide a truly human-computer collaborative design environment 136 

where stakeholders can participate in design experiments to visualize alternatives and provide 137 

feedbacks on both the design features and acceptability of system-generated alternatives, and in 138 

return have that feedback used to generate new community-preferred alternatives of natural 139 

resources management plans.   140 

 141 

In a 1985 seminal paper, Fisher (Fisher, 1985) motivated a discussion on optimization/search 142 

algorithms that were interactive and allowed humans to be a part of the search process, especially 143 

for problems where human thought processes would provide “superior” advantage to the 144 

“algorithmic thinking” employed by a computer – for example, processes related to visual 145 

perception, strategic thinking, and the ability to learn. According to his discussions, 146 

incorporating human interaction within the optimization algorithms could – (a) facilitate model 147 

specification and revisions, (b) help cope with problem aspects that are difficult to quantify, and 148 

(c) assist in the solution process. A human-computer collaborative decision support framework 149 

that uses such a search process would allow stakeholders real-time access to influence the search 150 

process of the optimization algorithm by influencing the definition of objectives and constraints, 151 

the characterization of alternatives, the simulation models, and algorithm parameters. This not 152 

only allows a more flexible and transparent framework for including stakeholders preferences 153 

and subjective knowledge to construct meaningful, better performing, and desirable (from the 154 

perspective of both humans and quantitative evaluation objective functions) alternatives; it also 155 



creates a venue for improving the cognitive learning process of the interacting human (Babbar-156 

Sebens and Minsker, 2012). Also known as human-guided search (Klau et al., 2009), the 157 

interactive search/optimization process has been explored in applications such as space shuttle 158 

scheduling (Chien et al. 1999), vehicle routing (Waters 1984), face image generation (Takagi, 159 

2001), and constraint-based graph drawing (do Nascimento and Eades, 2002). In recent work by 160 

Babbar-Sebens and Minsker (2012), heuristic Genetic Algorithms were examined as interactive 161 

optimization methods for solving a ground water monitoring problem. In their research, the 162 

authors proposed an innovative algorithm, Interactive Genetic Algorithm with Mixed Initiative 163 

Interaction (IGAMII), which examined the effect of including a single decision maker in the 164 

optimization algorithm’s loops (i.e. human-in-the-loop) to guide the search process. The main 165 

aim of the interactive optimization process was to enable the user to assist the optimization 166 

algorithm find solutions in the “region of desirable solutions,” which could be more optimal 167 

from the user’s non-quantifiable perspective than the solutions on the Pareto front found via a 168 

typical non-interactive search and based on only the quantified representative objectives.  It is 169 

this region of desirable solutions that are of most interest to the decision maker since their 170 

subjective evaluation by the user will be complemented by their performance in the quantitative 171 

evaluations. Effects of various human factors, such as human fatigue, non-stationarity in 172 

preferences, and the cognitive learning process of the human decision maker on the search 173 

process of the interactive genetic algorithm were also addressed in their research.  174 

 175 

In this paper, we present the development of a new, web-based, interactive optimization tool, 176 

Watershed REstoration using Spatio-Temporal Optimization of Resources (WRESTORE), which 177 

is based on the IGAMII algorithm and provides a participatory environment for generating 178 

individual and community-preferred alternatives of conservation practices in watersheds. Unlike 179 

the original desktop-based IGAMII algorithm and other participatory desktop-based planning 180 

tools (e.g., WEAP by Yates et al., 2005a, 2005b; Catchment Simulation Shell by Argent and 181 

Grayson, 2003), WRESTORE uses Web 2.0 technologies to reach out to larger stakeholder 182 

communities for participatory planning efforts and in crowdsourcing the design of potential 183 

conservation practices in a watershed. In this manner, the tool can be used to engage multiple, 184 

diverse watershed stakeholders and landowners via the internet, thereby improving opportunities 185 

for outreach and collaborations. Multiple visualization interfaces, computational simulation and 186 



optimization models, and user modeling, and engagement techniques are part of the 187 

WRESTORE methodology to support a human-centered design approach. Users are able to (a) 188 

design multiple types of conservation practices in their sub-basins and at the entire watershed 189 

scale, (b) examine impacts and limitations of their decisions on their neighboring catchments and 190 

on the entire watershed, (c) compare alternatives via a cost-benefit analysis, (d) vote on their 191 

“favorite” designs based on their preferences and constraints, and (e) propose their “favorite” 192 

alternatives to policy makers and other stakeholders. This human-centered design approach, 193 

which is reinforced by use of internet technologies, has the potential to enable policy makers to 194 

connect to a larger community of stakeholders and directly engage them in environmental 195 

stewardship efforts. The use of web-based interaction technologies also enable an improved 196 

understanding of how users explore alternatives that interest them, learn from making choices in 197 

a safe simulated environment, and change their perceptions of alternatives. This issue is also 198 

especially important in the context of agricultural landowners whose mental maps, perceptions, 199 

behaviors and attitudes affect their understanding of their environment and their intrinsic 200 

motivation to adapt to the changing environment. For example, McCown (2002) insisted that a 201 

paradigm shift is needed in the implementation of decision support systems, specifically a “shift 202 

in emphasis from ‘design’ to ‘learning,’ without abandoning design. Users must undergo an 203 

iterative learning and practice change process. The researchers must be prepared to be involved 204 

in, lend support to, and learn from this process—learn what the farmers are learning”. 205 

Moreover, the software and decision support tool developed is this research provides a 206 

framework for investigations on similar human-centered and web-based participatory design 207 

technologies in the future. While this paper only presents the software development and testing 208 

of the participatory design tool, multiple research investigations on the simulation models, 209 

algorithms, user-learning, etc. supported by WRESTORE have been (e.g., Babbar-Sebens and 210 

Minsker 2012; Babbar-Sebens et al, 2012; and Piemonti et al., 2013) and will be presented in 211 

separate research articles. 212 

 213 

2. WRESTORE SOFTWARE DESCRIPTION 214 

 215 

2.3.  Representation of Conservation Practices in WRESTORE: Seven conservation 216 

practices are currently modeled in WRESTORE – Wetlands, Filter Strips, Grassed Waterways, 217 



Strip Cropping, Cover crops, Crop Rotation, and No-till tillage practice. The main goal of the 218 

WRESTORE tool is to assist stakeholders in identifying the most effective spatial distribution 219 

and design of conservation practices (or, best management practices (BMPs)) in the various sub-220 

basins of their watershed. Users have the ability to select one or more practices from the 221 

candidate practices being considered for a watershed, and the spatial design is based on decisions 222 

made by the underlying optimization algorithm for every practice in every sub-basin. For 223 

example, if a watershed has N number of sub-basins where practices can be implemented, and if 224 

a user wants to consider all seven practices in the N sub-basins, then WRESTORE’s underlying 225 

optimization algorithm will assign values to decision variables representing these practices in the 226 

following manner (see Babbar-Sebens et al. (2013) and Piemonti et al. (2013) for more details): 227 

(i) Strip cropping, crop rotation, no-till, cover crops, and grassed waterways: These five 228 

practices are all modeled as binary decisions, xij, which can have a value of 1 (when 229 

the practice is proposed for implementation in a sub-basin) or 0 (when the practice is 230 

not implemented in a sub-basin). The sub-script i is the designated ID of each of these 231 

five practices in WRESTORE and is used to identify the practice. The sub-script j 232 

stands for every sub-basin where practices can be implemented, and it varies from 1 233 

to N. 234 

(ii) Filter strips: This practice is modeled as a real number decision variable yij, which is 235 

the width of the filter strip along a stream in the jth sub-basin. The sub-script i is the 236 

designated ID of the filter strip practice in WRESTORE. The range of values between 237 

which a decision on filter strip widths can vary have to be determined before an 238 

experiment (e.g., minimum value = 0 m and maximum value = 50 meters).  239 

(iii) Wetlands: Two real-valued decision variables, yij, for each sub-basin are used to 240 

identify the design of wetlands across sub-basins - one on the maximum wetland area 241 

(WET_MXSA) and one on the fraction of sub-basin area that drains into the wetland 242 

(WET_FR). Subscript i is the designated practice ID of the two wetland decision 243 

variables WET_MXSA and WET_FR in WRESTORE, and subscript j is the ID of the 244 

sub-basin respectively. The minimum and maximum values of these variables for 245 

every sub-basin need to be provided to WRESTORE, and, if not easily available for a 246 

watershed, can be determined using a GIS methodology proposed by Babbar-Sebens 247 

et al. (2013). 248 



 249 

WRESTORE’s underlying optimization algorithm (discussed in detail in sections below) will 250 

generate a large number of map scenarios or map alternatives, where each alternative has a 251 

unique spatial combination of the decision variables related to the practices (e.g., Figure 1 shows 252 

an example of Decision Alternatives by using icons and colors on a map to indicate values of 253 

individual sub-basin decision variables for each practice). However, to simulate effectiveness of 254 

all of these alternatives, decision variables are mapped into hydrologic and environmental 255 

variables in the watershed model chosen by a community to simulate conservation practices in 256 

the specific watershed (as shown in the Process Simulation box in Figure 1). Currently, we use 257 

the Soil and Water Assessment Tool (SWAT (Arnold et al., 2001, 2005)) to simulate individual 258 

practices in WRESTORE. While details on how each practice is simulated in SWAT can be 259 

found elsewhere (e.g., Bracmort et al. (2006), Arabi et al. (2007), Piemonti et al. (2013), and 260 

Rabotyagov et al. (2013)), here we only provide a brief summary on how the decisions would be 261 

mapped into specific input variables for the SWAT model based on our earlier study (Piemonti et 262 

al. (2013)): 263 

(i) Strip Cropping: This practice increases the surface roughness, and reduces surface 264 

runoff and sheet and rill erosion (Arabi et al., 2007). When a sub-basin has decision 265 

variable xij = 1 for this practice, then the CN (curve number), USLE_P (Practice 266 

factor in the Universal Soil Loss Equation), and OV_N (Manning’s roughness 267 

coefficient) for that sub-basin are modified in the crop-related .mgt files. See 268 

Piemonti et al. (2013) for details on how appropriate values for these parameters can 269 

be determined. 270 

(ii) Crop Rotation: This practice improves soil quality, creating a balance of nutrients in 271 

the soil, conserves water, reduces soil erosion, and decreases plant pest infestations. 272 

SWAT simulates crop rotation through the operation schedule inputs in .mgt files. 273 

When a sub-basin has decision variable xij = 1 for this practice, then the most 274 

common crop rotation operations schedule for the watershed is used in the crop-275 

related .mgt files of that sub-basin. 276 

(iii) Cover Crops: This practice helps in improving soil moisture content, minimizing soil 277 

compaction, preventing erosion, and increasing soil organic matter. This practice is 278 

generally implemented at the time when land is not being used for production 279 



(winter/spring). The SWAT model allows scheduling of more than one cover crop per 280 

year, once in the fall and once in spring. When a sub-basin has decision variable xij = 281 

1 for this practice, then the most common cover crop operations schedule for the 282 

watershed is used in the crop-related .mgt files of that sub-basin. 283 

(iv) Filter Strips: This practice reduces suspended solids and associated contaminants in 284 

the runoff. It is generally implemented on the edges of channel segments. Based on 285 

the value of the decision variable yij for this practice, the FILTERW (Filter width) 286 

variables in .mgt files of that sub-basin are replaced by the yij value. 287 

(v) Grassed Waterways: This practice reduces gully erosion, reduces flow velocity and 288 

increases sediment settlement (Arabi et al., 2007). Sub-basins with first-order streams 289 

are allowed to have this practice in WRESTORE. When such a sub-basin has decision 290 

variable xij = 1 for this practice, the variable CH_COV (Channel cover factor) is 291 

modified in the .rte file of that sub-basin. See Piemonti et al. (2013) for details on 292 

how an appropriate value for this parameter can be determined. 293 

(vi) No-Till: This practice increases the amount of organic matter and moisture in the soil, 294 

and also decreases erosion. When a sub-basin has decision variable xij = 1 for this 295 

practice, the tillage operation in the operation schedule in the crop related .mgt files 296 

of the sub-basin is replaced by a no till operation commonly implemented in the 297 

watershed. 298 

(vii) Wetlands: Wetlands reduce sediments in runoff, reduce peak flows in streams, reduce 299 

nutrient loads in runoff, and also provide habitat for wildlife. Wetlands are simulated 300 

in SWAT as water bodies at outlets of sub-basins, with a maximum of one wetland at 301 

every outlet. The SWAT variables wet fraction (WET_FR) and maximum wetland 302 

area (WET_MXSA) in the .pnd files of each sub-basin are replaced by the values of 303 

the related decision variable yij. See Babbar-Sebens et al. (2013) for details on how 304 

appropriate values for these parameters can be determined   305 

 306 

Once the decision variables of an alternative have been mapped into appropriate input variables 307 

for the watershed model (e.g., the SWAT model in the current version of WRESTORE), the 308 

input files of the model are updated, and the process simulation model is then run for a specific 309 

period of simulation time. The output files generated by the model can next be used to estimate 310 



performance of the practices proposed in this alternative. Performance can be estimated for a 311 

short time period or long time period, based on how long the simulation was run for. Currently 312 

five types of performance measures are available in WRESTORE (see Figure 1), with the plan to 313 

add more. The first one is called user rating that is provided by the user during the WRESTORE 314 

experiment (described in Sections 2.2-2.5) and serves as a representation of the user’s subjective 315 

criteria and preference for an alternative. The other four of these performance measures are used 316 

as quantitative Objective Functions (or, quantitative criteria) by the underlying optimization 317 

algorithm (described in sections below), and can be estimated for each sub-basin and also for the 318 

entire sub-basin from the physical state variables in model output files. Here we only provide a 319 

brief summary on how these performance measures are calculated based on our earlier study 320 

(Piemonti et al. (2013)): 321 

(i) Cost-revenue function: This objective function considers the costs and revenues 322 

generated by the conservation practice over model time period T1-T2 (in years). It 323 

represents net present values (across all N sub-basins) of all economic costs and 324 

revenues that the conservation practices would accrue for the landowner investing in 325 

this practice at a sub-basin j, and is given by: 326 

𝐸𝐸𝐸𝐸 = 𝑚𝑚𝑚𝑚𝑚𝑚�∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗𝑁𝑁
𝑗𝑗=1 �                                                         (1) 327 

where, NPVj (or Net Present Value of Economic Costs in US dollars at a sub-basin j) 328 

is calculated using, 329 

𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗 = ∑ �𝐶𝐶𝐶𝐶𝑖𝑖 ∗ 𝐴𝐴𝑗𝑗,𝑖𝑖�𝐵𝐵𝐵𝐵𝐵𝐵
𝑖𝑖=1 + ∑ �∑ ��𝑂𝑂𝑂𝑂𝑖𝑖,𝑡𝑡𝑦𝑦 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡𝑡𝑡� ∗ 𝐴𝐴𝑗𝑗,𝑖𝑖�𝐵𝐵𝐵𝐵𝐵𝐵

𝑖𝑖=1 − 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 − 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡�𝑇𝑇2
𝑡𝑡𝑡𝑡=𝑇𝑇1 ∗330 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡        (2) 331 

Where, i is the specific conservation practices out of BMP number of practices, CIi is 332 

the cost of implementation in dollars per acre for each conservation practice, Aj,i is the 333 

area in acres of the conservation practice i in a sub-basin j, ty is the year that varies 334 

from T1 to T2, OMi,ty is the operation and maintenance cost in dollars per acre per 335 

each conservation practice i in year ty, Rini,ty is the rent received by the conservation 336 

program in dollars per acre for those lands that are taken out of production for the 337 

conservation practice i in year ty, SPty is the savings in costs of crop productions in 338 

dollars of taking land out of production for conservation practice in year ty, PIty 339 

represents the net profits, in dollars, obtained from increased productivity in year ty. 340 

PWF is the single payment present worth per year based on interest rate int and is 341 



given by Equation 3 below. Details on calculation of individual terms in Equation 2 342 

can be obtained from Piemonti et al. (2013). 343 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 = 1
(1+𝑖𝑖𝑖𝑖𝑖𝑖)𝑡𝑡𝑡𝑡

                               (3) 344 

(ii) Peak flow reduction function: Peak flow reduction represents impact on flooding and 345 

is calculated based on the maximum difference between the peak flows of the 346 

calibrated baseline model without any new conservation practices and peak flows of 347 

the model that includes conservation practices proposed by an alternative found via 348 

the optimization algorithm. Equation (4) presents the equation for this objective 349 

function. The main goal of this function is to maximize the maximum peak flow 350 

reduction in the watershed across all sub-basins, or in other words minimize the 351 

negative of the maximum peak flow reduction. 352 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑚𝑚𝑚𝑚𝑚𝑚�−𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖,𝑡𝑡�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖,𝑡𝑡,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖,𝑡𝑡,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎��                     (4) 353 

where PFR is the peak flow reduction, i is the sub-basin ID, t is the day in modeled 354 

time period T1-T2 years, peakflowi,t,baseline are the baseline peak flows when no new 355 

conservation practice exists in the watershed, and peakflowi,t,alternative are the modeled 356 

peak flow when the alternative consisting of a specific combination of conservation 357 

practices exists in the watershed in sub-basin i, and time t. The peak flows in equation 358 

(4) can be determined from simulated daily flows at the outlet of every sub-basin (i.e., 359 

flowouti,t,case) for any case (i.e. case = baseline or case = alternative) via equation (5) 360 

below: 361 
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(iii) Sediments reduction function: Sediments reduction objective function (SR) is 364 

calculated as per equation (6). This function represents the loss of fertile soil from the 365 

landscape, across all sub-basins (N) and for the days in time period T1-T2 years. The 366 

main goal of this function is to maximize sediments reduction in all sub-basins, or, in 367 

other words, minimize the negative of sediments reduction in all sub-basins. 368 
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𝑖𝑖=1 �               (6) 369 

where i is the sub-basin ID, t is time in days (e.g., day 367), Sedouti,t,baseline is the 370 

sediments load at the outlet of sub-basins for the baseline calibrated model that does 371 



not have any new conservation practices, and Sedouti,t,alternative is the sediments load at 372 

the outlet of sub-basins when the WRESTORE generated alternative with a specific 373 

spatial combination of conservation practices is simulated by the watershed model. 374 

(iv) Nitrates reduction function: Nitrates reduction objective function (NR) is calculated 375 

as per equation (7). This function represents loss in nitrates via runoff, including 376 

those originating from the applied fertilizers, across all sub-basins (N) and for the 377 

days in time period T1-T2 years. The main goal of this function is to maximize 378 

nitrates reduction in all sub-basins, or, in other words, minimize the negative of 379 

nitrates reduction in all sub-basins. 380 
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where i is the sub-basin ID, t is time in days (e.g., day 367), Nitsouti,t,baseline is the 382 

nitrates load at the outlet of sub-basins for the baseline calibrated model that does not 383 

have any new conservation practices, and Nitsouti,t,alternative is the nitrates load at the 384 

outlet of sub-basins when the WRESTORE generated alternative with a specific 385 

spatial combination of conservation practices is simulated by the watershed model. 386 

 
Figure 1. Conservation practices in WRESTORE– Decision Alternatives, Process Simulation, 

and Measures of Performance. 



2.2. Participatory Optimization Methodology: As mentioned above, the participatory 387 

optimization approach in web-based WRESTORE software is similar to the Interactive Genetic 388 

Algorithm with Mixed Initiative Interaction (IGAMII) algorithm proposed originally by Babbar-389 

Sebens and Minsker (2012). We describe here a summary of the IGAMII algorithm, and the 390 

reader is advised to refer to their study for methodological details.  391 

The IGAMII algorithm is a human-guided (or, human-centered) optimization algorithm 392 

that engages with human users/stakeholders in an iterative manner via visualization interfaces. In 393 

every iteration, which is called an interaction session, both the decision space of the alternatives 394 

(via maps) and the objective space of the alternatives (via graphs) are displayed to the user. The 395 

user evaluates multiple alternatives based on not only the quantitative objectives (i.e. 396 

mathematical functions of cost-benefit type goals) but also based on the user’s local subjective 397 

criteria or qualitative knowledge not represented in the problem formulation. Once the user has 398 

evaluated the alternatives, she/he can provide her/his feedback on the quality of the alternative to 399 

the IGAMII’s underlying optimization algorithm via a user rating or human rank determined on 400 

a Likert type psychometric scale (e.g. “good”, “average”, “bad”, etc.).  The IGAMII’s 401 

optimization algorithm uses this user rating as an additional user-driven objective function (in 402 

addition to economic and physical objectives discussed in Section 2.1) to identify new 403 

alternatives that are similar to or better than the alternatives liked by the user. The underlying 404 

optimization algorithm is critical to enabling the search of new alternatives, and though the 405 

IGAMII uses a multi-objective Genetic Algorithm called NSGA-II (Deb et al., 2002), 406 

WRESTORE is not restricted by the type of multi-objective optimization technique and has the 407 

capabilities to select from a variety of other search approaches (e.g., Decentralized Pursuit 408 

Learning Automata (Singh, 2013)). 409 

Interaction sessions in IGAMII can be of three types (see Figure 2 that shows the 410 

sequence of sessions in an example experiment): introspection sessions, human-guided search 411 

(HS) sessions, and automated search sessions. An introspection session is used for improving the 412 

learning efficiency of the human user by enabling the user to re-examine previously viewed and 413 

rated alternatives that are stored in a case-based memory (Craw, 2003; Shi and Zhang, 2005), 414 

and re-assess her/his own thoughts, reasoning process, emotions, biases, consciousness, and user 415 

ratings of these previously assessed alternatives. For example, Figure 2 illustrates an IGAMII 416 

experiment in which five introspection sessions occurred at different times during the progress of 417 



the experiment. Each of the human-guided search (HS) sessions is an iteration of the underlying 418 

optimization technique (or, generation in the case when a Genetic Algorithm is used as the 419 

search method in IGAMII), where new alternatives created by the underlying optimization 420 

operators are shown to the user. In IGAMII, when human-guided search is conducted, a small 421 

population micro-genetic algorithm is used. Hence the number of alternatives shown in a typical 422 

HS session is typically equal to the population size of this micro-genetic algorithm. Every 423 

alternative (or, the genetic algorithm chromosome) is evaluated in its performance using a suite 424 

of mathematical objective functions and process simulation models (e.g., the SWAT model of a 425 

watershed); and then the values of these performance-based objective functions are displayed to 426 

the user, in addition to the alternative decision variables using maps and graphs. The user 427 

provides the feedback via the Likert scale-based user rating and then this user rating is used by 428 

the micro-genetic algorithm operators to create the next generation of new alternatives (or, new 429 

chromosomes in the case of Genetic Algorithm). Hence, HS sessions are always presented 430 

successively and are equal to the number of generations of the micro-genetic algorithm. For 431 

example, in the progress of the illustrative experiment shown in Figure 2, since a micro-genetic 432 

algorithm with six generations was used, six HS sessions can be seen between the various 433 

introspection sessions. The automated search session (as seen in Figure 2 between introspection 434 

sessions 4 and 5) is the third type of session, which is a more computationally intensive 435 

optimization run and is performed by replacing the human user with a heuristic model of user 436 

ratings (or, a simulated decision maker model). The main purpose of automated search is to 437 

minimize user fatigue by replacing the human user with the simulated user, and hence no visual 438 

interfaces are shown to the user when automated search is running. Data on user ratings 439 

collected in earlier introspection and HS sessions are generally used to create the personalized 440 

and heuristic simulated decision maker models for every user. For example, Babbar-Sebens and 441 

Minsker (2012) used fuzzy logic models that related design parameters to user ratings, whereas 442 

in WRESTORE we have included multiple linear and non-linear classification models, neural 443 

networks, fuzzy logic models, and deep learning models (Singh, 2013) to create simulated 444 

decision maker models. 445 

 
Figure 2. Interaction sessions in IGAMII 



 446 

In IGAMII, the sequence of interaction sessions (such as in Figure 2) is decided via a 447 

flexible mixed initiative interaction (Hearst, 1999) strategy that monitors the individual user 448 

learning and simulated decision maker model’s accuracy to identify when human-guided search 449 

should be conducted and when automated search should be conducted. Monitoring and tracking 450 

user learning is an active topic of research in Human-Computer Interaction and Cognitive 451 

Psychology. While additional research investigations will enable advanced tracking techniques 452 

to inform the mixed initiative interaction strategies, WRESTORE currently uses the technique 453 

proposed by Babbar-Sebens and Minsker (2012). This technique monitors the trends in users’ 454 

self-reported confidence in their user ratings to identify how fast human users are learning by 455 

interacting with the tool. In this manner, it is possible to use the human user and the simulated 456 

user models for search/optimization when they are most suitable for evaluation of alternatives. 457 

After every optimization run, irrespective of whether it is human-guided search or automated 458 

search, an introspection session is invoked to facilitate a user’s re-reflection of previously 459 

generated alternatives and improve her/his own cognitive learning.  460 

 461 

2.3. WRESTORE Architecture: Figure 3 is a schematic configuration of the various 462 

software and hardware components used to support the web-based WRESTORE tool. The 463 

architecture model in WRESTORE is based on services provided by multiple servers (Garlan 464 

and Shaw, 1993). The remote client users run their browser interfaces to access the various 465 

services provided by the WRESTORE project website (http://wrestore.iupui.edu) that resides on 466 

the Web Server. The web server interacts with the Database Servers and the main WRESTORE 467 

Program Server to access additional services on storing, communicating, and processing user 468 

data and instructions.   469 

 470 

http://wrestore.iupui.edu/


 
Figure 3. WRESTORE Architecture (Arrows indicate data flow. Blue arrows are executed specifically during 

introspection session, green arrows are executed specifically during human-guided search sessions, red arrows 

are executed specifically during automated search sessions) 
 471 

Below is a description of the software services supported by the various server components in 472 

Figure 3. 473 

(1) Web Server components: The Web Server hosts the project website with static and 474 

dynamic components developed using a combination of JavaScript, HTML, CSS, and PHP. 475 

The static components of the website are primarily informational and provide information 476 

on the tool and the watershed application to the users. Multiple Google Maps Image APIs 477 

have been included in the development of user friendly visualization of spatial data. The 478 

dynamic components of the website enable the users to create their own user accounts, and 479 

have real time access to the multiple services for starting and running instances of their 480 

own participatory search/optimization experiments.  481 

(2) Database Server components: The Database Server runs MySQL for managing multiple 482 

databases that store data for users that have accounts on the website. This includes data 483 

related to user profiles and data specific to an actual real-time WRESTORE experiment run 484 

by the user. Every time a user initiates a search experiment in WRESTORE, the databases 485 

are accessed and updated by both the Web Server (via front end interfaces) and by the 486 

underlying main WRESTORE Program Server for processing. In this manner, all users 487 



have access to all alternatives found in the multiple experiments conducted by them over 488 

time. 489 

(3) WRESTORE Program Server components: This is the main application program (written in 490 

Java) that runs the IGAMII-based participatory optimization methodology discussed earlier 491 

in Section 2.2. Below is a brief discussion on the various software components (or software 492 

managers) that coordinate specific tasks to accomplish the overall search methodology. 493 

i. IGAMII Kernel: This is the main program that starts or stops instances of real-time 494 

search experiments for multiple authorized users who have previously registered on the 495 

project website. 496 

ii. User Program: Every time a new experiment is started by the IGAMII Kernel, a new 497 

user program is initiated that associates a registered user with the new experiment, 498 

allocates database and computing resources to this specific user, and initializes various 499 

IGAMII parameters and other related software components (i.e. MIM, SM, OM, IM, 500 

IDM, SDMM, PE, HPCC, DBM, and VM listed and explained below) for the user. 501 

Similarly, when the experiment is completed, the user program de-allocates resources 502 

assigned to this user. 503 

iii. Email Manager (EmailM): This is initiated by the IGAMII Kernel and handles the 504 

emailing system of the WRESTORE tool, for notifying users every time session data 505 

are available for viewing on the web interface. In this manner, users don’t have to be 506 

continuously interacting in an ongoing experiment and can login to their account at a 507 

later convenient time to complete the rating of session alternatives. 508 

iv. Mixed Initiative Manager (MIM): This component manages the mixed initiative 509 

interaction strategy of the IGAMII algorithm that was discussed earlier in Section 2.2. 510 

v. Statistics Manager (SM): This conducts all the statistical tests (e.g. Mann Kendall tests 511 

on confidence data) to support the statistical analyses in mixed initiative interaction 512 

strategy in MIM. 513 

vi. Optimization Manager (OM): Manages different types of underlying optimization 514 

algorithms used in human-guided search and automated search sessions. The default 515 

algorithm currently used for search is based on the Nondominated Sorting Genetic 516 

Algorithm (NSGA 2, Deb et al., 2002). 517 



vii. Introspection Manager (IM): Manages the multiple introspection sessions in which 518 

previously found alternatives that reside in the case-based memory table of the database 519 

are selected to be shown again to the user. 520 

viii. Individual Design Manager (IDM): This works as an intermediary to communicate each 521 

alternative and its data to the other managers for processing and viewing, during every 522 

session.  523 

ix. Simulated Decision Maker Manager (SDMM): Trains and tests different simulated 524 

decision maker models to predict a human’s user ratings. These models are based on 525 

different Machine Learning algorithms. The best Machine Learning model is then 526 

chosen to perform automated search on behalf of the human. 527 

x. Population Evaluator (PE): This manager receives alternatives from IDM, every time 528 

the alternatives need to be evaluated for their quantitative objectives (e.g., economic 529 

costs, peak flow reductions, etc.). These objectives are evaluated using mathematical 530 

objective functions that might require the use of process simulation models. For 531 

example, in the current WRESTORE we use the Soil and Water Assessment Tool 532 

(SWAT; Neitsch et al., 2005) watershed model to evaluate impact of conservation 533 

practices alternatives (as discussed in Section 2.1). However, the framework is flexible 534 

for incorporating other simulation models in future applications, if required. In order to 535 

run the simulation models for each of the alternatives, the PE sends them to the High 536 

Performance Computing Controller (HPCC) that interacts with high performance 537 

computing resources available to WRESTORE for running instances of the simulation 538 

models. When automated search is going on, the PE also interacts with the SDMM to 539 

obtain the best machine learning model for evaluating the user ratings of the 540 

alternatives. 541 

xi. High Performance Computing Controller (HPCC): This manager connects the 542 

WRESTORE program server to available high performance computing infrastructure so 543 

that simulation models runtime can be reduced and users do not have a long waiting 544 

time. Multiple supercomputer, clusters and public cloud infrastructures can be accessed 545 

via the HPCC, based on available computing resources. In the past experiments with 546 

users, high performance Windows Tempest cluster at Indiana University, a dedicated 547 

ESA Windows cluster (Dell PowerEdge R620 servers with 112 nodes) at Oregon State 548 



University, and Amazon Cloud (http://aws.amazon.com/) have all been successfully 549 

used and tested.  550 

xii. DB Manager (DBM): This manager collects all the processed data from the IDM and 551 

returns them to the Database servers so that they can then be sent to the web servers for 552 

visualization. It manages all the database connections and keeps track of their usage. 553 

Apart from traditional JDBC connection, Hibernate has also been implemented to 554 

operate the POJO (Plain Old Java Object) feature of Java in DBM. 555 

 556 

2.3.  WRESTORE Workflow and Interfaces: The arrows in Figure 3 indicate how the 557 

various components of the WRESTORE system work when a user initiates a search experiment. 558 

The entire system is based on JAVA RMI in asynchronous mode; hence, data are transferred 559 

from one component to another in an asynchronous manner. This allows multiple users to login 560 

at the same time and run their participatory search experiments independent of each other. For 561 

every user, the following workflow steps are currently performed: 562 

(1) Based on what practices (related to decision variables discussed in Section 2.1) a user 563 

wants to explore in her/his watershed or sub-basin, and based on what goals (i.e. measures 564 

of performance discussed in Section 2.1) are important for the user, the user logs into the 565 

website and selects options on the BMPs and goals via the interface in Figure 4.  566 

 
Figure 4. Interface for starting a new search experiment for the user’s watershed of interest. 

 567 



(2) When the user submits her/his options, the Web Server passes that information to the 568 

database server (black arrows in Figure 3), which further sends a trigger notification to the 569 

IGAMII Kernel in WRESTORE Program Server. The IGAMII Kernel will initiate a search 570 

for every user; hence, multiple instances of the User Program in Figure 3 could be initiated 571 

at any point in time based on how many users are using the system. The managers EmailM, 572 

MIM, DBM, IDM, and HPCC are initialized. Once initiated, MIM initializes the remaining 573 

Managers - IM, OM, SDMM, SM, and PE - and then starts the IGAMII search experiment 574 

for the user.  575 

(3) When a new User Program is initiated, the user will go through multiple interaction 576 

sessions, such as the ones shown in the progress bar in Figure 2. The search experiment in 577 

IGAMII, however, always first begins with an introspection session (i.e. Introspection 1 in 578 

Figure 2).  579 

(4) In the first introspection session, the MIM will access the case-based memory (located in 580 

the database) to select potential watershed-scale alternatives found earlier in a different 581 

search or by an offline optimization run that did not involve any user ratings (e.g. a 582 

preliminary non-interactive optimization run proposed by Babbar-Sebens and Minsker 583 

2012). The MIM then calls the IM, which  sends these alternatives to the web server (via 584 

the IDM, DBM, and the database server) to show the alternatives to the user by means of a 585 

web-based interface (Figure 5). This same interface is also currently used for all human-586 

guided search sessions, and is being further improved for better engagement with users. 587 

The User Program will then trigger the EmailM to send an email to the user whenever a 588 

session is available for viewing on the web server. 589 

 590 

After the user logs into the website, she/he is able to visualize and compare the previously 591 

evaluated alternatives, which have now been made available to her/him for viewing in the 592 

first introspection session. The user evaluates all the alternatives shown by the interface 593 

based on her/his assessment of how BMPs are sited and sized in the entire watershed and in 594 

their local sub-basins of interest (viewed in the map space). The bar graphs on how 595 

alternatives perform with respect to quantitative goals (e.g., economic costs, etc.) allow the 596 

user to also evaluate them based on the performance of the alternatives in the entire 597 

watershed or in their local sub-basins of interest. The user provides feedback on her/his 598 



assessment of the quality of the alternative via user ratings, and these data along with 599 

typical interface usability data, are collected and sent back from the web server to the 600 

database for archiving and use by WRESTORE’s software managers. 601 

 
Figure 5. Visualization and Feedback Interface in WRESTORE 
 602 

(5) After the introspection session is over, the MIM calls the SM to calculate multiple statistics 603 

on the usability data and for the mixed initiative interaction strategy. The MIM then 604 

invokes a call to OM to begin one of the two types of search sessions. For both HS and 605 

automated types of search sessions, the underlying optimization algorithm is initialized in a 606 

manner similar to that proposed and tested by Babbar-Sebens and Minsker (2012). For 607 

example, if NSGA2 is used, then 20% of the starting population is selected from the user’s 608 

case-based memory and 80% are randomly created. Additionally, if MIM decides to start 609 

human-guided search, then the OM will use NSGA2 as a micro-GA with a small 610 

population size and few generations to minimize user fatigue. Whereas, if MIM decides to 611 



start automated search then the OM will use NSGA2 with larger population size and 612 

generations. 613 

(6) The OM sends the alternatives proposed by underlying optimization algorithm’s current 614 

iteration (or, generation in the case of NSGA2) to IDM, which communicates them to PE 615 

for numerical evaluation of the quantitative objective functions (or, performance goals as 616 

seen in bar graphs of Figure 5) and the user ratings.  617 

a. To evaluate the quantitative objective functions, the PE will invoke the HPCC in order 618 

to run the process simulation models (i.e. watershed model of the application site) with 619 

different conservation practices (described in Section 2.1) activated in the sub-basins, 620 

as specified by the alternatives. Since this simulation of each alternative could take 621 

multiple minutes to run, the HPCC runs a job scheduler to efficiently distribute the 622 

simulation jobs to different computing nodes in real-time. If computing nodes are not 623 

free, then the simulation jobs for that user will be put in the waiting queue. Once the 624 

simulations are over, the HPCC returns the simulation results back to the PE for 625 

calculating necessary objective function values from the output files of the simulation 626 

models (as explained in Section 2.1).  627 

b. If automated search is currently going on, then PE will also call the SDMM to invoke a 628 

suitable machine learning model that mimics the user to provide estimates of user 629 

ratings. 630 

(7) Once the PE has evaluated all the alternatives in one iteration (which is also the session), 631 

the data on evaluated quantitative objective functions are sent to IDM that updates the data 632 

on alternatives. If automated search is currently going on, then the IDM, instead of sending 633 

the alternative to DBM, will send the data back to OM to start the next iteration (or, 634 

generation). However, in case of introspection sessions and human guided search sessions 635 

the IDM will send the data on alternatives to DBM, which will send the alternatives to the 636 

Database Server. The Database Server will then send a triggering message to the Web 637 

Server. At this point in time, if the introspection and human-guided search sessions are 638 

going on, then the IDM will also trigger the User Program (via the MIM) to send a 639 

notification email to user via the EmailM. 640 

(8) For introspection sessions and human guided search sessions, the Web Server receives the 641 

trigger message for new incoming data, and then displays this new data on the alternatives 642 



into the visualization interface (Figure 5). The user provides her/his feedback, and the Web 643 

Server then informs the availability of the user feedback data to the DBM, which passes the 644 

data back to IDM. Once IDM receives the new data, if the user had just finished an HS 645 

session, the data are then sent to the OM to start the next iteration of HS session (or, 646 

human-guided optimization iteration). However, if an introspection session just finished, 647 

then a message is sent to MIM to initiate a new set of HS sessions. For both human-guided 648 

search and automated search if the maximum number or iterations (or, sessions) have not 649 

been completed, then the steps (6)-(8) will be repeated for each of the iterations of the 650 

underlying optimization algorithm. Once the HS sessions/iterations (e.g., HS1 to HS6 in 651 

Figure 2) are completed, the MIM will use the SM and SDMM to update the statistics and 652 

the simulated decision maker models. When either all of human-guided search sessions or 653 

automated search session end, the program moves to an introspection session in step (9). 654 

(9) In this step, an introspection session will be initiated by the MIM (e.g., Introspection 655 

sessions 2, 3, 4, and 5 seen in Figure 2). The MIM will access the case-based memory 656 

(located in database) to select alternatives found earlier by the recent human-guided or 657 

automated searches. The IM is called, which sends these selected alternatives to the Web 658 

Server (via the IDM, DBM, and database servers) to show the alternatives to the user via 659 

the interface (Figure 5). The User Program will trigger the EmailM to send an email to the 660 

user whenever this session is available for viewing on the web server. Once the user has 661 

viewed and submitted her/his feedback, the data will move back to the database servers 662 

from the web server, and step (5) will be invoked again until the last introspection session, 663 

as specified in experiment settings, has been reached.  664 

 665 

2.3.  WRESTORE Deployment for Multiuser Collaborative Design: Implementing 666 

WRESTORE in a watershed involves three phases: pre-processing, real-time participatory design 667 

experiments, and post-processing. Currently, WRESTORE has been implemented, and tested for 668 

user learning, and multi-users engagement issues, and overall tool improvements at the test site 669 

of Eagle Creek Watershed, Indiana. But the flexible architecture of WRESTORE allows other 670 

watershed groups, in the future, to include their own simulation models, design parameters, and 671 

data related to their region. Figure 6 provides a synopsis of the three phases.  672 

 673 



 
Figure 6. Deployment for multi-user web-based collaborative experiments 

 674 

Phase I. Pre-processing phase: In this phase, a watershed community’s agency personnel or 675 

stakeholder council group/alliance is expected to first engage with the various parties of interest 676 

to identify conservation practices of interest and specific sub-areas/sub-basins in their watershed 677 

where potential sites for these practices could exist. While the nature of the engagement process 678 

is beyond the scope of this article, it is expected that a shared vision of relevant goals and 679 

constraints would be developed via this engagement process. The watershed community is 680 

expected to then develop an appropriate process simulation model of their study area, preferably 681 

via participatory modeling approaches (e.g. Palmer, 1998; Welp, 2001; Van Asselt Marjolein and 682 

Rijkens-Klomp, 2002). We have currently used the SWAT model to simulate effectiveness of 683 

new conservation practices in our test site, but WRESTORE’s software architecture is not 684 

constrained by a specific hydrology or water quality model. Once a simulation model has been 685 

developed and calibrated, the watershed group leaders can then submit the model files to the 686 

WRESTORE administrative team for setting up a WRESTORE project for their watershed. 687 

Copies of the folders of the simulation model input/output/executable files are saved on the 688 

WRESTORE program server, from where the program makes copies and saves them on to the 689 



HPC Infrastructure nodes whenever user experiments need to be conducted. Besides the 690 

simulation models, various GIS files identifying the watershed boundaries, sub-basins, and 691 

stream network are also required for the interface. These GIS data are stored into Google Fusion 692 

Tables so that Google Maps API can be used in the interface. We are currently in the process of 693 

developing a separate interface that will enable watershed group leaders to automate this setup 694 

process of site data and models for any watershed via the web. 695 

 696 

Phase II. Real-time participatory design experiments: Once the WRESTORE project for the 697 

application watershed has been setup, it is then available for release to the general community. 698 

There are multiple approaches via which watershed groups could engage their stakeholders in 699 

conducting web-based, multi-user participatory optimization experiments in WRESTORE. Here, 700 

we present two of the approaches that have been tested.  701 

i. Asynchronous multi-user experiments:  In this type of experiment (see graphic (4a) in 702 

Figure 6), every user can initiate her/his own human-computer collaborative search for 703 

exploring spatial implementation of conservation practices that are of interest to her/him. 704 

Hence, multiple instances of User Program will be generated in this experiment type. 705 

When a user logs in and begins the WRESTORE workflow (discussed earlier in Section 706 

2.4), she/he can choose from a set of available BMPs and goals for her/his watershed site. 707 

Multiple users can begin their experiments independent of others, and hence can 708 

asynchronously explore the effect of different types and combinations of conservation 709 

practices in the watershed. Since these experiments are conducted asynchronously (in a 710 

parallel fashion), WRESTORE currently does not assume a user’s sub-basins of interest 711 

in advance, and, therefore, presumes that BMPs chosen (in the Figure 6 interface) by a 712 

user are applicable to all sub-basins in the watershed specified by the watershed group in 713 

Phase 1. Additionally, because of this assumption WRESTORE uses the values of the 714 

quantitative goals at the watershed scale (in the Figure 4 interface) as the objective 715 

functions for the underlying optimization algorithm. The future interface of WRESTORE 716 

will enable more detailed settings for individual users, where users will be able to declare 717 

a narrower sub-region of interest. The user-feedback-driven search and the learning 718 

process in the WRESTORE’s underlying algorithms are, however, customized to 719 

individual participating users. One advantage of this kind of asynchronous engagement 720 



with multiple users is that it provides users the flexibility to explore alternatives at a time 721 

that suits them the most, without being dependent on the feedback of others. 722 

ii. Synchronous multi-user experiments: In this type of experiment (see graphic (4b) in 723 

Figure 6), multiple users participate in a democratic human-computer collaborative 724 

search. A Democratic User Program is initiated that generates a set of alternatives that are 725 

shown to all users. Hence, synchronous participation is critical for this type of 726 

engagement setting so that the search process can advance once all feedbacks are 727 

obtained. Once all users have provided their user ratings, the majority user rating will be 728 

used as the final rating of the alternatives. The human-guided search, automated search 729 

and the learning process in WRESTORE’s underlying algorithms are, therefore, 730 

customized to the majority opinion in the user community. 731 

 732 

Phase III. Post-processing: Once user experiments are finished, alternatives generated by the 733 

multiple users can then be post-processed for similarities and dissimilarities in spatial plans of 734 

practices (i.e. alternatives) liked or disliked by the users. Additionally, simulated decision maker 735 

models generated by the WRESTORE program can be processed for identifying underlying 736 

parameters and variables that best explain the user ratings. Data collected via the interface on 737 

users can also be post-processed to understand how each participant engaged with the interface 738 

and whether any detectable learning or changes in opinions were observed. Once this post-739 

processing is completed, the analyses can be released to the user community for decision making 740 

and for identifying how individual user’s behavioral factors affected identification of promising 741 

alternatives. 742 

 743 

3. SOFTWARE TESTS AND DISCUSSION 744 

The WRESTORE software is currently being tested for the study site of Eagle Creek Watershed, 745 

Indiana, (Figure 7) and with different types of users – i.e., university undergraduate and graduate 746 

students (from both Indiana University and Oregon State University), state agency personnel, 747 

and watershed stakeholders. While detailed research results with the different types of 748 

participants (including watershed stakeholders) will be provided in upcoming publications, here 749 

we provide results on software testing that used student users to demonstrate the benefits of the 750 

two types of real-time, web-based participatory optimization approaches discussed above. In the 751 



test plan, five student users (Participant IDs 2, 3, 4, 5, and 6) with background in Water 752 

Resources were asked to do role-playing by assuming that they represented one of the colored 753 

groups of sub-basins in Figure 7b and that they were interested in the suitability of BMPs only in 754 

their local sub-basins group (e.g., Participant 2 was asked to focus on only red colored sub-755 

basins). The gray sub-basins in Figure 7a indicate all the sub-basins where new BMPs are being 756 

considered for potential peak flow, nitrate reduction, and sediment reduction benefits. As 757 

mentioned earlier, the SWAT model developed and calibrated for this watershed (Piemonti et al., 758 

2013) was used to simulate baseline runoff and water quality conditions for the period of 2005-759 

2008, and simulate effect of conservation practices on runoff and water quality for the same 760 

period.  761 

 762 

For the test experiment, the participants were asked to consider cover crops and filter strips as 763 

potential BMPs for this watershed, and the alternatives for search experiments consisted of how 764 

these two practices were designed in the 108 gray sub-basins in Figure 7a. For cover crops, 765 

decisions were coded as binary variables, so when the practice was used in a specific sub-basin 766 

the variable had a value of 1 (and, 0 otherwise). For filter strips, the width of the strip was used 767 

as a decision variable and was allowed to vary from 0 to 5m. See Section 2.1 and Piemonti et al. 768 

(2013) for more details on how these decisions were encoded as practices into the SWAT model. 769 

The optimization algorithm used quantitative objective functions on maximizing peak flow 770 

reductions, minimizing costs, maximizing sediment reduction, and maximizing nitrate 771 

reductions, calculated at the watershed scale using the equations provided by Piemonti et al. 772 

(2013). To represent local subjective criteria, the participants were asked to provide user ratings 773 

(“I like it”, “Neutral”, and “I don’t like it”) for each alternative based on the design and 774 

performance of alternatives in their respective local areas. To help participants assess 775 

performance of practices in local areas, the same objective function equations in Piemonti et al. 776 

(2013) were also calculated for each local sub-basins. The participants, first, participated in the 777 

asynchronous user experiments, and then after five months participated in the synchronous user 778 

experiment. In each of these experiments, the five participants were made to go from 779 

Introspection 1 session to Introspection 4 session in Figure 2, with six human-guided search 780 

sessions between every two introspection sessions. In introspection 1, a set of alternatives found 781 

via a preliminary non-interactive optimization were shown to all the users so that they all had the 782 



same starting point for comparison purposes. This preliminary non-interactive optimization was 783 

conducted using the NSGA 2 algorithm with the four quantitative objective functions. Since each 784 

SWAT simulation model took about 10 minutes to run, with the HPC cluster (combination of 785 

Tempest Cluster at Indiana University and ESA cluster in Oregon State University), the total 786 

computational time for each of the experiments took about 180 minutes. Since every user had 787 

individual variability on how much time they spent viewing and comparing alternatives on the 788 

web-interface, the total clock time for the experiment was determined by the user’s schedule and 789 

varied from one to three days of engagement across users.   790 

  791 



 792 

(6a) (6b) 

  
Figure 7. Eagle Creek Watershed sub-basins (6a) and sub-basins of interest to individual participants (6b) 

 793 

The alternatives found by the participants in the two types of multi-user experiments were 794 

compared with each other in objective space and in decision space. Figure 8 gives an overview 795 

of the percent of alternatives with different user ratings that the participants found. It can be seen 796 

that while for some participants (ID 2, 4, and 5) the percent of alternatives rated “I like it” 797 

increased when the synchronous user experiment was performed, for others (participant IDs 3 798 

and 6) the percent of “I Like it” alternatives actually decreased. Hence, either of the two 799 

engagement methods can be effective in helping users find alternatives that they like. The 800 

democratic user’s user rating was based on the majority rating of an alternative rated by the 801 

individual participants. Hence, even though individually Participants 2, 4, and 5 found more “I 802 

like it” alternatives, the overall democratic rating was affected by other participants and led to 803 

fewer percent of alternatives that were rated “I like it”. 804 



  
Figure 8. Percent of alternatives with the different user ratings in asynchronous and synchronous multi-user 

experiments  
 805 

Figure 9 compares the post-processed alternatives in the quantitative objective function space 806 

(only peak flow reduction versus cost are shown), and further demonstrates the usefulness of 807 

WRESTORE. Figures (9a)-(9e) show the alternatives found by participants when they 808 

asynchronously conducted the user experiment, and Figure (9f) shows the democratic rating of 809 

the alternatives found during the synchronous collaborative experiment. Even for just these five 810 

users, multiple similarities and dissimilarities can be observed in the alternatives generated. For 811 

example, all participants agree that not all alternatives found by the non-interactive optimization 812 

(shown to them in Introspection 1) are above average or of user rating “I like it”. In fact, 813 

Participants 4 and 5 found the majority of these non-interactive optimization alternatives to be of 814 

the type “I do not like it”. Second, since WRESTORE customized the search to the user’s 815 

feedback, different participants found “I like it” alternatives in different regions of the 816 

quantitative objective space, which did not necessarily coincide with the alternatives found by 817 

the non-interactive optimization. Participant 2 found a range of “I like it” alternatives that varied 818 

from high peak flow reductions with low costs to lower peak flow reduction with higher costs. 819 

Note that negative costs indicate economic revenue. Participant 3, 5, 6, and democratic user 820 

found their “I like it” alternatives in two visibly separated clustered regions. Participant 4 had a 821 

few number of alternatives in the region of lower peak flow reduction with higher costs. These 822 

results allow visualization of regions in quantitative objective function space where users might 823 

be willing to accept or reject alternatives. A typical non-interactive optimization that does not 824 

have the ability to include participant’s preferences and perceptions via her/his user rating would 825 

typically reject many of these “I like it” alternatives.   826 



  

  

  
Figure 9. Alternatives with different user ratings found by participants and their performance in the quantitative 

objective function space.  
 827 

Alternatives generated with the help of WRESTORE can be also be used to further identify 828 

patterns in the decision space of the alternatives, and identify decisions that have higher chances 829 



of acceptability based on how the users perceived and rated them. Figure 10 shows statistics on 830 

the decision variables related to cover crops at the 108 candidate sub-basins (X axis) where new 831 

BMPs can be placed. Since, cover crops are coded as binary decisions in the search algorithm, all 832 

“I like it” rated alternatives found by every participant were sorted to find out the percent of 833 

alternatives that had cover crops (i.e. decision variable value = 1) in the specific sub-basin. The 834 

Y axes in Figure 10 indicate this percent value as a probability. As visible from the two graphs in 835 

Figure 10, there is a large variability in the probability of cover crops in the 108 sub-basins (as 836 

seen by large scatter of probability values along Y axis for every sub-basin), when the 837 

participants are allowed to conduct their own asynchronous search. When participants 838 

synchronously conduct the search using the democratic user rating procedure their overall 839 

disagreements in the probability of cover crops in the 108 sub-basins is reduced (as seen by a 840 

smaller scatter of probability values along Y axis). The average variability (where, variabilitysub-841 

basin = maximum probabilitysub-basin-minimum probabilitysub-basin) in the probability of cover crops 842 

proposed by the participants was calculated to be 0.31 for asynchronous experiment and 0.19 for 843 

synchronous experiment. This indicates that the democratic user rating is more effective in 844 

finding alternatives that preserve the majority opinions on the values of the decision variables. 845 

 846 

 

 
Figure 10. Probabilities of cover crops implemented in the various sub-basins of “I like it” alternatives  
 847 

Figure 11 shows a similar trend in the statistics of the decision variables related to filter strips at 848 

the 108 candidate sub-basins (X axis). For filter strips, the mode of the filter strip widths at each 849 

sub-basin was calculated, for all the “I like it” alternatives found by participants. The mode at 850 



every sub-basin represents the majority width value proposed by the “I like it” alternatives. The 851 

average disagreements in the mode values across all the sub-basins also decreased from 1.5 852 

meters (for asynchronous experiment) to 0.85 meters (for synchronous experiment). This 853 

provides additional evidence in the benefit of conducting WRESTORE experiments in the 854 

synchronous mode, when increased agreement in the search of decision variable values is 855 

required. 856 

 857 

 

 
Figure 11. Mode of filter strip widths implemented in the various sub-basins of “I like it” alternatives  
 858 

4. CONCLUSIONS AND FUTURE DEVELOPMENTS 859 

With the ongoing advances in World Wide Web technologies and environments, use of online 860 

communities for collaboration and generation of solutions to real-world problems has become 861 

inevitable. The WRESTORE system provides an innovative and community-based approach for 862 

designing conservation practices on landscapes via web-based participation. Stakeholder groups 863 

and watershed planners have the potential to participate via the web to evaluate scenarios, 864 

optimize the scenarios, and generate customized alternatives that capture the communities’ 865 

difficult-to-quantify criteria and concerns. 866 

 867 

There are multiple strength and limitations of WRESTORE, which are being/will be addressed 868 

when future developments are released to the community: 869 



(i) While WRESTORE enables users to test the effectiveness of conservation practices using 870 

dynamic models, it assumes that such a model is readily available and the community has 871 

already gone through the model development and calibration phase. Additionally, the 872 

underlying code and architecture of WRESTORE is general enough to enable insertion of 873 

any other specific model that a watershed community might be interested in using, beyond 874 

the SWAT model that was used for the case study in this article. An interface for a 875 

community to select their specific simulation models and set up variables is currently being 876 

built and will be tested and demonstrated in future publications.  877 

(ii) The implementation of WRESTORE is limited by the amount of time and computational 878 

resources taken by the embedded watershed model. Currently, the WRESTORE framework 879 

can be linked with the available research clusters and public Cloud to minimize time taken 880 

by simulation models; additional research for overcoming this barrier and decreasing user 881 

waiting time between sessions is also being conducted. For example, embedding faster 882 

surrogate models that can approximate watershed models is a potential solution to this 883 

problem. 884 

(iii) For improving user engagement we are also conducting software usability tests and user 885 

studies with WRESTORE. These results will be used to include multiple improvements in 886 

future versions of the WRESTORE interfaces, including (a) a more game-like environment 887 

for users to directly modify alternatives at field scale and influence alternatives proposed 888 

by others, (b) enable users to compare alternatives with respect to climate change 889 

projections and other watershed impacts (e.g., impacts on habitat of indicator ecological 890 

species), and (c) enable watershed groups to create their own WRESTORE projects via the 891 

web-interface, etc. 892 

(iv) One of the challenges in using such web-based design environments is the protection of 893 

privacy when users explore the alternatives. Since WRESTORE is a research tool at this 894 

point in time, all data shared by users are kept confidential and not shared with anyone else 895 

beyond the research team approved by the university’s Institutional Review Board. 896 

Additionally when user data are utilized by the WRESTORE architecture, identifiers are 897 

removed from the data to maintain privacy of specific users. In future developments we 898 

plan to provide adaptive privacy settings to users to allow them to control the visibility of 899 

their participation. 900 
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