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Significance of NF-κΒ as a pivotal therapeutic target in the neurodegenerative 
pathologies of Alzheimer’s disease and multiple sclerosis. 

Abstract: 

INTRODUCTION:  Advances in molecular pathogenesis suggest that the chronic inflammation 

is a shared mechanism in the initiation and progression of multiple neurodegenerative diseases 

with diverse clinical manifestations such as Alzheimer’s disease (AD) and multiple sclerosis 

(MS). Restricted cell renewal and regenerative capacity makes the neural tissues extremely 

vulnerable to the uncontrolled inflammatory process leading to irreversible tissue damage. 

AREAS COVERED:  A predominant consequence of increased inflammatory signaling is the 

upregulation of the transcription factor, nuclear factor- kappa B (NF−κΒ) with subsequent 

neuroprotective or deleterious effects depending on the strength of the signal and the type of 

NF−κΒ dimers activated. We discuss the interplay between neuroinflammation and 

neurodegeneration keeping in focus NF-κΒ signaling as the point of convergence of multiple 

pathways associated with the development of the neurodegenerative pathologies, AD and MS.  

EXPERT OPINION:  Considerable interest exists in developing efficient NF-κΒ inhibitors for 

neurodegenerative diseases. The review includes an overview of natural compounds and 

rationally designed agents that inhibit NF−κΒ and mediate neuroprotection in AD and MS. The 

key chemical moieties of the natural and the synthetic compounds provide efficient leads for the 

development of effective small molecule inhibitors that selectively target NF−κΒ  activation; this 

would result in the desired benefit to risk therapeutic effects. 

Key words: (In alphabetical order) 

Amyloid; 

Disease modifying agents; 

Drug target 

Natural compounds; 
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Neurodegeneration; 

Neuroinflammation; 

Polyphenols 

Promoter 

Terpenoids 

Therapeutic target/mechanism; 

 

List of abbreviations: 

AMPA: α−amino-3-hydroxy-5-methyl-4-isoxazole propionate; APP: amyloid precursor protein; 

APOE: apolipoprotein e; ATP: adenosine 5'-triphosphate; BACE 1: beta-site amyloid precursor 

protein cleaving enzyme 1; BBB: blood brain barrier; BDNF: brain derived neurotrophic factor; 

CaMK: calcium-calmodium dependent kinase II; CNS: central nervous system; CSF: 

cerebrospinal fluid; DMD: disease modifying drugs; EAE: experimental autoimmune 

encephalomyelitis; ERK: extracellular signal-regulated kinase; FPR2: formyl peptide receptor-2; 

IL: interleukin; IKK: IκΒ kinase; iNOS: induced nitric oxide synthase; IRAK-2: interleukin-1 

receptor-associated kinase-2; JNK: Jun-N-terminal kinase; Mn-SOD: manganese superoxide 

dismutase; metabotropic glutamate (mGlu) receptor;  MAPK: Mitogen activated phosphorylation 

kinases; NO: nitric oxide; NP: neuritic plaque; NFT: neurofibrillary tangle; NMDA: N-methyl-D-

Aspartate; NEMO: NF-κΒ essential modulating domain ; NSAID: non-steroidal anti-inflammatory 

drugs; PPAR-γ:peroxisome proliferator-activated receptor-γ; PKC: protein kinase C; PPMS: 

primary progressive multiple sclerosis; RAGE: Receptor associated advanced glycation end 

products; ROS: reactive oxygen species; RRMS: relapsing and remitting multiple sclerosis; 

SOD: superoxide dismutase; SPMS: secondary progressive multiple sclerosis; STAT 3: Signal 

transducer and activator of transcription 3; TGF: transforming growth factor; TNF: tumor 

necrosis factor; USFDA: United States Food and Drug Administration. 
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Introduction 

Neurodegenerative diseases refer to those conditions in which neurons in the brain and spinal 

cord undergo progressive degeneration and eventual death. The glial cells of the central 

nervous system (CNS) contribute significantly to the initiation and progression of the 

degenerative process. Since one CNS cell type can impact another cell type, the cumulative 

intracellular and intercellular responses determine the distinct pathological and clinical features 

of the specific neurodegenerative disease. Examples of neurodegenerative diseases include 

Alzheimer’s disease (AD), multiple sclerosis (MS), Parkinson’s disease (PD), amyotrophic 

lateral sclerosis (ALS) and Huntington disease (HD) [1]. Although the genetic and environmental 

factors that initiate degeneration differ among these diseases, a shared biochemical cascade of 

inflammatory events plays a central role in mediating the neuronal cell loss.  Neuroinflammation 

may be triggered by enhanced endogenous neuronal/synaptic activity or autoimmune 

responses as well as by exogenous injury, infection or other external factors [2, 3].  

 

The transcription factor nuclear factor-κB (NF-κΒ) is a critical regulator of immune and 

inflammatory responses [4]. In mammals, the NF-κB/Rel family comprises five members; p50, 

p52, p65 (Rel-A), c-Rel and Rel-B proteins, that form homo or hetero-dimers and remain in an 

inactive form in complex with the inhibitory molecules called the IκΒ proteins in resting cells. 

The typical IκΒ family members include IκΒα, IκΒβ, IκΒε, p100 and p105 proteins [5]. Activation 

of NF-κB can be induced by canonical and non-canonical pathways. Canonical NF-κΒ pathway 

is activated by numerous signals mediated by innate and adaptive immune receptors. Non-

canonical NF-κΒ pathway is triggered by signaling from a subset of tumor necrosis factor family 

of receptors (TNFR). Activation of NF-κΒ by either pathway involves a proteasome-dependent 

step that allows for the generation of DNA-binding dimers. Signaling via the canonical pathway 
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involves stimulation of the IKK complex composed of IKKα, IKKβ and IKKγ/NEMO (NF-

κΒ essential modulator). Activation of IKK leads to IKKβ mediated phosphorylation of IκΒ 

proteins followed by ubiquitination and degradation by proteasomes releasing the NF−κΒ 

dimers from the inhibitory complex. Activation of non-canonical pathway occurs at slower 

kinetics, is mediated by IKKα and facilitates nuclear translocation primarily of RelB containing 

dimers. Activated NF-κΒ dimers then translocate to the nucleus, bind specific DNA fragments 

and induce expression of target genes (Fig 1) [1, 6]. 

 

1.1. NF-κΒ in the CNS health: 

First reported in the CNS in 1986, multiple studies subsequently have confirmed the ubiquitous 

expression and activity of NF-κΒ in brain cells including the neurons, astrocytes, microglia and 

oligodendrocytes. NF-κΒ exists as both constitutive and inducible complex in the neurons [7]. 

The constitutive form is transcriptionally active as evidenced by the nuclear localization of the 

p50 and p65 subunits in the neurons of the cortex and hippocampus [8]. Physiologically the 

constitutive NF-κΒ has been associated with growth and development of dendrites, neuronal 

survival, formation of synaptic plasticity and long-term memory. In conditional neuronal NF-κΒ-

deficient mice, loss of NF-κΒ signaling impaired synaptic transmission, spatial memory 

formation, and plasticity [9].  

 

A number of physiological stimuli including membrane depolarization or glutamergic signal 

transduction lead to rapid activation of the inducible NF-κΒ localized in the synapses, cytoplasm 

and dendrites of the neurons. Functionally, the inducible NF-κΒ has been reported as critical for 

the neuroprotective adaptive responses following exposure to sub-threshold noxious stimuli. [6, 
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10]. Complete abrogation of the DNA binding ability of NF-κΒ factors induces apoptosis of the 

neuronal cells. Cell death is preceded by reduction in the NF-κΒ regulated transcription of anti-

apoptotic genes suggesting that a minimal threshold of NF-κΒ activity is needed for neuronal 

survival [6] (Fig1B). Several kinase pathways including the calcium-calmodium dependent 

kinase-II (CaMK), the protein kinases-C (PKC) and the ras/phosphatidylinositol 3-kinase (PI3K) 

pathways have been implicated in activating neuronal NF-κΒ signaling [1, 10]. However, 

recently using a diverse array of detection methods Listwak et el., have shown that not only the 

constitutive but also the induced NF-κΒ activity is many fold lower in neuronal cells as 

compared to non-neuronal cells in the CNS [11]. The microglia, astrocytes and oligodendrocytes 

constitute the non-neuronal glial cells actively involved in maintaining the structural and 

functional homeostasis in the CNS [12]. Unlike neurons, NF-κΒ is present in the cytoplasm as 

an inactive complex with the IκΒ proteins in glial cells under physiological conditions [13, 14].  

 

1.2. NF-κΒ and neurodegenerative diseases: 

Considerable evidence suggests that the activation of NF-κΒ in the CNS triggers multicellular 

responses and gene transactivation intricately associated with the initiation and progression of 

neurodegenerative diseases. Various endogenous and exogenous stimuli activate NF-κΒ 

enhancing transactivation of inflammatory molecules and production of free radicals in glial cells 

[1].  The contribution of neuronal NF-κΒ to the pathogenesis of neurodegenerative diseases 

depends largely on two non-mutually exclusive mechanisms: upregulation due to direct effects 

on neurons or increase due to indirect effects via modulation by glial cells [15]. Interestingly, it 

has been suggested that the activation of distinct NF-κΒ subunits could have opposite effects 

on neuronal viability [6]. Glutamate induced stimulation of cerebellar granule cells via the N-

methyl-D-aspartate (NMDA) receptor activate p65:p50 dimers and enhance transactivation of 
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pro-apoptotic factors [16].  In contrast, IL-1β stimulation of neurons mediates neuroprotection by 

activating c-rel containing dimers and transactivation of anti-apoptotic factors [15, 16]. Thus the 

effect of NF-κΒ stimulation on neuronal survival and death potentially depend on the strength of 

signal and the nature of NF-κΒ dimers stimulated [17] (Fig 1). The following sections discuss the 

critical role of NF-κΒ in neurodegenerative pathology using Alzheimer’s disease (AD) and 

multiple sclerosis (MS) as specific examples. 

 

2.  Role of NF-κΒ in the pathogenesis of AD: 

2.1. NF-κΒ mediated neuroprotective responses in early AD: AD, the leading cause of 

dementia, is clinically characterized by loss of memory, progressive impairment of cognition and 

various neuropsychiatric disturbances. Pathologically AD affected brain exhibits deposits of 

amyloid-beta (Aβ) as neuritic plaques (NPs) and hyperphosphorylated aggregated tau protein 

as neurofibrillary tangles (NFTs). A consequence of intracellular and parenchymal accumulation 

of NPs and NFTs is activation of NF-κB in the neural and glial cells with subsequent protective 

or detrimental effects [15, 17].  

Aβ is produced by proteolytic cleavage of amyloid precursor protein (APP) by β and γ-

secretase [18]. The genes encoding APP and beta-site amyloid precursor protein cleaving 

enzyme 1 (BACE1) exhibit κΒ binding sites in the promoter region. In neuronal cells Aβ1-42 

peptide has been shown to regulate APP and BACE1 proteins in NF-κΒ dependent manner 

[19].  Under physiological conditions activation of NF-κΒ by endogenous Aβ reduces βAPP, 

BACE1 and the γ-secretase activity, thereby lowering Aβ processing and facilitating Aβ 

homeostasis. However in AD, exposure to high Aβ concentrations upregulates NF-κB activation 

increasing βAPP and Aβ processing, precipitating a feed-back loop that favor exacerbated Aβ 

production [20].  



7 

 

Considerable evidence suggests a critical role for apolipoprotein e (APOE) in the 

formation of fibrillary Aβ and neuritic plaque [21]. Both rodent and human APOE gene promoter 

contain functional NF-κΒ site.   Aβ has been shown to upregulate APOE in astroglial cells. This 

upregulation was inhibited by decoy-κΒ nucleotides supporting a critical role for NF-κΒ in APOE 

function [14].  Activated microglia are invariant histological features in AD brains, where they 

exhibit waxing and waning of numbers, and activation state during plaque progression [12].  

Initially, the microglial cells bind and phagocytose Αβ peptides via a group of cell surface 

receptor complex consisting of scavenger receptor CD36, α6-β1 integrin, and CD47 [22]. The 

response of microglia has been shown to vary with the length of the Aβ-peptide and the 

signaling pathway [22]. Stimulation with the Aβ25-35 fragments induces secretion of cytokines 

such as TNF-α and of neurotrophic factors such as nerve growth factor (NGF) and brain derived 

nerve factor (BDNF) in NF-κB-dependent manner [23, 24]. Stimulation of neuronal cells by TNF-

α has been shown to upregulate transactivation of anti-apoptotic gene products and 

neurotrophins such as Bcl-2 and NGF respectively. Decoy κΒ nucleotides mediate cell death by 

blocking neurotrophins and anti-apoptotic factors supporting an essential role for NF-κΒ in the 

neuroprotective process [17]. In primary neuronal cells, exposure to Aβ25-35 peptide increase NF-

κΒ mediated transactivation of manganese superoxide dismutase (Mn-SOD), suppress 

peroxinitrite production and inhibit membrane depolarization, thereby preventing apoptosis 

induced by oxidative stress [25].  In metabotrophic glutamate receptor-5 (mGlu5) agonist pre-

treated primary cortical neurons or neuroblastoma cells, Aβ induced toxicity was suppressed by 

selective activation of c-rel containing NF-κΒ dimers and transactivation of anti-apoptotic genes, 

Mn-SOD and Bcl-Xl [26] (Figs 1B, 2A).  These NF-κΒ mediated neuroprotective effects have 

been largely observed in early stages of neuronal regeneration in AD [23].   
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2.2. Neuronal NF-κΒ and neurodegeneration in advanced AD:  Exposure of primary neuronal 

cells or post-mitotic neurons to Aβ1-42 peptide has been shown to strongly activate the p50:p65 

dimers and mediate neuronal cell death (Fig 1) [24, 27]. Consistent with the cellular studies, 

increased immunostaining for NF-κΒ-p65 has been observed in neurons and their processes in 

the hippocampal formation and entorhinal cortex in AD [8]. Comparison of the cellular 

distribution of NF-κΒ in the nucleus basalis of Meynert of AD and control patients showed that 

the proportion of large cholinergic neurons with elevated nuclear p65 was significantly increased 

in AD, suggesting an association between NF−κΒ functions and the process of cholinergic 

degeneration [28]. Mechanistically, the Aβ induced neuronal apoptosis has been attributed to 

the increase in the ratio of pro-apoptotic gene (BAX) transcription to that of the anti-apoptotic 

gene Bcl-Xl, and/or to the reduction in constitutively activated NF-κB with consequent increase 

in the cytoplasmic IκB proteins [17]. These observations substantiate a direct role of neuronal 

NF−κB activation in the pathogenesis of AD (Fig 1B, 2B). 

 

Chronic imbalance in the production and clearance of Aβ leads a persistent increase in its 

steady-state levels in the CNS parenchyma [24]. Excessive accumulation of Αβ1-42 stimulates 

microglial cells by signaling via receptor associated advanced glycation end products (RAGE) 

and peroxisome proliferator-activated receptor-γ (PPAR-γ), phosphorylates IKK proteins, and 

enhances NF-κΒ mediated transactivation of inflammatory cytokines and neurotoxic molecules 

such as glutamate and reactive oxygen species (ROS)/induced nitric oxide synthase (iNOS) [12] 

(Fig 2B). Increased presence of activated glial cells presenting elevated NF-κΒ and HLA-DR 

expression are commonly observed around the Αβ plaques in postmortem AD tissue. Increased 

presence of NF-κΒ mediated IL-1β, IL-6, and TNF-α cytokines have been reported in the 

affected tissues, serum and CSF of AD patients [1, 8, 29]. The localized increase in free radical 
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generation promotes increased APP processing, Aβ deposition and tau phosphorylation. Animal 

models that over express the mutant human APP protein have shown a direct relationship 

between the amount of Aβ aggregates and elevated levels of inflammatory cytokines TNF-α, IL-

6,IL-12,IL-1β, and IL-1α [29, 30].  

 

Crosstalk between microglia and astrocytes could further amplify the inflammatory and 

neurotoxic responses. Astrocytes exposed to the APP fragments release large amounts of 

glutamate through upregulation of glutaminase expression and mediate increased excitotoxicity. 

This is supported by the observation that co-cultures of microglia and astrocytes stimulated with 

lipopolysaccharide produced significantly more neurotoxic factors than either cell type alone 

[31]. Extracellular accumulation of glutamate, stimulates adjacent neurons via the 

NMDA/α−amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/Kainate (KA) receptors 

causing massive calcium influx that initiates a cascade of events involving intracellular signaling 

kinases and activation of calcium-dependent enzymes in arachidonic acid metabolism [25]. 

Accumulation of oxygenated arachidonic acid metabolites lead to neuronal cell death. 

Furthermore chronic activation of extrasynaptic NMDA receptors leads to sustained neuronal Aβ 

release via amyloidogenic APP expression [32]. Factors released from injured neurons 

stimulate microglia and adjacent astrocytes initiating a paracrine loop that exacerbate 

neurotoxicity. This is supported by the observation that in mixed neuronal-glial cell cultures, Aβ 

induces increasing degree of neurotoxicity in an NF-κB dependent manner in the presence of 

higher proportion of glial cells [33]. Furthermore NF-κB specific inhibitor prevents iNOS and 

ROS upregulation in Aβ stimulated cultures of astrocytes or mixed cortical cells [34]. Recently 

microRNAs, non-coding highly conserved regulatory small RNAs, have been suggested as 

strong players in mediating inflammatory neurodegeneration. The miRNAs act as repressors of 

specific mRNA by binding complementary RNA sequences.  Upregulation of several NF-κB 
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regulated miRNAs such as miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a, miRNA-155 and 

miRNA-339 5p have been observed in stressed primary human neuronal-glial cells and in post-

mortem AD brain tissues[35]. In AD brains, miRNA-125b is observed as the most abundant 

exhibiting strong positive correlation with glial fibrillary acidic protein and vimentin and  negative 

correlation with reduced cyclin dependent kinase 2A [35, 36].  Collectively, NF-κB signaling 

induced by multiple mechanisms in neurons, microglia and astrocytes represents a point of 

convergence of many pathways that accelerate the progression of neuroinflammation to 

neurodegeneration in AD (Fig 2B). 

 

3. Multiple sclerosis (MS): 

Affecting over 2.5 million people worldwide, MS is a complex heterogeneous disorder of the 

CNS that begins as a relapsing remitting (RRMS) disease and often advances to a secondary 

progressive (SPMS) stage. Few MS patients exhibit primary progressive (PPMS) course from 

onset. The disease mechanism is extensively investigated in experimental autoimmune 

encephalomyelitis (EAE), an animal model that shares many clinical and histological features 

with human MS [37]. A feed-back loop between the CNS infiltration of circulating mononuclear 

cells, activation of microglial cells, secretion of toxic molecules that induce oligodendrocyte 

apoptosis and demyelination mediates MS pathology. The extent of demyelination and axonal 

injury determines the clinical disease.  

3.1. NF-κΒ and MS pathogenesis:  

Multiple NF-κB polymorphisms have been associated with increased susceptibility to MS. 

Structural polymorphism with an amino acid change from cysteine to arginine in position 738 in 

exon-4 of IκBL, is associated with predisposition to MS. Another polymorphism implicated in 

PPMS is an 8 base insertion in the promoter region of NFκΒ1A, the gene encoding IκBα [38]. 

NF-κΒ signaling plays a central role in the activation of both peripheral inflammatory cells and 
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the CNS resident glial cells that ultimately mediate inflammatory demyelination (Fig 3). Activated 

p65 has been reported in macrophages, microglia, astrocytes and oligodendrocytes in spinal 

cord lesions in EAE [37]. Macrophages in active demyelinating lesions of MS have been shown 

to overexpress p65, c-Rel, and p50 subunits of NF-κΒ [39].  Nuclear localization of p65 has also 

been observed in hyperactive astrocytes and oligodendrocyte surrounding the plaques in MS 

brains [39, 40].  Few studies have addressed the selective significance of the role of NF-κΒ 

signaling in the CNS in EAE/MS. Genetic deletion of the inhibitor of IKKβ specifically in CNS 

neurons has been shown to enhance the expression of immune mediators, reduce the levels of 

neuroprotective molecules and increase axonal damage resulting in severe, non-resolving EAE. 

This suggests that the NF-κΒ in neurons is critical in modulating the severity of autoimmune 

demyelination by enhancing neuroprotection and suppressing immune responses. Suppression 

of NF-κΒ by CNS restricted ablation of NEMO or IKKβ has been shown to ameliorate EAE [41]. 

In contrast, in a conditional ablation model in which the expression of a human transdominant 

negative IκΒ-αl was regulated in the basal forebrain and in selected neuronal subpopulations in 

the cerebellum and spinal cord, the clinical course and axonal densities in EAE was not affected 

[42].    

A large number of studies have investigated the role of NF-κΒ in T cells in MS pathology.  

Mice lacking p105/p50 subunit of NF-κB are resistant to myelin oligodendrocyte glycoprotein 

(MOG) induced EAE due to failure of T cells to differentiate into encephalitogenic effector cells 

[43]. Absence of the c-rel subunit of NF-κB is associated with near complete resistance to MOG 

induced EAE due to impaired function of Th17 cells and interruption of the positive feedback 

loop for NF-κB targets including IL-6 and other chemokines that increase the permeability of the 

blood brain barrier (BBB) [44].  DNA microanalysis of peripheral blood lymphocytes at the peak 

of acute relapse and at the point of complete remission showed differential expression of 43 
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genes, many of which are regulated by NF-κB and/or regulate NF-κB activation, thereby 

substantiating the central role of NF-κB transcriptional regulation in T cells during MS relapse. 

For example, BTRC, β-transducin repeat containing protein, a RING E3 protein that mediates 

ubiquitination of IκBα is one of the genes upregulated in T cells in MS relapse [45].   It has been 

suggested that persistent oscillation between activation and inactivation of NF-κB in 

autoreactive T cells mediated by subclinical infections or stress potentially contribute to the 

fluctuation of disease activity from relapse to remission in RRMS [45]. More recently modulation 

of the immuno-inflammatory transcriptome by the NF-κB regulated miRNAs has been implicated 

in the pathogenesis of RRMS. Thirty-three miRNAs have been shown to exhibit significant 

differences in expressions in MS patients as compared to healthy controls. An increase of 

miR223 and miR-23a in the peripheral blood cells and a reduction in the serum of same patients 

has been reported [46]. The different trend between extracellular and intracellular miRNA levels 

has been suggested to reflect a possible regulatory role of circulating miRNAs in intercellular 

communications.[46].  

 

4. NF-κB as a therapeutic target for neurodegenerative diseases: 

As discussed above Aβ aggregates, myelin debris and other CNS endogenous molecules as 

well as exogenous factors activate NF-κB in neural and glial cells mediating neuroinflammation 

and neurodegeneration [24]. Inhibition of neurodegeneration and promotion of neuroprotection 

following suppression of neuroinflammation has been demonstrated in animal models of AD and 

MS [47, 48]. Indeed the potential of non-steroidal anti-inflammatory drugs (NSAIDs) in reducing 

the risk of AD and the efficacy of glucocorticoids in the management of acute episodes of MS 

are largely attributed to the inhibition of NF-κΒ signaling [49, 50]. In Aβ induced astroglial cells, 

sodium salicylate has been shown to block NF-κΒ activation, suppress upregulation of APOE 
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and potentially inhibit further Αβ processing [23]. Mechanistically corticosteroids activated 

glucocorticoid receptor which in turn binds NF-κB-p65 in the nucleus interfering with its DNA 

binding activity and consequent suppressing transactivation of target genes [50]. Despite its 

significant anti-inflammatory potential studies in models of AD suggest a negative influence of 

glucocorticoids in disease pathology. In transgenic mice that develop both Aβ and tau 

pathologies glucocorticoids upregulate BACE1 and increased Aβ deposition accelerating AD 

development [51]. Furthermore, corticosteroids also increase excitotoxicity by suppressing  

glutamate transporter in microglia [49]. It has been suggested that a combination of 

corticosteroids, NMDA receptor blocking agents and  cholinesterase inhibitors may exhibit better 

efficacy suppressing neuroinflammation and neurodegeneration in AD [49]. The following is a 

summary of recent progress in the natural products, their synthetic derivatives and disease 

modifying agents for the treatment of AD and/or MS with a focus on NF-κΒ as a mechanistic 

target. 

  

4.1.: Polyphenols:  Several natural polyphenolic flavanoids and non-flavanoids have been  

assessed for beneficial effects in neurodegenerative diseases [52]. In addition to the potent anti-

oxidant capacity many polyphenols target different molecules, affect multiple signaling pathways 

and exert pleiotropic cellular effects.  

4.1.1.  Resveratrol (3,5,4’-trihydroxy-trans-stilbene), a type of phenol rich in grapes and red  

wine with potent anti-oxidant ability, has received considerable attention recently for its 

neuroprotective effects (Table 1). Resveratrol mediated neuroprotection has been attributed to 

three potential mechanisms including 1) scavenging ROS; 2) modulation of multiple kinase 

signal transduction pathways and 3) activation of specific sirtuins (SIRT1) pathway [52, 53]. 

Both inhibition of mitogen activated protein kinase (MAPK) and/or activation of SIRT1 pathway 

suppress NF-κΒ signaling [54, 55]. Inhibition of MAPK prevents phosphorylation of IκB kinases 
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thereby preventing activation of NF-κB complex [55]. The DNA binding ability and transcriptional 

activity of NF-κΒ-p65 is modulated by the acetylation status of specific lysine residues in its 

transactivation domain. SIRT1, a member of the NAD(+)-dependent deacetylases, deacetylates 

Lys301 of p65 and compromise its DNA binding ability, consequently inhibiting transcription of 

target genes [54]. In primary microglia and astrocyte cultures, resveratrol suppressed Αβ 

induced cell proliferation and cytokine production. In mixed neuronal/glial cell cultures it 

suppresses Αβ induced NF-κΒ activation and prevented microglia dependent neuronal 

apoptosis [54]. In pheochromocytoma cells resveratrol prevented Αβ induced apoptosis by 

inhibiting ROS, suppressing pro-apoptotic BAX and upregulating anti-apoptotic Bcl-2 gene 

transcription [56]. Treatment with resveratrol prevented Aβ induced neurotoxicity in animal 

models of AD by suppressing transactivation of iNOS and other cytotoxic factors [47]. LD55, a 

synthetic analog of resveratrol (Table 1) without the hydroxyl group, also reduced Αβ plaque 

formation and neuroinflammation in a model of AD suggesting that the neuroprotective effects of 

resveratrol can occur even in the absence of its anti-oxidant potential [57]. However a non 

hydroxylated trimethoxy analog of resveratrol did not protect neuronal cells from glutamate 

mediated toxicity [58]. In EAE, resveratrol ameliorated disease by inducing apoptosis of 

activated T cells in the periphery and by suppressing pro-inflammatory responses [48].  

Resveratrol and SIRT1 activators such as SRT1720 or SRT501 (Table 1) have been shown to 

reduce retinal ganglion cell loss, protect against optic neuritis and exert neuroprotective effects 

without suppressing inflammation in EAE [59, 60]. However, in alternate models of autoimmune 

demyelination daily oral administration of resveratrol exacerbated the disease suggesting that 

caution should be exercised in extrapolating its efficacy in EAE for MS patients [61]. Thus 

resveratrol, its small molecule functional analogs and SRT1 activators offer considerable 

promise as inhibitors of neuroinflammation and neurodegeneration for AD and MS. 
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4.1.2. Polyphenolic curcuminoids are mixtures of curcumin (Table 1), bisdemethoxycurcumin, 

and demethoxycurcumin (Table 1) derived from the traditional herb turmeric or Curcuma longa 

[30]. Pretreatment with curcumin prevented neurotoxicity in 6-hydroxydopamine (6-OHDA) 

induced neuronal cells by preventing ROS production and intracellular oxidative stress [62]. 

Curcumin has also been shown to improve spatial memory loss in a rat model of AD [63].   

Furthermore curcuminoids have been shown to inhibit toxic amyloid aggregate, suppress Aβ 

oligomer formation and accelerate disaggregation of amyloid plaque supporting a therapeutic 

potential [64]. It has been suggested that the curcuminoid mixtures and its individual 

components could exhibit distinct effects on the inflammatory and apoptosis gene expression 

profiles. In an Aβ peptide infused model of AD, while demethoxycurcumin was more effective in 

reducing IL-1β secretion, the curcuminoid mixture suppressed COX-2, FasL and Fas receptor 

expression in the hippocampus [30].   Treatment with curcumin has been shown to ameliorate 

EAE by inhibiting pro-inflammatory cytokine responses in microglial cells and preventing 

differentiation of neural antigen specific T cells [65, 66]. The divergent effects of curcumin 

depend on its pleiotropic molecular effects including regulation of signal transduction pathways 

that lead to activation of transcription factors. Demethoxycurcumin has been shown to inhibit 

IκΒα phosphorylation, prevent NF-κB activation and suppress proinflammatory gene expression 

in lipopolysaccharide stimulated microglial cells [67]. Treatment with tetrahydrocurcumin inhibit 

interleukin-1 receptor-associated kinase (IRAK-1) activity by suppressing upregulation of NF-κΒ 

dependent miRNA146 in Αβ stimulated human astroglial cells. In addition, curcumin also has 

been shown to suppress NF-κB mediated IRAK-2 activity and mediate neuroprotection [68]. 

Despite the promising therapeutic potential, poor water solubility, fast degradation profile and 

poor bioavailability are significant hurdles for the clinical use of curcumin. Nanocurcumin is a 

stable form of curcumin that has been shown to cross the BBB into the CNS [69, 70]. A highly 

stable nanoformulation of curcumin has been shown to mediate significant improvements in 



16 

 

working and cue memory in a mouse model of AD despite being poorer than the native 

curcumin in reducing the Αβ plaque density [69].  

 

4.1.3: Epigallocatechin-3-gallate (EGCG) (Table 1), a major polyphenolic extract of  

green tea, has been shown to exhibit significant neuroprotective effects against a variety of toxic 

insults and neuronal injuries [52]. In β-amyloid-induced pheochromocytoma12 cells EGCG 

treatment prevent apoptosis by inhibiting activation of ERK/p38 MAPK and NF-κΒ signaling 

pathways [71]. EGCG inhibits the fibrillization of Αβ in vitro by interfering with IKKβ activation 

and consequently suppressing NF-κΒ mediated transactivation of β-secretase and release of 

soluble APP [72]. In animal models of AD EGCG improve memory function by reducing NF-κΒ 

mediated β- and γ-secretase activities and consequently the extracellular Αβ levels [73]. In EAE, 

while treatment with EGCG alone suppress disease by inhibiting NF-κΒ mediated 

transactivation of inflammatory mediators, combination of EGCG and glatiramer acetate has 

been shown to reduce neuronal cell death and promote axonal outgrowth of primary neurons 

[74]. 

 

4.2: Terpenoids:  

Terpenoids are widespread class of secondary metabolites, alternatively referred to as terpenes 

or isoprenoids. Chemically all terpenoids may be considered to be derived from a basic 

branched C5 unit isoprene (2-methyl-1, 3-butadiene) and are classified based on the number of 

C5 units present in the molecule as hemi, mono, di or tri terpenoids [75].  Plant-derived 

triterpenoids, such as oleanolic acid are known to exhibit potent anti-inflammatory properties. A 

synthetic methyl ester analog of oleanolic acid (Table 1), has been shown to suppress Αβ 

peptide induced proliferation and cytokine production in microglial cells and inhibit intracellular 
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oxidative stress in primary neuronal cells or mixed neuron-glia cultures [76]. Treatment with 

oleanolic acid has been shown to prevent EAE by suppressing peripheral inflammation and 

preventing CNS infiltration of inflammatory cells [77]. The suppressive potential of triterpenoids 

has been attributed to blocking the canonical NF-κΒ pathway by direct inhibition of IκΒ kinases 

[75].  Glycyrrhizic acid (GA), a triterpenoid saponin glycoside from the roots and rhizomes of 

licorice has been suggested to possess significant anti-inflammatory potential. Diammonium 

glycyrrhizinate (DG) (Table 1), the salt form of glycyrrhizin acid (GA), has been shown to inhibit 

Aβ1–42 induced activation of p65 and MAPK signaling pathways in microglial cells and attenuate 

memory deficits in Aβ1-42 induced AD in mice [78]. Xanthoceraside (Table 1), a triterpenoid 

saponin extracted from the husks of Xanthoceras sorbifolia Bunge has been shown to suppress 

MAPK and NF-κB signaling and inhibit the release of nitric oxide (NO) and pro-inflammatory 

cytokines in Aβ peptide induced microglial cells [79]. Adenanthin (Table1), a diterpenoid isolated 

from the leaves of Isodon adenanthus, has been shown to exhibit preventive and therapeutic 

effects in EAE. Adenanthin reduce the stimulatory capacity of macrophages, suppress Th1 and 

Th17 cells and proinflammatory cytokines as well as upregulate regulatory T cell populations 

[80]. Mechanistically adenanthin has been shown to suppress the DNA binding activity of 

recombinant p65 protein in a dose dependent manner [75, 80]. Tripchlorolide (table1) a small 

molecule analog of triptolide derived from the Chinese herb Tripterygium Wilfordii Hook F 

(TWHF) is a diterpenoid. Treatment with triptolide inhibits Αβ peptide induced pro-inflammatory 

cytokines in microglial cells by inhibiting p38 MAPK and NF-κΒ signaling pathways [81]. In 

addition, triptolide has been shown to protect neuronal cell lines and primary cortical neurons 

against microglia mediated Aβ induced toxicity by inhibiting NF-κB and JNK pathways and 

consequently attenuate  cyclooxygenase -2 (COX-2), iNOS and cytokine production [82]. 

Triptolide has been shown to ameliorate EAE by inhibiting IκΒα phosphorylation, preventing NF-
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κΒ nuclear translocation and upregulating heat shock protein 70 (Hsp70).  It has been 

suggested that the Hsp70 binds the p65 subunit, stabilizes and sequesters the NF-κΒ:IκΒ-α 

complex in the cytoplasm thereby preventing immuno-inflammatory responses [83].   

 

4.3: NF-κΒ targeting disease modifying drugs (DMD):  

Considerable experimental data suggest that many of the DMDs suppress the 

neuroinflammation-neurodegeneration process act by inhibiting NF-κB activation either directly 

or indirectly [1, 4].  The efficacy of previously developed anti-cytokine therapies is attributed to 

the shifting of the proinflammatory cytokine responses to an anti-inflammatory cytokine profile, a 

process which integrally involves NF-κB mediated transactivation of inflammatory and inhibitory 

genes [84]. Compelling evidence also suggest that in addition to the protection against loss of 

cholinergic neurons, the effects of anti-cholinesterase’s in suppressing Aβ mediated pathology 

can also be attributed to the inhibition of NF-κΒ mediated inflammatory signaling [85].  

 

4.3.1: Sphingosine-based phospholipids are abundant structural components of cell 

membranes. Phosphorylation of sphigosine by sphingosine kinase forms sphingosine-1-

phosphate (S1P) that acts binding S1P specific receptors predominantly expressed in lymphoid 

tissues, resting T cells and B cells. Lymphocyte egress from secondary lymphoid organs is 

facilitated by a S1P gradient mediated by S1P receptor subtype 1. Derived from the natural 

product myriosin, a metabolite of the fungus Isaria sinclairii, fingolimod is a structural analog of 

S1P (Table1). It acts by binding the S1P receptor on lymphocytes and prevent egression of 

effector T cell from lymph nodes thereby suppressing immuno-inflammatory responses [86]. 

Considerable evidence suggests that the fingolimod also binds S1P receptors on astrocytes and 

microglia and reduce gliosis and neurodegeneration [87].  In AD models fingolimod has been 

shown to ameliorate oligomeric Aβ-induced neuronal damage by upregulating BDNF synthesis. 
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Mechanistically fingolimod has been shown to prevent increase in intracellular calcium, 

suppress NF-κB activation and eliminate the NF-κB/IL-6/STAT3 amplification cascade in 

antigen activated cells [88].  Quinolone 3 carboxamide derivatives such as laqunimod have 

been shown to suppress NF-κB activation in astrocytes and ameliorate disease in a model of 

cuprizone-induced demyelination [89].  

 

4.3.2: Vasoactive intestinal peptide (VIP) (Table1) and pituitary adenylate cyclase activating 

polypeptide (PACAP) (Table1) are bioactive peptides widely expressed in central and peripheral 

nervous system that exhibit potent anti-inflammatory and neurotrophic properties [90, 91]. In 

EAE, VIP and PACAP ameliorate disease by suppressing CNS infiltration of autoreactive T cells 

and by skewing the effector T cell response from pro-inflammatory to anti-inflammatory 

phenotype [91]. In mixed neuronal/glial cell cultures treatment with VIP inhibit Αβ mediated NF-

κΒ activation in glial cells and suppress degeneration of neuronal cells. VIP suppresses NF-κΒ 

activation by blocking IKK, thereby inhibiting phosphorylation and degradation of IκΒα [90]. 

 

4.3.3: Signal transduction inhibitors: Several strategies have been attempted to inhibit signaling 

molecules that enhance inflammatory and/or apoptotic cellular responses. A large number of 

kinase inhibitors have been evaluated in models of cancer and inflammation with suggested 

potential for neuroinflammatory neurodegenerative diseases [4, 92]. High similarity between the 

kinase sub-family members, presence of ubiquitous ATP binding sites in all kinases, presence 

of numerous other non-kinase proteins that utilize ATP and the need to block more than one 

kinase are significant challenges in developing selective kinase inhibitors without off-target 

effects [92]. It has been suggested that inhibition of p38 MAPK, in particular p38α could 

represent an attractive neuroprotective strategy in both MS and AD [93]. In rats injected Αβ1-42 

peptides, an inhibitor of p38 MAPK (Table1) suppress nuclear NF-κΒ in hippocampal neurons 
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[93]. A eukaryotic translation initiation factor 2 phosphatase inhibitor (Table1) attenuate Αβ 

induced microglial activation and neuronal cell death by suppressing IKK activation, IκΒ 

degradation and the subsequent nuclear translocation of p65 [94].  

 

4.3.4. Decoy nucleotides that inhibit NF-κΒ mediated transcriptional activity have been shown to 

inhibit Αβ-triggered release of cytochrome c, rescue expression of BCL-XL, and interfere with 

intracellular accumulation and extracellular deposition of Αβ [95]. Direct targeting of NF-κB with 

NBD (NEMO binding domain peptide) (Table 1) that disrupts the integrity of the IKK complex or 

administration of IKK inhibitory compound PS-1145 has been shown to ameliorate EAE [96]. 

Peptides derived from the transactivation domain of p65 (Table1) selectively inhibit NF-κB 

activation induced by various inflammatory stimuli, suppress NF-κB-mediated gene expression 

and increase apoptosis in monocytic macrophage like cells [97]. A peptide derived from the 

glucocorticoid induced leucine zipper (GILZ) (Table1), a protein that binds and sequesters the 

p65 subunit of NF-κΒ in the cytoplasm has been shown to ameliorate EAE by inhibiting 

activation of inflammatory cells and cytokine secretion [98]. In addition the GILZ-peptide has 

been shown to suppress glutamate synthesis by lipopolysaccharide activated macrophages 

suggesting neuroprotective potential and applications in AD [99].   

 

5. Conclusions and future perspectives: 

Disorders of the brain and nervous system have been recognized as major health challenges by 

the global burden of disease study [100]. Despite considerable advances in the elucidation of 

the underlying molecular mechanisms, few treatments exist that can reverse or slow the course 

of chronic neurological diseases. Considerable evidence support common inflammatory 

mechanism in the progression of various chronic neurodegenerative diseases with diverse 

clinical manifestations.  A predominant consequence of increased inflammatory signaling is the 
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upregulation of the inducible transcription factor NF-κB with ensuing self-sustaining and self-

propagating vicious cycle of uncontrolled, prolonged inflammation that drives the 

neurodegenerative process [2]. Hence interruption of this vicious cycle by targeting the NF-κB 

signaling pathway constitutes an attractive disease-modifying therapeutic strategy for 

neurodegenerative pathologies [2]. However, caution should be exercised in the development 

and evaluation of potential NF-κB inhibitors for CNS diseases since constitutively active NF-κB 

in neurons is critical for neuronal growth and survival [2, 4]. Furthermore the wide spectrum of 

inducible NF-κΒ responses from neuroprotection to neurodegeneration depending on the 

strength of the triggering event(s) and the type of NF-κΒ dimers activated adds to the 

complexity of the therapeutic regimen [15].  The beneficial effects of anti-NF-κΒ therapeutic 

strategies are likely to be effective in pathological conditions that exhibit highly stimulated NF-κΒ 

that disrupts homeostatic function such as the sporadic or rapidly progressing advanced AD. A 

better understanding of the molecular events that determine the point of conversion(s) of NF-κΒ 

responses from being protective to damaging effects is needed for therapeutic modulation of 

neuroinflammation and neurodegeneration.   

6. Expert opinion: 

Numerous studies support the critical role of chronic inflammation as a common denominator of 

multiple neurodegenerative diseases with varied clinical features. Sustained or unregulated 

activation of NF-κΒ is integral to the persistence of inflammation making NF-κΒ pathway an 

important therapeutic target. Indeed several USFDA approved drugs including dexamethasone 

and donepezil inhibit NF-κΒ signaling as part of their therapeutic effects. Considerable efforts by 

pharmaceutical industry and academic drug discovery units are directed towards developing 

targeted inhibitors of NF−κΒ. Strategies that block molecules upstream of NF-κΒ pathway or the 
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associated signaling adapters or those that target the IκΒ inhibitory proteins have been shown 

to exhibit significant propensity for systemic and off-target toxicities. An additional level of 

complexity to be taken into consideration in targeting NF−κΒ in the CNS is the dual and 

opposite roles of activated NF-κB in neuronal survival and apoptosis. Recent elucidation of 

mechanisms of NF−κΒ suggest that while the activation of c-rel containing dimers mediate 

neuroprotective effects by upregulating neurotrophic and anti-apoptotic genes, increased 

activation of p65/p50 dimers predominantly precipitate neurodegeneration by increasing 

transactivation of pro-apoptotic and neurotoxic mediators in the CNS. Under physiological 

conditions a homeostatic balance exists between the proportions of activated c-rel containing 

dimers and p65/p50 dimers that maintain neuroprotection while preventing neurotoxicity. 

Superimposition of secondary stressors such as aging, increased oxidative stress or injury in 

susceptible hosts, increases activated p65/p50 dimers and shifts the balance towards 

inflammation and neurodegeneration (Fig 1B). Strategies that directly target p65/p50 dimers are 

likely to regain the homeostasis. Since elevated p65 is highly expressed only in pathologically 

activated cells, selective targeting of this NF-κΒ subunit may yield therapeutic drugs with better 

safety profile. In recent years chemical derivatives of natural compounds that inhibit NF-κΒ have 

been evaluated for therapeutic potential in neurodegenerative diseases. Mechanistically the 

active chemical moiety of many natural compounds such as the diterpenes have been shown to 

form adducts with select residues of p65, compromising its DNA binding and transactivation 

ability.  

Importantly the expanding network of NF-κΒ interactors has increased the potential for 

identifying newer targets for specific inhibition. The challenge lies in targeting large interfaces of 

protein-protein and protein-DNA interactions. Nevertheless, advances in high throughput 

screening platforms, structural biology, computational biology and rational drug design 
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strategies augment the identification and development of select NF-κΒ inhibitors with potential 

therapeutic value.  Characterization of the synthetic derivatives of natural compounds and the 

rationally designed agents will promote the development of small-molecule inhibitors of RelA 

with better benefit to risk ratio for human therapeutics.  

 

7. Article highlights box: 

1. In the CNS, the ability of NF-κΒ to mediate either neuroprotective effects or to promote 

neuroinflammation progressing to neurodegeneration has been attributed to the 

composition of the NF-κΒ dimers. While activation of c-rel containing dimers promotes 

neuroprotection, upregulation of the p65 subunit of NF-κΒ via the canonical pathway 

mediate neuroinflammation and apoptosis of CNS cells.  

2. Many naturally occurring compounds or their functional derivatives exert neuroprotective 

efficacy by inhibiting the canonical NF-κΒ pathway. For example, diterpenoids like 

adenanthin or the functional analogs of resveratrol such as the sirtuin activators have 

been shown to interact with the p65 subunit interfering with its DNA binding and 

transcriptional ability. 

3. The active moiety of the natural compounds and peptide mimics of the NF-κΒ interacting 

proteins can provide efficient lead agent(s) for developing specific small molecule 

inhibitors of p65/NF-κΒ. Based on the ubiquitous expression and diverse functions of 

NF-κΒ in multiple cellular events, such specific inhibitors are likely to be most effective in 

conditions with highly elevated activated p65 such as the spontaneous AD or MS 

relapses. 
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Figure Legend: 

Fig 1: Schematic representation of NF−κΒ activation pathways in neurodegeneration and 

neuroprotection.  Stimulation of neural or glial cells with stimuli such as IL-1β or NGF (nerve 

growth factor), BDNF (brain derived nerve factor) or membrane glutamate receptor-5 (mGlu5) 

leads to phosphorylation of IKK proteins, ubiquitination of IκΒα and activation of c-rel containing 

NF−κΒ heterodimers, which upon translocation to the nucleus mediate transactivation of anti-

inflammatory genes (such as IL-10 and glucocorticoid induced leucine zipper (GILZ), anti-

apoptotic factors (such as Bcl-2) and neuroprotective factors such as NGF, manganese-

superoxide dismutase (Mn-SOD). Stimulation with noxious stimuli such as myelin fragments or 

Aβ peptides increases intracellular Ca++ and oxidative stress, leads to phosphorylation of IKK 

proteins, ubiquitination of ΙκΒα and activation of p50:p65 NF−κΒ heterodimer which upon 

translocation to the nucleus induces transactivation of pro-inflammatory genes (such as IL-12, IL-

17), pro-apoptotic genes (such as caspases, Bax) and neurotoxic factors [glutamate, induced 

nitric oxide synthase (iNOS)]. (B) In health a homeostatic balance between activated c-rel 

containing dimers and the p65:p50 dimers plays a role in maintaining synaptic activity, neuronal 

plasticity and heath.  Increase in activated p65:p50 dimers leads to enhanced transactivation of 

pro-apoptotic and excitotoxic factors leading to neuroinflammation and neurodegeneration. NF-

κΒ targeting agents edge the disrupted balance towards the homeostatic level. 

 

Fig 2: Role of NF−κΒ in AD neurodegeneration: (A) In susceptible hosts, factors associated with 

normal cognitive decline such as aging, oxidative/metabolic stressors/toxins/ trauma leads to 

intracellular accumulation of Aβ peptides in neural and glial cells. Initially the affected neurons 

exhibit increased intracellular Ca++ that stimulate NF−κΒ signaling with subsequent release of 
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reactive oxygen species (ROS) as well as transactivation of neurotrophins such as nerve growth 

factor (NGF) and anti-apoptotic genes such as Bcl-2. In pre-plaque stages Aβ peptides derived 

from damaged neurons stimulate resting microglial cells to secrete TNF-α which in turn inhibits 

the neurotoxicity induced by ROS. Activated glial cells also exhibit increased NF−κΒ signaling 

and transactivation of neurotrophic factors such as NGF and brain derived nerve factor (BDNF). 

Thus the cumulative effect in early AD shifts in favor of neuroprotection. (B): Continued 

excessive extracellular accumulation of Aβ peptides and tau aggregates induces increased 

intracellular Ca++, activation of NF−κΒ, release of ROS, induced nitric oxide synthase (iNOS), 

nitric oxide (NO) by neuronal cells with concomitant activation of microglial cells. Both glial and 

neural cells upregulate NF−κΒ mediated synthesis of excitotoxic glutamate, inflammatory 

cytokines and oxidative stress promoting neuronal damage. The adjacent astrocytes stimulated 

by Aβ deposits also upregulate NF−κΒ mediated release of free radicals and cytokines. 

Continued aggregation of deposits initiates a positive feed-back loop between activated glia and 

astrocytes and neuronal cells leading to synaptic dysfunction, cell death and persistent AD. 

 

Fig 3: Model of the role of NF−κΒ in mediating neurodegeneration in multiple sclerosis. NF−κΒ is 

upregulated in a variety of cell types in MS.  Elevated NF−κΒ in peripheral mononuclear cells 

induces inflammatory cytokines and activate endothelial cells which in turn upregulate NF−κΒ 

activation and increase expression of adhesion molecules facilitating infiltration of mononuclear 

cells into the CNS parenchyma. Activated microglia release reactive oxygen species (ROS) 

increase oxidative stress mediating tissue damage. Resolving glia phagocytose tissue debris. 

Activated glial cells also exhibit increase NF−κΒ activation and secretion of anti-inflammatory 

cytokines (IL-10) and neurotrophins (NGF). During relapse reactivated glial cells exhibit elevated 
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NF−κΒ mediated transactivation of pro-inflammatory cytokines, ROS, induced nitric oxygen 

synthase (iNOS) initiating demyelination and axonal injury leading to neurodegeneration.  

 

Table 1: Potential NF−κΒ inhibitors. 

AD; Alzheimer’s disease, MS; multiple sclerosis; Mn-SOD; manganese superoxide dismutase; 

VIP; vasoactive intestinal peptide, PACAP; pituitary adenylate cyclase-activating peptide, 

NEMO; NF-κΒ essential modulator, GILZ; glucocorticoid leucine zipper, EAE; experimental 

autoimmune encephalomyelitis. 

 

 



Table 1: Potential NF-κΒ inhibitors 

   Mechanism/s of NF-κB inhibition References 
 

 
 
 
 
 
Polyphenols 

Resveratrol 
and functional 
analogs 

Resveratrol 
 

Suppress neuroinflammation by sirt1 dependent 
deacetylation of p65 and prevent apoptosis of by 
p53deacetylation. 

50, 51, 54-55, 
57. 

Exacerbate EAE-increased CNS infiltration. 58-59,62 
LD-55 Suppress microglial activation and plaque density 

in AD model 
56 

 
Curcuminoids 

Curcumin Suppression of IκBα kinase activation. 
Inhibit miRNA.  

63,64,69-71 
 Desmethoxy 

curcumin 
 Epigallocatechin 

gallate  (EGCG) 
Inhibiting activation of p38 MAPK and NF-
κΒ signaling. Reduce NF-κΒ mediated β- and γ-
secretase activities. 

72-74 

 
 
Imidazole 
derivatives 

Sirtuin 
activators 

SRT 1720 
Induces NF-κB mediated transactivation of 
FOXO3, increases MnSOD activity. 
Prevented neuronal loss without suppressing 
inflammation in EAE. 

58,60 

 
 
 
 
 
Terpenoids 

 
 
Triterpene/ 
triterpenoids 

Oleanolic acid Inhibit phosphorylation of IκBα 76,78 

Xanthoceraside Prevent mitochondrial dysfunction, 
Inhibit nuclear translocation of NF-κB 

80 

Diammonium 
glycyrrhizinate  

Prevent MAPK signaling and nuclear translocation 
of p65 

76, 79 

 
 
Diterpenoids 

Adenanthin Interfere with the DNA-binding activity of 
NF-κB to its response DNA sequence 

76,81 

Tripchlorolide Inhibit IκBα phosphorylation 
Inhibit DNA binding activity of NF-κB 

76,82-83 

Disease 
modifying 
agents/ 
drugs 

 Fingolimod 
hydrochloride 

Prevent S1P mediated activation of NF-κB and 
gene transcription. 

88,89 

 VIP Inhibit phosphorylation and ubiquitination of IκBα  90,91 
 PACAP Inhibit phosphorylation and ubiquitination of IκBα 91 

p38α inhibitors Inhibit phosphorylation of IΚBα 93 



Signal 
transduction 
inhibitors 

Salubrinal IKK activation, IκB degradation and nuclear 
translocation of NF-κB 

94 

NEMO binding 
domain peptide 

IKK activation  96 

p65 peptide Inhibit phosphorylation and nuclear translocation 
of p65 

97 

GILZ peptide Inhibit nuclear translocation of p65 98,99 
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