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Abstract

Quorum-quenching catalysts are of interest for potential application as biochemical tools to 

interrogate interbacterial communication pathways, as anti-biofouling agents, and as anti-infective 

agents in plants and animals. Herein, the structure and function of AidC, an N-acyl-L-homoserine 

(AHL) lactonase from Chryseobacterium, is characterized. Steady-state kinetics show that zinc-

supplemented AidC is one of the most efficient wild-type quorum-quenching enzymes 

characterized to date, with a kcat/KM value of approximately 2 × 106 M−1s−1 for N-heptanoyl-L-

homoserine lactone. The enzyme has stricter substrate selectivity and significantly lower KM 

values (ca. 50 μM for preferred substrates) than typical AHL lactonases (ca. > 1 mM). X-ray 

crystal structures of AidC alone, and with the product N-hexanoyl-L-homoserine were determined 

at resolutions of 1.09 and 1.67 Å, respectively. Each structure displays as a dimer, and dimeric 

oligiomerization was also observed in solution by size-exclusion chromatography coupled with 
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multi-angle light scattering. The structures reveal two atypical features as compared to previously 

characterized AHL lactonases: a ‘kinked’ α-helix that forms part of a closed binding pocket which 

provides affinity and enforces selectivity for AHL substrates, and an active-site His substitution 

that is usually found in a homologous family of phosphodiesterases. Implications for the catalytic 

mechanism of AHL lactonases are discussed.
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One of the most prominent social behaviors displayed by bacteria is quorum-sensing, the 

ability to coordinate gene expression in response to population density through the 

production and detection of interbacterial signaling molecules such as the N-acyl-L-

homoserine lactones (AHLs).1 Enzymes capable of blocking these signaling pathways, 

called quorum-quenching enzymes, are important biochemical tools for probing quorum-

sensing pathways.2 They also hold considerable promise as reagents to prevent marine and 

membrane biofouling, as treatments to prevent costly infections of plants and fish, as 

potential protein therapeutics, and possibly as tools to manipulate interactions between 

diverse microbes.3–7 Some of the quorum-quenching enzymes most widely used for such 

applications are AHL lactonases, which use a dinculear zinc center to hydrolyze a wide 

range of AHL substrates (Figure 1).8

The gene encoding an AHL lactonase with unusual properties has been previously 

identified: aidC an autoinducer degrading gene isolated from a Chryseobacterium sp. strain 

StRB126 originally associated with potato roots.9 The encoded protein, AidC (Genbank 

Protein: BAM28988; EC: 3.1.1.81), catalyzes the hydrolytic ring opening of multiple N-acyl 

homoserine lactone (AHL) substrates. Analysis of protein sequence alignments revealed that 

AidC is homologous to other AHL lactonases found in the metallo-hydrolase / 

oxidoreductase superfamily, and shares a conserved dinuclear metal binding motif. 

However, AidC is phylogenetically distant from the other AHL lactonase clusters.9 For 

example, optimal global pairwise alignment10 of AidC with two other homologous dizinc 

AHL lactonases, AiiA (autoinducer inactivator A from Bacillus sp. 240B111) and AiiB 

(autoinducer inactivator B from Agrobacterium tumefaciens C5812) show only ~20% and 

~17% amino acid identity, respectively. Additionally, these sequence alignments predict that 

active-site Asp and Tyr residues, conserved in other AHL lactonases due to their roles in 

zinc-binding and catalytic turnover, are possibly replaced in AidC by Leu and Ser, 

respectively.9, 13, 14 However, the most striking feature of AidC is its reported KM values. 

All previously characterized wild-type AHL lactonases have KM values ≥ 1.4 mM14–16, with 

the exception of MomL (440 μM; Muricauda olearia marine AHL lactonase).17 In contrast, 

the reported KM values for AidC are approximately ≥ 24-fold lower: 46 – 72 μM.9 The 

lower KM values of AidC are of interest since a better understanding of how quorum-

quenching enzymes recognize and process their substrates can enable their appropriate 

selection and optimization as biochemical tools and help in the proposed development of 

this class of enzymes as therapeutic, anti-infective, and anti-biofouling proteins.3–7 Toward 

these ends, we report here the characterization of purified AidC alone, and with a bound 
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product. Two aspects of the active site are atypical compared to previously characterized 

AHL lactonases: a novel substrate-binding pocket defined, in part, by an unusual ‘kinked’ α-

helix containing an internal proline residue, and an active site His substitution that is usually 

found in more distant superfamily members that belong to a different family, the 

phosphodiester hydrolases.

MATERIALS AND METHODS

Materials

Unless otherwise noted, all chemicals were purchased from Sigma-Aldrich Chemical col (St. 

Louis, MO), and all enzymes used for cloning were purchased from New England BioLabs 

(Beverly, MA). The lactones assayed as substrates, γ-butyrolactone (GBL) and tert-

butyl(tetrahydro-2-oxo-3-furanyl)carbamate (t-BOC-HSL), were purchased from Sigma-

Aldrich Chemical Co. (St. Louis, MO). N-Butyryl-L-homoserine lactone (C4-HSL) and N-3-

oxo-octanoyl-L-homoserine lactone (3-oxo-C8-HSL) were from Cayman Chemical Co. 

(Ann Arbor, MI). N-Pentanoyl-(S)-homoserine lactone (C5-HSL), N-hexanoyl-(S)-

homoserine lactone (C6-HSL), N-heptanoyl-(S)-homoserine lactone (C7-HSL), N-octanoyl-

(S)-homoserine lactone (C8-HSL), N-decanoyl-(S)-homoserine lactone (C10-HSL), N-

dodecanoyl-(S)-homoserine lactone (C12-HSL), and N-cinnamoyl-(S)-HSL (C-HSL) were 

synthesized from (S)-α-amino-γ-butyrolactone hydrochloride and the corresponding acyl 

chloride similar to the methods described previously.14, 18 Substrate stock solutions were 

prepared in methanol, with the final assay mixtures containing 1% methanol cosolvent.

Cloning, expression and purification of AidC

The coding sequence for AidC from Chryseobacterium sp. Strain StRB126, was codon 

optimized for expression in Escherichia coli; a sequence encoding the cleavage site for 

tobacco etch virus (TEV) protease (ENLYFQG) was inserted at the 5′ end of the AidC 

coding region; restriction sites EcoR1 and Nde1 were added to the 5′ and 3′ ends, 

respectively; and the resulting sequence was ordered from Integrated DNA Technologies, 

Inc. (Figure S1). A shuttle vector carrying the synthesized gene and a commercial protein 

expression vector, pMAL-C5X (New England Biolabs, Beverly, MA), were both digested 

using restriction enzymes EcoR1 and Nde1, and the resulting insert containing aidC was 

ligated into the expression vector using T4 DNA Ligase (New England Biolabs, Beverly, 

MA) to yield a protein expression plasmid encoding an N-terminal maltose binding protein 

(MBP) linked through a TEV cleavage sequence to the full length AidC enzyme. The 

resulting vector (pMAL-t-AidC) was used to transform E.coli DH5a cells for plasmid 

storage and amplification. The entire coding region in pMAL-t-AidC was verified by DNA 

sequencing to determine that there were no unintended mutations (CRC DNA Sequencing, 

University of Chicago).

For protein production and purification, pMAL-t-AidC was used to transform E. coli 

BL21(DE3) cells. The resulting E. coli BL21(DE3)(pMAL-t-AidC) cells were incubated at 

37 °C while shaking in Luria-Bertani (LB) medium supplemented with 100 μg/mL 

ampicillin. When the culture OD600 value reached 0.6–0.8 absorbance units, expression of 

the MBP-t-AidC fusion protein was induced by addition of 0.3 mM IPTG. The LB medium 
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was supplemented with 0.5 mM ZnSO4, and expression was continued for an additional 16–

18 h at 25 °C after induction. Cells were harvested by centrifugation at 12400 × g, washed 

with Wash Buffer (20 mM Tris-HCl buffer with 200 mM NaCl at pH 7.4), and stored at −80 

°C after flash freezing in liquid nitrogen. The frozen cell pellet was thawed, sonicated in 

Wash Buffer, and centrifuged at 40000 × g to pellet cell debris, which was discarded. The 

resulting supernatant was loaded onto an amylose affinity column (16 × 25 mm Dextrin 

Sepharose – MBL Trap HP, GE LifeSciences, preequilibrated with Wash Buffer). The 

column was washed with Wash Buffer and the MBP-t-AidC fusion protein was eluted from 

the column using Wash Buffer supplemented with maltose (10 mM). Fractions were 

evaluated using coomassie-stained SDS-PAGE, and those fractions containing MBP-t-AidC 

were combined and treated batch-wise with TEV protease, following previously published 

protocols.19 The resulting cleaved proteins were exchanged into Ion Exchange Buffer 

(20mM Tris-HCl, 5mM NaCl at pH 7.5) and loaded onto a column (XK 16/20 GE 

LifeSciences) loaded with diethylaminoethanol (DEAE)-sepharose ion exchange resin to 

separate MBP, TEV protease and the untagged AidC. The column was equilibrated with Ion 

Exchange Buffer (20 mM Tris-HCl, 5 mM NaCl at pH 7.5) and after loading, the protein 

eluted by a linear gradient between Ion Exchange Buffer and the same buffer supplemented 

by 1 M NaCl. Fractions containing untagged AidC protein were pooled, concentrated using 

a 10,000 molecular weight cut off (MWCO) Amicon-Ultra centrifugal filter device 

(Millipore, MA), and further purified by size exclusion chromatography using a HiLoad 

Superdex-200PG column, 16 × 600 mm (GE Lifesciences, CA). The column was 

equilibrated and the protein was purified using Size Exclusion Buffer (50 mM HEPES 

buffer, 300 mM NaCl, pH 7.5). During the purification, fractions were assayed for the 

presence of MBP-t-AidC or AidC at each step by using 12% SDS-PAGE, followed by 

staining with EX-Run Gel Staining Solution (Fisher BioReagents) to detect bands at ~ 75 or 

~ 32 kDa, respectively. The final purified untagged AidC protein appeared homogenous 

when characterized on a Coomassie-stained 12% SDS-PAGE gel. Protein concentrations in 

solution were measured using bovine serum albumin (BSA) standards and the Bradford 

assay (BioRad). This purification procedure typically results in a yield of 10 mg of purified 

untagged AidC / L culture media.

Determining the zinc dependence, steady-state kinetic parameters, and zinc content of 
purified AidC

Substrate hydrolysis rates were monitored using a previously described continuous 

spectrophotometric assay in which the pH indicator phenol red acts as part of the Assay 

Buffer (1 mM Hepes at pH 7.5), and results in a change in colorimetric signal upon 

protonation by the net release of a proton upon lactone hydrolysis.19 The optimal Assay 

Buffer zinc concentration was determined by monitoring hydrolysis of saturating 

concentrations of C6-HSL (1 mM) as catalyzed by AidC (27 nM) to determine the 

maximum observed initial rates upon varying the zinc concentration (0 – 100 μM). To 

determine the relationship between AidC concentration and kcat, the substrate t-BOC-HSL 

(5 mM) was used at saturating concentrations while the enzyme concentration was varied (0 

– 250 nM). The concentration of AidC was determined using a calculated20 extinction 

coefficient (ε280 = 29160 M−1cm−1). The stoichiometry of bound zinc ions to protein in 

purified AidC was determined by dividing the total zinc concentration determined using the 
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colorimetric chelator 4-(2-pyridylazo)resorcinol under denaturing conditions, as described 

previously,21 by the concentration of AidC.

Crystallization

Purified AidC was concentrated to 20 mg/mL using a 10,000 molecular weight cut off 

(MWCO) Amicon-Ultra centrifugal filter device (Millipore, MA), and the concentrated 

protein was buffer exchanged into Crystallization Screening Buffer (50mM HEPES, pH 

7.0). Crystallization screens (Crystal Screen 1 & 2, Crystal Screen Cryo 1 & 2, PEG Ion 1 & 

2 and Index1 & 2 from Hampton Research and Wizard 1 & 2 from Emerald BioSystems) 

were prepared using a Crystal Gryphon (ArtRobbins) crystallization robot using a ratio of 

1:1 for Well Solution: AidC stock solution (20 mg/mL). Crystals appeared in the well 

solution containing MgCl2•6H2O (0.2 M), Bis-Tris (0.1 M), pH 6.5, 25 % (w/v) PEG 3350 

after a week when incubated at room temperature. Crystallization was repeated and 

optimized using a 1:2 ratio of Well Solution:AidC (20 mg/mL) in sitting drops, and seeded 

on day 3 with AidC crystals obtained from previous trials. Crystallization was done in 24 

well Cryschem Plates (Hampton Research). For co-crystallization of AidC and substrate, 4 

μL of AidC (20 mg/mL) was mixed with 1 μL of Well Solution and 1 μL of 10 mM C6-HSL 

(dissolved in 50 % methanol). Crystals formed within a week after seeding, during which 

C6-HSL likely hydrolyzed to the ring-opened product N-hexanoyl-L-homoserine (C6-Hse). 

AidC and AidC:C6-Hse crystals with the best morphology were transferred into a cryo-

protecting solution (Well Solution supplemented with 25 % (v/v) glycerol) and then into 

liquid nitrogen.

Data collection and processing

Monochromatic data sets were collected at the 19-BM beamline at the Structural Biology 

Center (SBC), Advanced Photon Source (APS) at Argonne National Laboratory (ANL). 

Diffraction data was collected at a wavelength of 0.98 Å at 100 °K using a Quantum 210r 

Charge Coupled Device (CCD) detector from Area Detector Systems Corporation (ADSC). 

All collected data sets were indexed and integrated using iMosflm22 and scaled using Scala 

in the CCP4 program suite.23 The best data sets were processed at resolutions of 1.09 Å and 

1.67 Å for AidC and AidC:C6Hse, respectively. Data collection statistics are summarized in 

Table 1.

Structure determination, model building and refinement

The AidC structure was solved by molecular replacement using PHASER in the Phenix 

software suit.24 The initial search model was a poly-alanine model created based on a 

previously published structure of the organic phosphotriesterase OPHC2 (PDB Code: 4LE6; 

Organophosphate hydrolase C2 from Pseudomonas pseudoalcaligenes),25 because this 

enzyme shares 26 % amino acid sequence identity with AidC. The program 

Phenix.Autobuild was used to build the residue side chains based on the phases obtained 

from running PHASER; Phenix.Autobuild uses iterative cycles of model building and 

refinement until no more side chains can be built in automatically.24 The AidC:C6Hse 

structure was solved by molecular replacement using PHASER in the CCP4 software suit; 

the search model was the unliganded AidC structure.26 Both models were rebuilt and refined 
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using the program Phenix24 and analyzed using the programs COOT27 and UCSF 

Chimera.28 Final refinement statistics are presented in Table 1. Structural figures were made 

using UCSF Chimera.

Determining oligomeric states of AidC and AiiA

To determine the molecular mass of AidC oligomers in solution, we used size-exclusion 

chromatography coupled with multi-angle light scattering (SEC-MALS). Our experimental 

setup included an AKTA FPLC (GE Healthcare Biosciences) with a silica-based size-

exclusion chromatography column (WTC-030S5; Wyatt Technology) as a liquid 

chromatography unit. Downstream of the column is a refractive index detector (Optilab T-

rEX; Wyatt Technology), followed by a multi-angle light scattering detector (Dawn Heleos 

II; Wyatt Technology) used for determining protein concentration and particle size, 

respectively. As a control sample, we analyzed the related AHL lactonase AiiA, which is of 

similar monomeric size and has previously been demonstrated by analytical 

ultracentrifugation to be a monomer in solution.29 Each sample injection consisted of 

approximately 0.5 to 1 mg (injection volume 95 μL) of purified protein (either AiiA or 

AidC) in buffer containing 50 mM HEPES, 300 mM NaCl at pH 7.5. Flow rate was set at 

0.4 mL / min, and data were collected at 2 second intervals. Data processing and analysis 

were performed using the ASTRA software (Wyatt Technology).

RESULTS AND DISCUSSION

Most AHL lactonases characterized to date have poor affinity for their substrates, as gauged 

by millimolar KM values. However, unusually low micromolar KM values were reported for 

AidC-catalyzed hydrolysis of AHLs.9 To better understand the basis for substrate affinity, 

selectivity, and turnover in AidC, we cloned and purified this AHL lactonase for functional 

and structural studies.

Purification of AidC, determination of activity and zinc content

Heterologous expression of AidC in E. coli using a codon-optimized coding sequence 

(Figure S1) led to good yields of purified protein (~ 10 mg / L culture). Kinetic 

characterization of the “as purified” form of untagged AidC gave KM (65 ± 4 μM) and kcat 

values (4.6 ± 0.1 s−1) for lactone hydrolysis of C6-HSL, similar to values reported 

previously for AidC containing an N-terminal maltose binding protein affinity tag: 55 ± 4 

μM and 2.3 ± 0.2 s−1, respectively.9 Although we used a purification procedure similar to 

that for other AHL lactonases,19 we found that purified AidC does not contain the typical 

two equivalents of zinc ions. Instead, the “as purified” AidC preparation only contained 1.2 

± 0.1 equivalents of zinc ions per AidC monomer. We suspected that the protein may not 

have fully retained its zinc content throughout the purification protocol, and so monitored 

the observed rates for AidC-mediated hydrolysis of saturating concentrations of substrate 

upon supplementing the Assay Buffer with varying concentrations of ZnSO4 (Figure 2). A 

significant increase in rate is observed upon increasing the ZnSO4 concentration, with a 

maximum activity at approximately 30 μM ZnSO4, and a slight decrease at higher 

concentrations. Zinc supplementation leads to an increased kcat (C6-HSL: 59 ± 1 s−1), which 

is > 10-fold larger than the kcat of the “as purified” form. If the 1.2 equivalents of zinc ions 
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in the “as purified” AidC represent approximately half dizinc protein and half zinc-free 

protein, one might expect a two-fold increase in kcat values, at most, upon reconstitution of 

the dizinc active site. However, since the observed increase in rate is much larger, it likely 

represents instead an increase in activity due to the transition between mono- and dizinc 

metalloforms. Further studies will be required to characterize zinc affinity in more detail. 

However, a supplement of 30 μM ZnSO4 is used for the remaining kinetic experiments 

herein to maximize observed activity.

Determination of kinetic parameters

The previous characterization of AidC containing an N-terminal maltose-binding fusion 

protein reported unusually low KM values (C6-HSL: 55 μM, C8-HSL: 64 μM), with very 

little selectivity for, or against, related substrates with 3-oxo substitutions.9 The associated 

kcat values (approximately 2 s−1) are less than typically reported for AHL lactonases. To 

augment this previous study, we determined the steady-state kinetic parameters for purified, 

untagged AidC, now supplemented with exogenous ZnSO4, using a broader set of substrates 

(Table 2). In general, we confirm the low KM values reported previously. The KM values for 

zinc-supplemented AidC, “as purified” AidC, and AidC with an N-terminal maltose binding 

fusion protein are all quite similar, independent of zinc content. However, zinc 

supplementation (but not cleavage of the N-terminal tag) greatly improves the kcat values, 

which are all generally increased by > 20 fold. These results indicate that the differences in 

kcat values between this and the prior report likely arise from differences in zinc content 

rather than the presence of the N-terminal fusion protein.

As compared to other quorum-quenching enzymes, AidC appears to be a much more 

efficient catalyst. If the kcat/KM value for hydrolysis of the best AHL substrate of AidC is 

compared with kcat/KM values for the best of the kinetically characterized substrates for 

other wild-type quorum-quenching enzymes (including non-homologous enzymes from 

different superfamilies), AidC ranks the highest (Table 3). Achieving the highest rank in this 

comparison is due to a combination of both a low KM value and a high kcat value, since 

AidC does not have the lowest or highest of either of these individual values with respect to 

the same set of enzyme/substrate pairs (Table 3). Therefore, to the best of our knowledge, 

AidC appears to have the highest kcat/KM reported for any wild-type quorum-quenching 

enzyme to date. Additionally, even when kcat/KM values are similar, the low KM value of 

AidC may make this enzyme more suitable than homologs with higher KM values for 

quorum-quenching applications at low AHL concentrations.30

Substrate selectivity

As gauged by kcat/KM values, the most efficiently processed substrates of AidC are C6- and 

C7-HSL (approx 106 M−1s−1) (Table 2). AHL substrates that differ in length by one 

methylene have a > 2-fold decrease in their specificity constant (kcat/KM). Commonly 

occurring AHLs with more extreme size differences, C4- and C12-HSL, are more 

significantly disfavored by 20- and 30-fold, respectively. The previous characterization of 

AidC indicated no preference for or against 3-oxo substitutions,9 and here we find consistent 

results in which the 3-oxo substitution only mildly perturbs both KM and kcat values, 

resulting in a 2.5 fold decrease in kcat/KM. The most significantly disfavored substrates we 
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assayed were the bulky cinnamoyl-HSL31 and the synthetic t-BOC-HSL compound, which 

had specificity constants approximately 30-fold less than the best substrate. Interestingly, the 

mechanism used to disfavor substrates with sterically bulky substituents appears to differ 

from that used to disfavor substrates with long unsubstituted n-alkyl substituents (see 

below).

Structure determination and model building

To better understand the structural basis of substrate recognition and catalysis, we 

determined the X-ray crystal structure of AidC, and the structure of AidC in complex with 

the reaction product C6-homoserine (C6-Hse) through co-crystallization with the substrate 

C6-HSL. Data processing and refinement statistics are shown in Table 1. The unliganded 

AidC crystal diffracted to a resolution of 1.09 Å. The 2Fo-Fc omit map for the active site 

zinc ions and coordinating residues is shown in Figure 3. The “substrate-treated” AidC co-

crystal diffracted to a resolution of 1.67 Å and contained the ring-opened product, C6-Hse. 

The final Rwork/Rfree values for AidC and AidC:C6-Hse are 13.08 / 16.20 % and 18.23 / 

23.07 %, respectively. The occupancies of the zinc ions are refined to values between 0.6 

and 0.8, as assessed by occupancy refinement in Phenix. During crystallization, the 

concentration of enzyme is higher, and the solution pH values lower, than during the 

functional studies discussed above. So, these occupancies may not reflect zinc binding 

during kinetic studies, and will be a topic for future experiments.

AidC core structure, ‘kinked’ helix and dimerization

The AidC monomer structure displays a characteristic pseudosymmetrical core of two mixed 

β-sheets flanked by α-helixes to form the αββα protein fold conserved throughout the entire 

metallo-hydrolase / oxidoreductase superfamily, as cataloged in the Structural 

Classifications of Proteins (SCOP) database.32 A dinuclear zinc ion cluster is found at one 

edge of where the two central β-sheets meet and is described below in more detail as part of 

the active site. A structural overlay of AidC with two related AHL lactonases, AiiA29 and 

AiiB16, highlights their conserved αββα cores, and shows the most significant structural 

divergence occurs in loops and helixes, adjacent to the dizinc active site, which serve to 

connect the core secondary structural elements (Figure 4A). Parts of these regions interact 

closely with active-site ligands.

The AidC structure contains an unusual feature. One of the major helices H11 (See Figure 

S2 for secondary structure assignments) containing residues P195-A211 has an internal 

proline residue (P203) that disrupts the regular H-bonding of the α-helix. It results in a 

‘kinked’ structure where one segment of the α-helix is found at an approximate 25° angle 

from the other (Figure 4B). Most soluble proteins do not contain α-helixes with internal 

proline residues, but this feature is not unprecedented.33 A survey of 291 helices found that 

approximately 3% contain an internal proline, and the associated helix ‘kinks’ typically 

measure 26° ± 5°, tilting away from the proline sidechain, consistent with what is found in 

AidC.34 Kinked α-helices typically place the hydrophobic side chain of the internal proline 

residue toward the solvent, and the kink aids in packing long helices around globular 

proteins;35 both of these attributes are observed in AidC. Proline residues responsible for 

inducing kinks are typically highly conserved,34 but P203 is not a conserved residue in this 
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superfamily. However, several side chains of residues near the P203-induced kink do form 

part of the AidC substrate-binding cavity, suggesting a functional implication for this 

unusual structural element.

In our structural determination, AidC displays as a crystallographic dimer in the spacegroup 

P212121 (Figure 5A). The protein-protein interface is heterogeneous and comprised of 

hydrophobic interactions as well as direct and through-water hydrogen bonds. The Proteins 

Interfaces Structures and Assemblies (PISA) algorithm36 was used to calculate 2440 Å2 

buried surface area, and predicts a ΔGdiss of 6.1 kcal / mol. To determine if oligomerization 

is relevant in solution, size-exclusion chromatography – multiple angle light scattering 

(SEC-MALS) was used to assay for AidC oligomers (Figure 6). First, AiiA was used as a 

control since this homologous AHL lactonase was previously shown by analytical 

ultracentrifugation to be monomeric in solution.29 Purified AiiA elutes from the size 

exclusion column as a single peak (detected by Abs280 nm), and light scattering is used to 

determine a molecular weight of 28 ± 2 kDa for this peak, which matches the mass 

calculated from the expected sequence (28,635 Da). Purified AidC elutes from the size 

exclusion column as one major peak preceded by a small second peak. The molecular 

weight determined for the major peak, 72.1 ± 0.9 kDa, matches reasonably well with that 

calculated for the dimer (36979 × 2 = 73,958 kDa). The molecular weight calculated for 

AidC oligomers in the small minor peak is 148 ± 4 kDa, which matches that calculated for 

the tetramer (36979 × 4 = 147,916 kDa). Therefore, at least when high protein 

concentrations are used, AidC forms a dimer in solution. Further studies will be required to 

determine if the dimer interface observed crystallographically is conserved in solution. 

Under the dilute assay conditions used to determine steady-state kinetic parameters, the 

activity of the enzyme varies linearly with concentration (Figure S3). So, either the dimer Kd 

value does not occur within the tested concentration range, or there is no change in activity 

upon change in oligomeric state.

Previously, various AHL lactonases have been characterized as monomers29 and dimers,16 

and the superfamily has examples of higher oligomers. When the AidC dimer structure is 

compared with that of AiiB (Figure 5C), which has been observed as a dimer in a crystal,16 

and in solution (unpublished observations), it is clear that the protein-protein interfaces are 

actually very divergent and involve different sides of the protein. However, when the AidC 

dimer structure is compared to the crystallographic dimer structure of the 

organophosphotriesterase OPHC2 (Figure 5B),25 the protein-protein interfaces that comprise 

each dimer interface appear to be structurally conserved. In fact, the overall structural 

similarity of AidC ranked higher with OPHC2 than with any other AHL lactonase, as 

gauged by the Dali server for structural comparison of proteins.37 The active sites for each 

AidC monomer are distant from each other, and none of the structural or functional evidence 

presented here suggests that they are interdependent. Interestingly, AidC appears to also 

conserve other features besides this dimerization interface, with superfamily members 

outside of the immediate AHL lactonase family as will be described below.
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AidC active site

The dinculear zinc active site of AidC is highly conserved with other AHL lactonases and 

other members in the superfamily. As can be seen in the comparison of dinuclear zinc sites 

in AidC, the AHL lactonase AiiA,29 the organic phosphotriesterase OPHC2,25 and the 

phosphodiesterase ZipD,38 all the zinc-1 (Zn1) ions are coordinated by three histidines, and 

all the zinc-2 (Zn2) ions by two histidines and an aspartate, with both zinc ions sharing a 

monodentate bridge by an aspartate residue and most sharing a bridging water. Although a 

bridging water is not modeled into the ZipD structure, its presence may be obscured by the 

resolution of the diffraction (2.9 Å). Due to its proximity to both zinc ions, this conserved 

bridging water is likely bound as a hydroxide ion, which is proposed to be the hydrolytic 

nucleophile (Figure 7),8 similar to its function in other superfamily members.39 The Zn1 and 

Zn2 of AidC also each coordinate to their own apical water molecules, illustrating the 

proposed coordination sites for the lactone carbonyl oxygen and ring oxygen in AHL 

substrates, respectively. In all cases, the Zn-to-Zn distances are all very similar (see Figure 7 

legend for relevant distances).

There is one notable difference in AidC immediately adjacent to the dinculear zinc cluster. 

All of the AHL lactonases previously characterized have a Tyr (Y194 in AiiA; Figure 7B) 

that we previously proposed as a H-bond donor to help stabilize a tetrahedral adduct formed 

in the hydrolysis reaction.8 However, this position in AidC is instead occupied by His261 

(Figure 7A). Although, the related organic phosphotriesterase OPHC2 has a Leu at this 

position (Figure 7C), and likely does not use this residue during catalysis, the homologous 

phosphodiesterase ZipD does places a His side chain in the same structural position (Figure 

7D), with the residue coming from a position later in the primary sequence.

Our determination of the AidC structure allows a structural alignment to be constructed that 

helps to correct some prior predictions based on primary sequence alignments (Figure S4). 

Leu259 was predicted to replace the zinc-bridging Asp residue,9 but Asp258 is seen here to 

retain this role. Also Ser262 was predicted to replace the Tyr adjacent to the active site, but, 

as discussed above,9 the His261 side chain is shown to occupy this position.

AidC product complex

Addition of the substrate C6-HSL to the crystallization mixture allowed us to characterize 

the interactions of product with the AidC active site (Figure S5). Although technically this 

experiment could be classified as co-crystallization, the substrate and enzyme were 

incubated together for three days before the mixture was “seeded” with unliganded AidC 

crystals. Therefore this procedure may be more akin to co-crystallization with product, or if 

the unliganded AidC seeding biases the resulting conformation, crystal soaking with the 

product. Regardless, the experiment resulted in a structure in which product was bound at 

the active site of AidC.

The simulated annealing omit map (Fo-Fc) electron density found at the active site of AidC 

monomer A is very well defined and matches with the ring-opened product C6-Hse (Figure 

8; See Figure S6 for the 2Fo-Fc omit map). The density at the same relative position in 

monomer B is also consistent with fitting C6-Hse, but is less well defined. The newly-

Mascarenhas et al. Page 10

Biochemistry. Author manuscript; available in PMC 2015 December 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



formed product carboxylate coordinates both zinc ions, bridging the site in a bidentate 

fashion (Figure 9A). The positioning of the amide and alcohol substituents are generally 

similar to that seen in the product complex with the homologous AHL lactonase AiiA 

(Figure 9B),13 however there are some differences. In AidC, the product carboxylate 

oxygens are farther from the zinc ions (~ 2.5 Å) than those in product-bound AiiA (~ 2.1 Å). 

Also, the AidC product complex has a closer Zn-to-Zn distance (3.2 Å) and retains a 

bridging hydroxide, but the AiiA product complex has a longer Zn-to-Zn distance (3.7 Å) 

and is missing the bridging hydroxide. If AidC and AiiA use the same catalytic mechanism, 

these two structures may represent different steps along the reaction coordinate. The AiiA 

structure shows that the product closely associates with the zinc ions after ring opening, and 

the AidC structure may illustrate how the product is then displaced by reforming the 

hydroxide bridge, reducing the Zn-to-Zn distance and lengthening the bonds between the 

product and the zinc ions. The product-bound AidC complex may also shed light on the 

relative positioning of substrate at the active site. The bridging hydroxide is only 2.6 Å from 

the carbonyl carbon of the product; this close positioning may mimic the substrate bound 

complex in which hydroxide attacks this substrate carbonyl. However, the –OH-C4-O2 angle 

is only 78°, so the product is likely angled differently than substrate, for which a larger, 

more typical Bürgi-Dunitz angle40 would be predicted.

One particular amino acid substitution raises the possibility that the AidC mechanism might 

diverge from that of AiiA. In AiiA, the Y194 residue was proposed to help stabilize the 

tetrahedral adduct formed upon initial hydroxide attack.14 However the H261 residue in 

AidC, which occupies the same relative position, has a lower predicted pKa value. 

Additionally, the H261 Nε is more distant (3.6 Å) from the product oxygen that is placed 

where the carbonyl of the substrate is predicted to occupy than it is to the product oxygen 

that placed where the leaving group of the substrate is predicted to occupy (2.7 Å). This 

arrangement suggests a possible participation in ring opening through general acid / base 

catalysis, a mechanism reminiscent of that proposed for the homologous phosphodiesterase 

tRNAse Z in which a structurally conserved histidine is proposed to act as a general acid 

during hydrolysis.41 In the phosphate bound structure of tRNAse Z, the structurally 

analogous histidine (His247) can be seen within H-bonding distance (3.1 Å) to one of the 

phosphate oxygens (Figure 9C).42 (Since a product-bound ZipD structure is not available, 

we consider instead the homologous phosphodiesterase tRNAse Z, which also contains this 

active-site His substitution.) Further studies will be required to see if AidC uses His261 as a 

mimic of Y194 in AiiA, or if it instead uses this residue for general acid / base catalysis or a 

different function.

The N-alkyl substituent binding pocket and a mechanism for selectivity

The most striking difference between the product-bound AidC and AiiA structures are the 

binding pockets for the N-acyl substituents of the products (Figures 10, S5). AidC contains a 

hydrophobic pocket, formed in part by the ‘kinked’ α-helix that completely surrounds the 

terminal part of the N-acyl substituent, which is buried below the surface of the protein 

(Figures 10A, 9B, 3B). In contrast, AiiA instead only cradles the N-acyl substituent of C6-

Hse along a wide and shallow hydrophobic trough found on the surface of the enzyme 

(Figures 10C, 10D).13 Products with longer N-acyl substituents can also bind to AiiA in an 
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alternative orientation (not shown) in which they receive some additional stabilization by a 

“phenylalanine-clamp.”43 However, in contrast to the relatively open N-acyl binding site in 

AiiA, AidC instead contains a closed, well-defined N-acyl binding pocket that is unlike the 

substrate binding pockets in all previously characterized AHL lactonases in the superfamily, 

and this pocket is likely the major contributor to the uniquely low KM values observed for 

substrates of this enzyme.

This binding pocket suggests a mechanism whereby AidC can impose substrate selectivity. 

Substrates with short N-acyl substituents would not be able to reach as deeply into the 

pocket and bury as much hydrophobic surface as longer, more favored substrates, and a 

resulting difference in KM values would ensue. For example C4-HSL has a 10-fold higher 

KM value than C7-HSL, but the differences in kcat values are more minor. The same effect is 

seen with substrates containing very bulky N-acyl substituents that can not easily enter the 

buried pocket, such as cinnamoyl- and t-BOC-HSL, which have KM values 10- and 16-fold 

higher than C7-HSL, again with lesser effects on kcat values. In contrast, substrates with 

longer N-acyl substituents would be disfavored by a different mechanism. The long alkyl 

substitutions on these substrates could easily enter and fully occupy the binding pocket, but 

as the length of this substituent increases, the attached lactone group would be held farther 

away from the catalytic dinuclear zinc center, for which a difference in kcat values would be 

predicted. For example, C12-HSL actually has a 7-fold lower KM value than C7-HSL, but 

catalysis is more significantly impaired, as seen in the 200-fold lower kcat value. This 

selectivity mechanism is different than that used by other AHL lactonases characterized to 

date. However, we have shown that the nonhomologous, metal-independent N-terminal 

nucleophile hydrolase PvdQ uses a similar strategy to discriminate between N-acyl-HSL 

substrates of different lengths.44

CONCLUSION

The quorum-quenching AHL lactonase from the potato root-associated Chryseobacterium 

sp. strain StRB126, AidC, has an unusually low KM value for AHL substrates and displays a 

stricter substrate selectivity than any other related AHL lactonase characterized to date. At 

the time of writing, AidC also has the highest reported kcat/KM value for any characterized 

wild-type quorum-quenching enzyme, regardless of superfamily. Structural determination of 

AidC alone, and with bound product, reveals an unusual ‘kinked’ helix and suggests a 

structural-basis for the enhanced selectivity. Further studies will be required to determine 

how and if this selectivity impacts the chemical ecology of Chryseobacterium sp., but we 

note that Erwinia carotovora, a phytopathogen relevant to potatoes, produces AHLs within 

the optimal range for AidC substrates45, and that AHL lactonases have been shown to 

impact rhizosphere competence.46 Intriguingly, AidC shows some structural similarities that 

more closely match families more distant from AHL lactonases, sharing a dimeric structure 

similar to an organic phosphotriesterase and an active-site histidine residue similar to that 

found in related phosphodiesterases. Tawfik and co-workers have identified an entirely 

different superfamily in which both paraoxonase and lactonase activities have evolved,47–49 

and may, by comparison, provide insight into the relationship of the various activities found 

in AHL lactonase homologs. AidC serves as an example for understanding how quorum-

quenching enzymes can achieve selectivity between structurally similar AHL substrates, and 
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may serve as an efficient catalytic template amenable to further optimization for a broad 

array of quorum-quenching applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Potential Substrates and the AHL Lactonase-Catalyzed Reaction. γ-Butyrolactone (GBL) 

and naturally-occurring and synthetic AHLs including C4-, C5-, C6-, C7-, C8-, 3-oxo-C8-, 

C10-, C12-, cinnamoyl-, and t-BOC-HSL are assayed as potential AidC substrates. The inset 

table assigns chain lengths in the neighboring structures to the matching abbreviations used 

throughout the text. The general reaction catalyzed by AHL lactonases is also shown with 

C6-HSL as an example, resulting in the C6-Hse and H+ products.
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Figure 2. 
Optimization of Assay Zinc Concentration. The relative observed initial rates of AidC-

catalyzed hydrolysis of C6-HSL under saturating conditions (1 mM) are graphed with 

respect to the concentrations of supplemental ZnSO4 added to the Assay Buffer. Maximum 

activity was detected at 30 μM supplemental ZnSO4. Points are fitted to the equation: 

Activity (%) = Actmax×[Zn2+]/(EC50 + [Zn2+]×(1+[ Zn2+]/Ki)) where Actmax is the 

maximum activity, EC50 is the half maximal concentration of activation, and Ki is the 

apparent inhibition constant, with fitted values of 120 ± 10 %, 3.6 ± 0.9 μM and 300 ± 180 

μM, respectively.
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Figure 3. 
2Fo-Fc omit map for the unliganded AidC dizinc site and coordinating residues. The map is 

shown at two different σ levels, with the grey mesh at 1.5 σ and the magenta mesh at 4.0 σ. 

The protein and zinc atoms are shown in ball-and-stick form, and colored with tan for 

carbon, blue for nitrogen, red for oxygen and grey for zinc. The 4 σ map can be seen to 

indicate individual atom positions, characteristic of an ultra high resolution map.
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Figure 4. 
Structure of AidC Monomer. A. Superimposition of AidC (blue), AiiA (pink), and AiiB 

(green) structural models. Proteins backbones are depicted as ‘licorice’ strands. Structural 

conservation is higher in the zinc-binding site and the αββ α core scaffold of the protein, but 

diverges more significantly in the connecting elements surrounding the active site. B. 

Ribbon diagram of a ‘kinked’ α-helix in AidC containing an internal proline residue. The 

regular H-bonding pattern (in black thin lines) of the α-helix backbone from residues P195 – 

A211 is interrupted by an internal P203 residue. The two ends of the α-helix, defined as 

P195-Q200 (blue) and A204-A211 (green) are offset by approximately 25°. Hydrophobic 

side chains near the bend, I201and L198 (surface in grey), contribute to the binding site for 

the N-acyl substituent of the bound product (C6-Hse, shown in space-fill form).
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Figure 5. 
The Dimer Structure of AidC and Homologs. Each monomer is shown in ribbon form, with 

rainbow coloring from each N-terminus (blue) to the corresponding C-terminus (red). 

Rainbow coloring is used here to facilitate chain tracing and to emphasize similarities and 

differences between the oligomeric interfaces. Zinc ions are shown as grey spheres. A. 

Depiction of the AidC dimer. B. Depiction of the OPHC2 dimer (from PDB: 4LE6). C. 

Depiction of the AiiB dimer (from PDB: 2R2D). The dimers of AidC and OPHC2 are very 

similar, but that of AiiB is divergent and uses different protein-protein interfaces.
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Figure 6. 
Molecular Weight Determinations of AidC and AiiA in Solution. SEC-MALS profiles are 

shown for AiiA and AidC. Absorbance at 280 nm is shown as a black line and calculated 

molecular weight for protein in the eluent at a particular time is shown in color, as noted. A) 

AiiA (molecular weight in red) gives a single peak with a molecular weight of 28 ± 2 kDa. 

B). AidC gives two peaks with the major peak containing an oligomer with the molecular 

weight (in red) of 72.1 ± 0.9 Da, and a minor preceding shoulder containing an oligomer 

with the molecular weight (in blue) of 148 ± 8 Da.
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Figure 7. 
Unliganded Active-Site Structures. A. Active-site structure of AidC (blue). Protein residues 

are shown as sticks, and zinc ions (grey) and water molecules (red) as spheres, with oxygens 

in red and nitrogens in blue. The Zn-to-Zn distance is 3.3 Å; the Zn-O distances to the 

bridging hydroxide are 1.9 and 2.0 Å; The distance from Zn1 to its apical water is 2.7 Å, and 

Zn2 to its apical water is 2.5 Å; The distance from the bridging hydroxide to the non-

chelating O of D149 is 2.7 Å; and the distance from His261 εN to the Zn1 and Zn2 apical 

waters is 3.4 and 3.0 Å, respectively. B. Active site structure of AiiA (green, from PDB: 

2A7M). The Zn-to-Zn distance is 3.3 Å; The Zn-O distances to the bridging hydroxide are 

2.1 and 2.0 Å; and the distance from the bridging hydroxide to the non-chelating O of D108 

is 2.8 Å. C. Active site structure of OPHC2 (pink, from PDB: 4LE6). The Zn-to-Zn distance 

is 3.2 Å; The Zn-O distances to the bridging hydroxide are both 2.2 Å; and the distance from 

the bridging hydroxide to the non-chelating O of D143 is 2.7 Å. D. Active site structure of 

ZipD (grey, from PDB: 2CBN). The Zn-to-Zn distance is 3.3 Å. No bridging or apical 

waters were modeled into the structure, possibly due to the limited diffraction resolution (2.9 

Å).
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Figure 8. 
Simulated Annealing Omit Map (Fo-Fc) for Product. The omit map is shown as a grey mesh 

at 2.2 σ. The omit map was generated with both the C6-Hse and bridging hydroxide omitted 

from the coordinates. Carbon atoms are in light blue, oxygen in red, nitrogen in dark blue, 

and zinc in grey.
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Figure 9. 
Product-Bound Active-Site Structures. In all cases the liganded product is shown as ball and 

stick, and the binding site consisting of protein residues is shown as sticks, with heteroatom 

coloring as above. A. Active-site structure of AidC bound to C6-Hse (blue). Measurements 

are given for monomer A. The Zn-to-Zn distance is 3.3 Å; the Zn-O distances to product are 

each 2.5 Å, and the Zn-O distances to the bridging hydroxide are each 2.0 Å. The H261 Nε 

is 3.6 and 2.7 Å from the product carboxylate oxygens. B. Active site structure of AiiA 

bound to product (green, from 3DHB). The Zn-to-Zn distance is 3.7 Å; the Zn-O distances 

to product are 2.0 and 2.1 Å; and the distance of the leaving group alcohol to the closest O 

of the unchelated conformer of D108 is 2.6 Å. The Y194 phenol O is 3.8 and 4.0 Å from the 

product carboxylate oxygens. C. Active site structure of tRNase Z bound to phosphate (grey, 

from 1Y44). tRNase Z and ZipD (Figure 6D) are different proteins, but both are colored 

grey to indicate that they are both phosphodiesterases. The Zn-to-Zn distance is 3.3 Å; the 

Zn-O distances to the bridging hydroxide are 2.0 and 2.3 Å; the Zn-O distances to product 

are 2.3 and 2.5 Å; the distance from the closest O of D67 and PO4
2− is 3.6 Å, and the other 

non-chelating O of PO4
2− is 3.1 Å from the Nε of His247.
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Figure 10. 
N-Acyl Chain Binding Pockets. A. A surface coated AidC (blue) is shown with the C6-Hse 

product as ball and stick (carbons in grey, heteroatoms as above). The N-acyl chain of the 

product is buried below the surface. B. A rotated, cut-away view of Figure 10A, showing a 

defined pocket for binding the N-acyl chain of the product, while the opened ring is pointing 

toward solvent. C. A surface coated AiiA (green, from PDB: 3DHB) is shown with the C6-

Hse product as ball and stick (coloring as above). The N-acyl chain lies in a shallow groove 

of the enzyme and is visible from the surface. D. A rotated, cut-away view of Figure 10C, 

showing the N-acyl chain of the product extending toward the solvent and the opened ring 

enclosed in a more defined pocket.
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Table 1

Crystallographic Data for AidC and AidC:C6-Hse complexes

AidC AidC:C6-Hse

PDB Code 4ZO2 4ZO3

Data Processing

Space group P212121 P212121

Cell dimension

 α, β, γ (°) 90, 90, 90 90,90,90

 a, b, c (Å) 51.7, 97.30, 110.64 47.09, 47.87, 249.15

Resolution (Å) 1.09 1.67

a Rmerge (%) 4.9 (100)b 9.3 (75.4)

I/σ (I) 23.6 (1.1) 20.3 (3.3)

c CC1/2
0.997 (0.539) 0.992 (0.767)

d Rpim(%) 3.00 (60.8) 5.0 (41.8)

Completeness (%) 99.6 (99.2) 99.3 (99.9)

Multiplicity 6.6 (3.4) 4.4 (3.9)

No. Reflections 1580815 295571

No. Unique Reflections 239792 67109

Refinement

Average B factor (Å2) 23.6 28.8

e Rwork/f Rfree (%) 13.08/16.20 18.44/22.83

No. of Atoms

 Protein 4810 4714

 Ligand N/Ag 30

 Metal 4 4

 Water 955 585

B-factors

 Protein 21.5 27.4

 Ligand N/A 32.69 – 47.58

g RMSD

 Bond length (Å) 0.015 0.018

 Bond angle (°) 1.401 1.164

Ramachandran plot

Most Favored (%) 97.70 97.29

Allowed (%) 2.20 2.54

Outliers (%) 0.00 0.17

a
Rmerge = Σ|Iobs-Iavg|/ ΣIavg

b
The values for the highest resolution bin are in parentheses.
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c
CC1/2, Pearson correlation coefficient of two “half” data sets.

d
Rpim, the precision-indicating merging R

e
Rwork = Σ|Fobs-Fcalc|/ ΣFobs

f
Five percent of the reflection data were selected at random as a test set and only these data were used to calculate Rfree.

g
RMSD, root mean square deviation; N/A, Not Applicable
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Table 2

Steady-State Kinetic Parameters for Substrates of Dizinc AidC

Substrate KM (μM) kcat (s−1) kcat/KM (M−1 s−1)

GBL N.D.a N.D. 16 ± 1

C4-HSL 470 ± 60 39 ± 2 8.3 × 104

C5-HSL 130 ± 20 57 ± 3 4.4 × 105

C6-HSL 61 ± 4 59 ± 1 9.7 × 105

C7-HSL 47 ± 5 80 ± 2 1.7 × 106

C8-HSL 83 ± 10 45 ± 3 5.4 × 105

C10-HSL 12 ± 4 5.2 ± 0.4 4.3 × 105

C12-HSL 7 ± 4 0.40 ± 0.05 5.7 × 104

3-oxo-C8-HSL 130 ± 20 28 ± 1 2.2 × 105

cinnamoyl-HSL 470 ± 80 25 ± 2 5.3 × 104

t-BOC-HSL 740 ± 70 44 ± 1 5.9 × 104

a
N.D.: not determined. The KM value for GBL exceeds 700 mM, so only the kcat/KM value was determined.
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