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Abstract. Anomalous diffusion processes are ubiquitous in biology and arise
in the transport of proteins, vesicles and other particles. Such anomalously
diffusive behavior is attributed to a number of factors within the cell
including heterogeneous environments, active transport processes and local
trapping/binding. There are a number of microscopic principles—such as power
law jump size and/or waiting time distributions—from which the fractional
Fokker–Planck equation (FFPE) can be derived and used to provide mechanistic
insight into the origins of anomalous diffusion. On the other hand, it is fair to
ask if other microscopic principles could also have given rise to the evolution
of an observed density profile that appears to be well fit by an FFPE. Here we
discuss another possible mechanistic alternative that can give rise to densities
like those generated by FFPEs. Rather than to fit a density (or concentration
profile) using a solution to the spatial FFPE, we reconstruct the profile generated
by an FFPE using a regular FPE with a spatial and time-dependent force. We
focus on the special case of the spatial FFPE for superdiffusive processes. This
special case is relevant to, for example, active transport in a biological context.
We devise a prescription for extracting such forces on synthetically generated
data and provide an interpretation to the forces extracted. In particular, the
time-dependence of forces could tell us about ATP depletion or changes in the
cell’s metabolic activity. Modeling anomalous behavior with normal diffusion
driven by these effective forces yields an alternative mechanistic picture that,
ultimately, could help motivate future experiments.
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1. Introduction

On the basis of Fick’s laws of diffusion, the normal diffusion equation states that the rate
of change of a concentration profile at position x is proportional to its local curvature
[1]. Thus, according to normal unbiased diffusion, sharp (δ-function idealized) initial
concentration profiles evolve into Gaussian profiles with mean square displacement, ⟨x2⟩,
linear in time.

However, many systems exhibit anomalous diffusion. That is, their mean square
displacements are non-linear in time or have correlations in time and space that give rise
to non-Gaussian profiles [2,3]. In fact, proteins, vesicles and other particles often diffuse
anomalously in cells [4–8]. In the cell’s environment, anomalous diffusion is attributed to
a number of factors including particle diffusion in crowded environments [4,9,10], active
transport [5], particle exploration of fractal cellular structures [11], and particle trap
binding [6].

Here, we are interested in building a data-inspired mathematical framework to model
anomalous diffusion. Our approach will provide alternative insight to modeling anomalous
diffusion processes using the traditional fractional Fokker–Planck equation (FFPE) [2].

To introduce our approach, we briefly highlight the type of insight that can be
extracted by fitting anomalous data to an FFPE.

FFPEs can be derived starting from more basic principles [2, 12] such as Langevin
equations [13], fractional Brownian motion [11, 14–16] or continuous time random walks
(CTRWs) [2,17]. Each approach provides its own unique microscopic insight.

For example, the CTRW approach to deriving the FFPE begins by defining a jump
size (p(x)) and dwell time (ψ(t)) distribution for each step taken by a random walker.
After many steps, the probability, P (X, t), of observing the random walker at position
X at time t can be expressed using both jump and time distributions valid for the single
step [17]. By Laplace transforming the time variable (t → s) and Fourier transforming
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the position variable (x → k) the probability (P (X, t) → ˜̂P (k, s)) becomes [17]

˜̂P (k, s) =
1 − ψ̂(s)

s
· 1
1 − ψ̂(s)p̃(k)

. (1)

For a jump time distribution with a finite mean, τ , its long time (short s) limit is
ψ̂(s) ∼ 1 − τs. Likewise, in the absence of drift and assuming a finite standard deviation,
the dwell time distribution in the small k limit is p̃(k) ∼ 1 − σ2k2 [2]. For this special
case, equation (1) becomes

˜̂P (k, s) =
τ

τs + σ2k2 . (2)

Re-arranging the above, we find

s ˜̂P (k, s) − 1 = −k2σ2

τ
˜̂P (k, s) (3)

which is the Laplace–Fourier inverse of the normal diffusion equation

∂tP (x, t) =
σ2

τ
∇2P (x, t). (4)

Superdiffusion is, instead, obtained by introducing a diverging second moment in the jump
distribution (p̃(k) ∼ 1 − φ|k|α where 1 ! α < 2) which yields [2, 13]

s ˜̂P (k, s) − 1 = − |k|αφ

τ
˜̂P (k, s) (5)

which, in turn, is the Laplace–Fourier inverse of the spatial FFPE

∂tP (x, t) =
φ

τ
|∇|αP (x, t). (6)

The FFPE therefore exhibits a diverging mean square displacement, ⟨x2⟩ [3]. For this
reason, an alternative rescaled form for the second moment holds, ⟨|x|δ⟩ ∝ tδ/α, where
0 < δ < α ! 2 when the diffusion is unbiased.

Analogously, for subdiffusive processes, it is the exponent in the waiting time
distribution (with, in this instance, a diverging mean) that must be amended [2].

The derivation of the spatial FFPE from the CTRW, highlights the direct link between
microscopic (jump and dwell time) distributions and α, the anomalous exponent. In
particular, spatial FFPEs make key predictions on the jump size distribution of random
walkers [9, 18] that should be observed if individual particle trajectories are tracked
[18–20]. And, furthermore, if the matter at hand is to understand the microscopic origin
of α, then the CTRW redirects our modeling attention to this important question [21]:
what properties of the random walker’s environment justify the divergent second moment
of the jump size distribution?

Here we consider the case where individual particles are not tracked but a profile still
appears to match a spatial FFPE. In this case, it is fair to ask whether other microscopic
models could have described the evolution of this density equally well [22]. This brings
us to the heart of our problem.

We will consider a concentration profile c(x, t) that evolves according to an apparent
spatial FFPE (equation (6))

(7)∂tc(x, t) = γ|∇|αc(x, t) 
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where γ is a diffusion-like coefficient of the FFPE (with units of [positionα/time]). Our
focus will be on spatial FFPEs exhibiting superdiffusion which, for simplicity, we now
simply refer to as FFPEs.

Contrary to other approaches from which the FFPE is derived [2], we will consider a
regular Fokker–Planck equation (FPE) as an alternative [23]

∂tc(x, t) = −∇ ·
(

F(x, t)
ζ

c(x, t)
)

+ D∇2c(x, t), (8)

where ζ is a friction coefficient and D a normal diffusion coefficient. We will
show that we can reproduce the behavior of the FFPE (equation (7)) using a
regular FPE.

As a simple motivating example, consider a 1-d FFPE (α = 1) that we can first
solve analytically. For open boundary conditions and delta function initial conditions, the
solution is [13]

c(x, t) =
1
π

· γt

γ2t2 + x2 . (9)

Substituting this expression for c(x, t) back into equation (8) and solving for the force F
we obtain

F (x, t)
ζ

= x

(
1
t

− 2D
x2 + γ2t2

)
(10)

Equation (10) confirms that for this simple example there exists a force in the FPE
that generates the evolution of a density precisely matching that of an FFPE with
α = 1. This simple example also illustrates that this effective force depends explicitly
both on time and space as well as the normal diffusion coefficient D. We add that
since D and ζ (through F ) are chosen independently, the system may not satisfy
the fluctuation-dissipation theorem. In addition, since the force initially varies sharply
with time (as is the case in equation (10)), it may lie outside the linear-response
regime.

In general, for problems not tractable analytically, we turn to numerics and ask: what
spatially and temporally varying effective forces, F(x, t), generate concentration profiles
indistinguishable from those obtained from an FFPE (equation (7)) for a given set of initial
conditions and diffusion coefficient D? Since we will rely on numerics, we will be limited
to extracting forces from regions of profiles where the concentration is not vanishingly
small.

Throughout our manuscript, we will assume that the diffusion coefficient would be a
given quantity either estimated theoretically from the Stokes–Einstein relation [23] or
determined from a priori control experiments.

In what follows, we tackle the inverse problem of using profiles generated from FFPEs
to recover the spatially and time-dependent effective forces that could have given rise to
the profiles otherwise described by FFPEs. Such inverse modeling methods are poised
to yield quantitative insight into the dynamics of complex biological systems [24]. We
will discuss how our effective force’s time and spatial dependence may yield microscopic
insight into some biophysical processes.
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2. Materials and methods

Our goal is to find the force in the regular FPE (equation (8)) that best describes an
apparent anomalous diffusion concentration profile’s evolution obtained from the solution
of the FFPE (equation (7)) given a set of initial conditions and a diffusion coefficient, D.

To solve this problem, we first generate a concentration profile (which we call c̄(x, t))
by solving equation (7) on a grid (in space and time) according to the prescription provided
by [25]. We treat this synthetic profile as an example of anomalous data. In particular,
we take the discretizable Riemann–Liouville definition of the fractional derivative [25]

∂α
x c(x, t) (11)

≡ 1
Γ(n − α)

∂n
x

∫ x

a

dξ

(x − ξ)α−n+1 · c(ξ, y, z, t)

+
(−)n

Γ(n − α)
∂n

x

∫ b

x

dξ

(ξ − x)α−n+1 · c(ξ, y, z, t)

where n is an integer (0 ! n − 1 < α < n). Since we consider cases where 1 ! α < 2, we
take n = 2. Equivalent expressions hold for the y and z spatial directions while [a, b] define
x’s domain. For simplicity we assume diffusion symmetric in space; the generalization to
an asymmetric process is straightforward [25]. As an aside, for conservative forces, these
forces can be converted into a potential. For instance, for the heavy tailed distribution
generated from the superdiffusive FFPE in one dimension, we expect a force derived from
an unstable (i.e. inverted) potential that changes in time.

To find the force (or more precisely F/ζ) from the profile c̄(x, t), we define a χ2 misfit
statistic as follows

χ2(t) =
∫

dx
(
∂tc̄(x, t) + ∇ ·

(
F(x, t)

ζ
c̄(x, t)

)
− D∇2c̄(x, t)

)2
(12)

where—for discrete data—all derivatives are interpreted as finite differences and integrals
as sums. The integral is over all space (in practice, the region over which the bulk of the
density of c̄(x, t) lies) and D, as mentioned earlier, is a known specified quantity.

For simplicity only, we assume open spatial boundary conditions and follow the recipe
provided by [25] to discretize and numerically solve our FFPE.

We then use conjugate gradient methods to minimize our χ2 (code available under
publications on statphysbio.physics.iupui.edu) with respect to the force at each position
for a given time and obtain a force, or F(x, t)/ζ, valid over that time slice. Next, from
the concentration profile at some later time (t′ > t), we minimize χ2(t′) again, and find
F(x, t′)/ζ.

In practice, for rough profiles, extracting the force requires some regularization of the
χ2 minimization [24]. What follows is an illustration—a proof of principle—on smooth
concentration profiles.

Our recipe is not specific to any type of boundary conditions, dimension or α (provided
1 ! α < 2).
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Figure 1. Effective forces (shown in b) are extracted from FFPE profiles (shown
in a). We first evolve a Gaussian profile (our initial condition) with an the FFPE
(α = 1.2). Our initial profile (starting at time δt = 1) is shown as the sharpest
curve in (a). Later profiles (δt = 5, 10, 15, 20, 30, 40, 60, 80) are increasingly broad.
In (b) we show forces extracted from those same time points (with the most non-
linear force reflecting the earliest time point and forces for future time-points
becoming increasingly linear). Parameters used: D = 5, ∆x = 1, δt = 0.06,
γ = 5, α = 1.2. D has units of [position2/time], γ has units of [positionα/time].

3. Results and discussion

We begin with an initial Gaussian concentration profile (in 1-d for simplicity only) and
simulate its time evolution according to the FFPE. Figure 1(a) shows the evolution of
a profile for α = 1.2 with broader profiles representing later time points; see details in
caption. In real experiments, these data could represent fluorescence line scans repeated
over one region to detect the profile of labeled proteins diffusing in a live cell.

From these profiles at different time points, we extract forces using equation (12) that
would give rise to the heavy-tailed profile generated from the solution of the FFPE. The
forces—shown in figure 1(b)—show a strong deviation from the linear force expected from
an inverted harmonic potential in one-dimension.

Since forces are extracted by comparing concentration profiles at different points
in space and time (equation (12)), we cannot accurately extract forces in regions of
space where the concentration profile c̄(x, t) is low. In other words, in regions where
the concentration profile is low any force could be used to evolve that density since, by
equation (8), this force would be multiplying a numerically vanishingly small number.
The fact that forces far out in the tails cannot be accurately captured is a shortcoming
of numerical methods. However, to our benefit, such forces—in regions where c̄(x, t) is
low—are largely irrelevant to the evolution of those regions where the majority of the
density lies (which, as we will see, still exhibit a typical non-Gaussian form).

Thus in figure 1(b), forces away from x = 0 and closer to the tails of the distribution,
x = 80 and x = 120, show increased numerical errors (that is, deviation away from the
symmetry expected). Figure 1(b) also shows that, initially, forces show greater variation
with time than forces extracted for later times. As a consequence, a force evaluated at
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Figure 2. Forces evaluated at specific time points can predict the evolution
of the profile over some future time interval. In general for forces evaluated at
later time points (where forces vary more slowly with time), the time interval
over which they can reproduce the evolution of the profile that matches the
solution to the FFPE lengthens. In (a) we show the time evolution of the profile
(dotted line) evolved according to the force extracted at δt = 1 (force originally
shown in figure 1(b)). The profile generated according to this force no longer
matches the shape of the theoretical profile (exact solution to the FFPE, solid
line) near δt = 20. The initial condition, blue profile, is shown in blue on all
plots. Analogously in (b) we show the profile evolved from the force extracted
at δt = 80 (dotted line) at various later time points. The force still accurately
predicts the evolution of the profile 40δt later (as determined by how well the
theoretical solution to the FFPE, solid line, and the profile evolved according to
the force at δt = 80 still match at δt = 120). (We use the same parameters as in
figure 1).

an early time point may only allow the profile to be evolved over a short period of time
before the profile begins deviating from the solution to the FFPE. By contrast, forces
evaluated at later time points can predict the evolution of the profile over a longer period
of time. This is quantitatively shown in figure 2.

While predicting the evolution of concentration profiles using forces extracted from
the data serves to benchmark our method, our goal is not to regenerate profiles already
known from the data. Rather our goal, as we will describe in greater depth later, is to
derive insight from forces extracted at different time points.

Nonetheless, it is still worth asking about the minimal number of force time ‘slices’
required to regenerate the data. Briefly, here we show that even one force slice may suffice
over a broad time interval. To do so, we extract a phenomenological force averaged over
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Figure 3. An average force predicts the evolution of a concentration profile over
a long time interval. We began by extracting an average force, shown in (a), over
100δt using equation (13). As can be seen in (b), this phenomenological force
reliably predicts the evolution of the profile over a time interval longer than
the exact forces extracted at specific time points (figure 2). We use the same
parameters used in the figures above.

all time points. This force is extracted from the data by minimizing

χ2 =
∫

dxdt
(
∂tc̄(x, t) + ∇ ·

(
F(x, t)

ζ
c̄(x, t)

)
− D∇2c̄(x, t)

)2
(13)

In practice, the integral over time is over all time points for which a profile is available.
Initially, we used equation (13) to obtain an approximate time-averaged force

(figure 3(a)) from over 100 slices (from δt = 1 to δt = 100) of a profile evolved according
to an FFPE with α = 1.2 (see details in caption). The initial profile we used is shown as
the blue profile in figure 3(b). We then used the approximate force we extracted to evolve
this initial profile (dotted lines in figure 3(b)) to compare to the exact profile evolved
according to the FFPE (solid lines in figure 3(b)). Figure 3(b) illustrates the predictive
power of even one approximate force over a long time interval.

We now investigate the sensitivity of forces to changes in α. Rather than to compare
forces for two different α’s at multiple time points, for convenience we compare a single
effective force: the approximate (time-averaged) force for both profiles. Figure 4(a) shows
two profiles evolved from the an initial condition (blue curve in figure 4(a)) according to
α = 1.2 (broadest curve in figure 4(a)) and α = 1.8 (remaining curve in figure 4(a)) for
δt = 180; see details in caption. Figure 4(b) shows the approximate forces extracted. From
this, we argue that we can detect differences in forces extracted from profiles generated
from FFPEs using different α’s.

Here is the type of mechanistic insight that can be obtained from forces extracted from
the evolution of FFPE’s. Suppose we monitor profiles of a labeled protein X by collecting
line scans across a region of a live cell, as is routinely done to collect concentration profile
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a) b)

Figure 4. A hypothetical protein responsible for the transport of protein X
is mutated and we ask: how does the effective force acting on X change? The
sharpest peak in (a) denotes the Gaussian initial concentration profile. The other
profiles are solutions to the FFPE with α = 1.2 (red curve) and α = 1.8 (yellow
curve); γ = 5 in both cases. Just to be clear, unlike other plots, these are all
theoretical curves. The average effective forces required to regenerate solutions
to the FFPE are shown in (b). The more non-linear force (blue) coincides with
the force required to generate a profile of the FFPE with α = 1.2, the other
curve coincides with the force required to generate a profile of the FFPE with
α = 1.8. If upon mutating X’s binding partner the anomalous exponent changes
from α = 1.2 to α = 1.8, we instead can use our method to find regions over
which X’s binding partner was applying a force on X. See text for details.

changes with high temporal resolution [26]. A protein Y —known to assist in the transport
and recruitment of X to the outer cell membrane—is mutated and can no longer bind X.
We suppose that the best fit exponent in the FFPE—which models X’s profile changes in
space and time—rises from α = 1.2 to α = 1.8 suggesting a transition towards a normal
diffusion process for X upon mutation of Y ; see figure 4. By contrast to fitting the data
with an FFPE, extracting the forces from the evolution of X’s profile reveals the precise
difference in driving force along distinct regions of the cell; see figure 4. In particular, this
observation predicts the region of the cell where our hypothetical protein Y is most active
and, in doing so, may also identify regions where a driving force is present even in the
absence of Y .

We mentioned earlier that we were extracting forces given known initial conditions
and a fixed D in our FPE. We end with final remarks on this point:

(1) Initial conditions. The force we extract from a concentration profile depends on the
initial conditions. For instance, the force extracted from a profile evolved according
to the FFPE with a sharp Gaussian distribution as its initial condition is different
from the force extracted from a profile evolved from an initial mixture of two sharp
Gaussian distributions centered at different values. Put differently, if the anomalous
diffusion is driven by an effective force, then the anomalous exponent α depends on
initial conditions.

(2) Diffusion coefficients. We made a choice to fix the diffusion coefficient in the regular
FPE, equation (8), to some value motivated by a Stokes–Einstein form, say, and
subsequently use the FFPE profile to find the effective force in the FPE. In future
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work, it would be interesting to explore the possibility of distributions of spatially and 
time-dependent diffusion coefficients [27].

4. Conclusion

We have shown that inverse methods—which have previously been used to extract
underlying forces in cells [28] as well as diffusion coefficients and transition rates [29] from
single particle tracking data—may provide principled strategies to resolve mechanistic
insight from anomalous diffusion data.

We have explored one alternative to the FFPE and shown how inverse methods may
be used to infer forces in an FPE that could otherwise give rise to profiles generated using
FFPEs. In some cases, the effective forces we extract may help draw mechanistic insight
into the origin of anomalous diffusion.

We emphasize that our method is not specific to any one force. While we focused on
extracting effective forces that are required to recapitulate profiles generated by FFPEs,
we could have explored different forces and some forces may be more biologically relevant
than others.

For instance, a force’s spatial dependence may tell us about local crowding in different
cellular environments [30, 31] or suggest the types of cellular structures interacting with
our random walkers at specific locations [32]. Thus, future—more detailed—experiments
could seek specific interaction partners responsible for a force change at a specific point
in space.

Next, an effective force’s time dependence may arise for a number of biological
reasons: (1) on slower timescales, the remodeling of cytoskeletal structures (the biological
‘highway’ along which our random walkers may superdiffuse) [10, 33–35]; while on faster
timescales, (2) ATP depletion or excesses [33]; and, perhaps most excitingly, (3) the
degree of metabolic activity in the cell which has very recently been linked to the fluidity
of the bacterial cytoplasm responsible for untrapping cellular structures [36]. Thus,
understanding how a force depends on time (and, in particular, the timescale over which a
force varies) may suggest what phenomena are responsible for the anomalous underlying
dynamics.

The goal of theoretical biophysics is, ultimately, to generate quantitative and predictive
biological models for complex phenomena from first principles [24, 37]. Quantifying
effective forces that identify changes as they occur within the cell from the data is one
step along this path.
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