
Sampling Triples from Restricted Networks using MCMC
Strategy

Mahmudur Rahman, and Mohammad Al Hasan
Dept. of Computer Science, Indiana University—Purdue University, Indianapolis

{mmrahman, alhasan}@cs.iupui.edu

ABSTRACT

In large networks, the connected triples are useful for solv-
ing various tasks including link prediction, community de-
tection, and spam filtering. Existing works in this direction
concern mostly with the exact or approximate counting of
connected triples that are closed (aka, triangles). Evidently,
the task of triple sampling has not been explored in depth,
although sampling is a more fundamental task than count-
ing, and the former is useful for solving various other tasks,
including counting. In recent years, some works on triple
sampling have been proposed that are based on direct sam-
pling, solely for the purpose of triangle count approximation.
They sample only from a uniform distribution, and are not
effective for sampling triples from an arbitrary user-defined
distribution. In this work we present two indirect triple sam-
pling methods that are based on Markov Chain Monte Carlo
(MCMC) sampling strategy. Both of the above methods are
highly efficient (several magnitudes faster on large datasets)
compared to a direct sampling-based method, specifically for
the task of sampling from a non-uniform probability distri-
bution. Another significant advantage of the proposed meth-
ods is that they can sample triples from networks that have
restricted access, on which a direct sampling based method
is simply not applicable.

1. INTRODUCTION
For a long time, scientists from a wide variety of dis-

ciplines, including social sciences,information science and
bioinformatics are using networks for modeling complex re-
lations among different entities. They also invented various
measures of interest relating to graph topology for under-
standing the underlying dynamics that drive these relations.
For instance, clustering coefficient and transitivity [20] met-
rics are invented for denoting the clustering tendency of the
vertices in a network, centrality indices are used for under-
standing the diverse roles of the vertices, and modularity
is used for discovering communities. Most of the existing
methods for computing the above metrics have a super-
linear time complexity, which is deemed costly for today’s
large networks reaching the planetary scale in size. So, there
have been growing interests to obtain efficient algorithms for
computing these metrics in linear or sub-linear time through
sampling based methods.

Triples, which are defined as paths of length two are im-
portant building blocks of social networks. Two prominent

theories for temporal evolution of social networks are ho-
mophily and transitivity; according to the homophily the-
ory, people tend to choose friends that are similar (to some
extent) to themselves and according to the transitivity, peo-
ple who have common friends tend to become friends them-
selves [12]. Transitivity accounts for a social network to have
a large number of triangles than a random network of sim-
ilar size. To measure the conformity of a network with the
transitivity theory, network metrics, such as, transitivity,
or clustering co-efficient are used. They simply capture the
tendency of “closing the triangle”by adding the missing edge
in an open triple. This tendency is more prevalent inside a
network community as the nodes in a community connect
more often with other members in the community. Thus,
the role of a triple in defining the network structure makes
it an important entity while analyzing a social network.

The importance of transitivity and its obvious connection
to the triangles in a network also contributed to the regained
interest in the seemingly simple task of triangle counting [9].
Besides computing transitivity in social networks, there are
other usages of the triangle counting task. In [6], the distri-
bution of triangles is used to uncover hidden thematic struc-
ture in the World Wide Web. Bar-Yossef et al. [2] show
that triangle count can be used for query plan optimization
in databases. In another recent work [3], the authors show
that the distribution of local triangle count can be used as
features for assessing the content quality in social networks.
However, for large networks with millions of vertices and
edges, all the exact methods for triangle counting can be
deemed as expensive; so, the majority of the recent efforts
of triangle counting either adopt a method for approximate
counting [19] or design a parallel or distributed framework
for solving the counting task in sub-linear time [18].

Surprisingly, a relatively small number of the existing works
consider sampling of triples (or triangles); nonetheless, sam-
pling is more fundamental than counting as the earlier can be
used for solving various tasks, including counting. Schank
et al. [16] proposed one of the earliest works for uniform
sampling of triples, which they use for approximating the
transitivity index of a network. The same method is also
used by another recent work for triangle count approxima-
tion [17]. Both of these works adopt a direct sampling strat-
egy for which critical information regarding the network,
such as vertex count, and the degree of each of the vertices
are required before the sampling can be commenced; un-
fortunately, for a restricted network such information are
not available. Besides, these methods only perform uniform
sampling of triples for approximating triangle counting or

This is the author's m
anuscript of the article published in final edited form

 as:

Rahm
an, M

., &
 H

asan, M
. A

. (2014). Sam
pling Triples from

 Restricted N
etw

orks U
sing M

C
M

C
 Strategy. In Proceedings of the 23rd A

C
M

 International C
onference on

C
onference on Inform

ation and K
now

ledge M
anagem

ent (pp. 1519–1528). N
ew

 York, N
Y, U

SA
: A

C
M

. http://doi.org/10.1145/2661829.2662075

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/46961562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

transitivity, whereas in this work we are considering sam-
pling triples from an arbitrary distribution.

1.1 Objective and Motivation
Our objective is to obtain an efficient method for sampling

triples from an arbitrary (user defined) probability distribu-
tion (say, f) defined over the set of triples in a network.
The distribution f can be defined implicitly; for instance,
one can only define a weighting function w(·) over the set of
triples, and f is simply the probability vector obtained from
the weights of each of the triples. Any locally computable
weight function should be admissible. Such a function can
be formed by the topological properties of the vertices in
the triples, or in case, the graph contains vertex or edge la-
bels, the weight function can be designed based on the label
composition of the vertices or edges of the triples.

To obtain a direct method for the sampling task that is
defined in the above paragraph, we first need to compute f
(probability mass function) from the weight function, and
then obtain the cmf (cumulative mass function) of f . Ob-
viously, this requires the knowledge of the entire sampling
space (total number of vertices, edges, and triples). For a
restricted graph, which can only be crawled by following the
edges of the input network, such information is not avail-
able, so direct sampling is infeasible for solving the above
sampling task on a restricted network.

The motivation for considering a restricted network comes
from real-life consideration. Say, an analyst is using a crawler
for crawling a Web graph, and he does not have the resources
to store the entire graph in memory/disk. Under this set-
ting, he may want to sample a set of triples (from a uniform
distribution) alongside crawling so that he can approximate
the transitivity of the Web graph. Clearly, without storing
the entire network, he has no knowledge of the number of
vertices, or edges in this network, let alone the number of
triples. Also, for a hidden network, a user may not have ac-
cess to an arbitrary node in the network for security reason,
rather the desired node can only be accessed from another
node which is one-hop away from it; such scenarios are com-
mon in real-life and are considered in some of the recent
works that compute various network properties (degree dis-
tribution, average degree) by random walk over real-life net-
works, such as, Facebook [8].

Even if a network is not restricted, an indirect sampling
method can be more desirable than a direct sampling method,
both from viability and efficiency consideration. We will
show in this paper that an MCMC based method is signif-
icantly more efficient than a direct sampling method, for
weighted sampling where the probability distribution vector
(f) is not readily available, because in such a case, compu-
tation of f and cmf(f) (cumulative mass function of f) are
required for direct sampling (see Section 4.2 for details); this
fixed cost can be expensive, as the number of triples in large
networks are, typically, in the order of billions.

In this work, we propose two methods for indirect triple
sampling using Markov Chain Monte Carlo (MCMC) strat-
egy. MCMC performs a random walk over the sample space
such that the desired probability distribution (in this case,
f) aligns with the stationary distribution of the random
walk. Since MCMC computes the transition probability ma-
trix of the random walk locally (on demand), it does not
compute f explicitly; consequently, it does not need any in-
formation regarding the size of the sample space. As long

as a state of the random walk can be visited from one of
the neighboring states, an MCMC-based sampling works,
which makes it an ideal candidate for sampling from a re-
stricted network. Also, an MCMC-based method computes
the transition probability matrix on-line, so it can accommo-
date addition or deletion of vertices (or edges) in a dynamic
network, even when the sampling process is running.

The sampling methods that we propose are called vertex-
MCMC, and triple-MCMC: the former is more accurate and
the latter is more versatile. Both the methods can sample
from an arbitrary distribution, yet vertex-MCMC is par-
ticularly suitable (both efficient and accurate) for sampling
from a uniform distribution. So, we use it for approximating
triangle count in a large network. In experiment section,
we show that the performance of vertex-MCMC is almost
as good as a direct sampling based method. On the other
hand, triple-MCMC method is more suitable for sampling
from non-uniform distribution; our experiments with one of
the real-life graph show that it is 170 times faster than a
direct sampling method with a better sampling quality.

2. RELATED WORKS
The popularity of sampling based techniques has grown

in recent years for analyzing large graphs. For example,
sampling has been used for finding interesting subgraphs [1],
communities [11], and graphlet frequency distribution [15].

Triple sampling is considered in the context of approx-
imate counting of triangles (or computing transitivity) in
the following works [16, 5, 17]. Both [16] and [17] obtain
uniform sampling of triples using a direct sampling method,
which we will discuss in Section 4.2. Buriol et al. [5] pro-
pose a collection of streaming algorithms for triple sampling,
also with the intention of triangle approximation. One of
their methods, named, 3-pass-incident-stream, is conceptu-
ally similar to the direct sampling method of [16, 17]. Buriol
et al. also consider another 3-pass method for arbitrary edge
streaming; it samples triples by first sampling an edge, and
then sampling a vertex, both uniformly. A triple that is
obtained this way belongs to one of the following sets exclu-
sively: disconnected triples (set T1), connected open triples
(set T2), or triangles (set T3). From the size of each of
these sets, the authors find an approximation of the triangle
count in a graph. To the best of our knowledge, no works
exist that consider sampling of triples from a user-defined
arbitrary sampling distribution.

A set of recent works [10, 8] considers the task of sam-
pling from restricted networks that can only be crawled.
The most notable among these is the work by Leskovec and
Faloutsos [10] which used a collection of random walk meth-
ods, namely, BFS (breadth-first search), forest-fire, simple
random walk (SRW), and snowball sampling for obtaining
a representative sample of the restricted network. One can
apply the above random walk methods for sampling a rep-
resentative networks of appropriate size and return all the
triples from that network as the sampled triples. However,
such a sampling of triples does not guaranty uniform sam-
pling of triples; furthermore, the user has no control over the
probability distribution by which the triples would be sam-
pled in the above approach. On the other hand, the MCMC
method that we propose in this work can sample from any
arbitrary user-defined distribution.

There are other recent works that adopt MCMC sampling
strategy. Bhuiyan et al. [15] use it for sampling graphlets,

1 4

2 3 5 6

Π∠: {(1, 2, 3), (2, 3, 4), (2, 3, 5), (3, 5, 6), (4, 5, 6)}
Π△: {(3, 4, 5), (4, 3, 5), (3, 5, 4)}

Figure 1: Open and closed triples in a graph

Maiya et al. [11] use it for sampling community structure,
and Gjoka et al. [8] use it for finding an approximate de-
gree distribution of Facebook network. However, each of
these works have a different objective and they sample from
different population. Besides, none of these works samples
from an arbitrary user-defined distribution.

3. BACKGROUND
Let G = (V,E) is a graph, where V is the set of vertices

and E is the set of edges. Each edge e ∈ E can be denoted
by a pair of vertices (u, v) where, u, v ∈ V . A graph without
a self-loop or multi edge is a simple graph. In this work, we
consider simple, connected, and undirected graphs. We use
n to define the number of vertices in G, d(v) to define the
degree of a node v, and dmax to denote the maximum degree
value for a vertex over the entire graph.

3.1 Triples and Triangles
A triple (u, v, w) at a vertex v is a path of length two for

which v is the center vertex. If the other two vertices (u
and w) are also connected by an edge, the triple is called a
closed triple (triangle), otherwise it is called an open triple.
A triangle actually contains three closed triples, one centered
on each of its vertices.

We use the symbol Πv to represent the set of triples that
are centered at the vertex v. The set of triples in a graph
G = (V,E) is Π, which is the union of the set of triples at
each of its node, i.e., Π =

⋃
v∈V

Πv. Based on whether the
triple is open or closed (in terms of its induced embedding
in the graph G), we can partition the set Π into Π∠ (open
triples) and Π△ (closed triples). Note that, each of the nodes
of a triangle in a graph G contributes one distinct triple in
the set Π△. To represent the set of open and closed triples
centered at a vertex v, we will use Π∠

v and Π△
v , respectively.

If δ(G) is the number of triangles in the graph G, then

δ(G) =
1

3
|Π△| = 1

3

∑

v∈V

|Π△
v | (1)

Example: Graph in Figure 1 has eight triples. Five of them
are open and the remaining three are closed. Also the graph
has exactly one triangle.

Given a graph G(V,E), the total number of triples in G,

|Π| =
∑

v∈V

|Πv| =
∑

v∈V

(d(v)

2

)

(2)

3.2 Transitivity
Newman, Watts and Strogatz [14] defined the transitivity

of a graph G (say, γ(G)) as the fraction that represents the
number of closed triples divided by the number of all the
triples over the entire network.

γ(G) =
|Π△|

|Π|
=

|Π△|

|Π∠|+ |Π△|
(3)

Using Equation 1 and Equation 3, the triangle count (δ(G))
of a network can be obtained from the transitivity of the net-
work as below:

δ(G) =
1

3
· γ(G) · |Π| (4)

Following Equation 3, the transitivity of a graph, γ(G),
is the probability that an arbitrary triple in G is closed.
This probabilty can be approximated using uniform triple
sampler. For this, we sample a set of triples Ω (⊂ Π) from G
using a uniform distribution, and count the number of closed
tripled in that set (say, Ω△). Then, we define a random

variable γa(G) = |Ω△|
|Ω|

. The following lemma holds:

Lemma 1. E[γa(G)] = γ(G)

Proof: form the uniformity assumption, E
[
|Ω△|

]
= γ(G)·

|Ω|. Then, E[γa(G)] = E
[
|Ω△|
|Ω|

]
= E[|Ω△|]

|Ω| = γ(G)·|Ω|
|Ω| =

γ(G).

Thus, the expectation of the variable γa(G) provides an
unbiased estimate of the transitivity, which can subsequently
be used in Equation 4 for finding an approximate triangle
count in the graph G.

3.3 Metropolis-Hastings (MH) Algorithm
The main goal of the Metropolis-Hastings algorithm is to

draw samples from some distribution π(x), called the target
distribution, where, π(x) = f(x)/K; here K is a normalizing
constant which may not be known and difficult to compute.
MH algorithm can be used together with a random walk
to perform Markov Chain Monte Carlo (MCMC) sampling.
For this, the MH algorithm draws a sequence of samples
from the target distribution as follows:
i. It picks an initial state (say, x) satisfying f(x) > 0.
ii. From current state x, it samples a point y using a distri-
bution q(x, y), referred as proposal distribution.
iii. Then, it calculates the acceptance probability,

α(x, y) = min

(
π(y)q(y,x)

π(x)q(x, y)
, 1

)

= min

(
f(y)q(y, x)

f(x)q(x, y)
, 1

)

(5)
and accepts the proposal move to y with probability α(x, y).
The process continues until the Markov chain reaches to a
stationary distribution.

4. METHOD

4.1 Problem Formulation
Assume, Π is the set of triples in a large network G. Now,

for a user defined non-negative weight function, w : Π→ R
+,

we can define a probability distribution over the set of triples
(Π) by normalizing the weights, i.e, for a triple t ∈ Π, its

probability is assigned as w(t)∑
x∈Π

w(x)
. The task of triple sam-

pling is to sample triples from Π using the above probability
distribution. We can represent the probability distribution
using a probability mass function, f , which simply assigns a
probability value to each of the triples in Π. If the weights of
all the triples are the same, then the above sampling becomes

a uniform sampling of triples. For triple sampling, we also
consider the scenario that the given network is restricted
such that it is not explicitly visible, but can be crawled.
More formally, in a restricted network, we can perform a
random walk over the network, where at any given state of
the walk, the currently visiting vertex, along with its adja-
cency list is visible to us.

In this paper, we propose, explain and compare twoMCMC
based algorithms for solving the sampling problem that we
define in the previous paragraph. The first among these
two is vertex-MCMC which we discuss in Section 4.3, and
the second among these two is triple-MCMC, which we dis-
cuss in Section 4.4. In the following we will discuss a direct
sampling approach first to prove that for a restricted graph
direct sampling is not feasible.

4.2 Direct Sampling
A direct sampling method for sampling a triple from Π

first constructs the probability mass function (f) over the
sample space (if not given) using the weight function, and
from that it constructs the cumulative mass function (say,
F) of f . Then it uses the inverse-transform method to sam-
ple an object from the sample space. More formally, if the
sampled object is x, then x = F−1(U) where U ∼ Uni(0, 1).
For computer implementation, we can simply store the func-
tion F in a vector of size |Π| considering an arbitrary (but
constant) ordering of triples, and then choose an index from
the vector uniformly using binary search, and return the
triple corresponding to that index. For a restricted network,
construction of F is impossible, so direct sampling method
is not applicable for such a network.

Authors of [16] and [17] use a slightly modified version
of direct sampling for sampling triples. Theirs’ is a two-
step sampling process. The first step samples a vertex v
from a multinomial distribution, ζ, which is constructed
by summing f(·) of each of the triples at the vertex v.
Mathematically, ζ(v) =

∑
t∈Πv

f(t). It is easy to see that∑
v∈V Pζ(v) = 1. The second step samples a triple from

the set of triples at vertex v (Πv) using another multino-

mial distribution, τv. If t ∈ Πv, then Pτv (t) =
f(t)
ζ(v)

. Thus,

the probability of sampling a triple, P (t) = P (t|v) · P (v) =

Pτv (t) · Pζ(v) = f(t)
ζ(v)
· ζ(v) = f(t), as desired. As there

are O(n2) triples in a graph, the cost of construction of
cmfs of ζ and τv’s is O(n2), and the cost of sampling by
inverse-transform is logarithm of the sample space (cost of
binary search). Overall complexity of sampling k triples is
O
(
n2 + k(lgn+ lg dmax)

)
, where n is the number of ver-

tices, and dmax is the largest degree value for a vertex in the
graph. Clearly, such a method is very inefficient.

However, note that the authors of [16] and [17] considered

uniform distribution only. For this, Pζ(v) =
|Πv|
|Π| . Also, each

of the τv’s is trivially a uniform distribution. So, Z (cmf of ζ)
can be computed in O(n) time using equation 2 considering
that the degree of a vertex is available in O(1) time; we

simply need to add the terms
(
d(v)
2

)
in the above equation

cumulatively for each of the vertices. Overall complexity of
sampling k triples is then O(n + k lg n). Thus, the direct
sampling of triples is efficient for uniform sampling, but not
for arbitrary sampling.

Example: For uniform triple sampling of the graph pre-
sented in Figure 1, we choose a vertex with the distribution
ζ. Under this, the vertex 3 is selected with probability 3/8,

as there are three triples for which vertex 3 is the center. If
vertex 3 is selected, we randomly choose two vertices from
the adjacency list of 3 (2, 4, 5) and construct one of the three
possible triples and return. Consequently, the probability of
triple (3, 4, 5) being selected is (3/8 × 1/3 = 1/8), which is
equal to 1/|Π|, as desired.

4.3 Vertex-MCMC for Triple sampling
We have seen in previous section that sampling a triple

from an arbitrary distribution requires the construction of
the cmf of ζ. For a restricted graph this is an infeasible task
due to the lack of availability of the required information.
Besides, the construction of the cmf of ζ takes O(n3) time,
which is a fixed cost that is required to be paid up before
the sampling process starts.

Our first indirect method to address the above limita-
tions is to use an MCMC sampling method that does not
construct ζ explicitly. We call it vertex-MCMC; the justi-
fication of this name will be clear in short time. Vertex-
MCMC sampling uses a similar approach as the two-step
direct sampling, but unlike the latter, it replaces the first-
step (sampling a vertex from ζ) with an indirect sampling
via MCMC. The second step of vertex-MCMC sampling re-
mains unchanged from the two-step direct sampling method.
More details of vertex-MCMC is given below.

For any MCMC algorithm, we need to define the states,
the state transition process, the transition probability ma-
trix, and the desired probability distribution. For vertex-
MCMC, the set of states are the vertex-set V and the tran-
sition over the states happens along the edges (E). So the
MCMC process is simply a random walk on the graph G.
However, we want the stationary distribution of this walk to
be identical to the desired distribution, which is ζ—identical
to the desired distribution of vertices for a two-step sam-
pling. To achieve the desired sampling distribution we will
use Metropolis-Hastings (MH) algorithm.

Algorithm 1 triple sampling vertex-MCMC

1: procedure tripleSampling2(G(V,E), k, {w(i)}i∈Π)
⊲ Graph G is given as vectors of

adjacency vector, k is number of triples to be sampled,
w(·) is user-defined weights of the triples.

2: S ← φ
3: u = An arbitrary starting vertex from V .
4: while |S| 6= s do
5: v ← SelectNodeMCMC(u, {w(i)}i∈Π) ⊲ see

Algorithm 2
6: Select a triple t ∈ Πv using t ∼ τv
7: S.add(t)
8: end while
9: return S ⊲ Return a set of s triples.
10: end procedure

Assume that MCMC random walk of a vertex-MCMC
based triple sampler is visiting a vertex v. As was discussed
in Section 3.3, MH algorithm uses a proposal distribution (q)
to make a trial move; vertex-MCMC chooses q to be uniform
over the neighborhood of v, in other word, it chooses one of
the vertices (say, u) from the adjacency list of v uniformly.
Therefore, the proposal distribution q(v, u) = 1/d(v); here
d(v) is the number of nodes adjacent to node v. q(v, u) rep-
resents the probability of an adjacency node u to be selected

from current node v. Similarly, q(u, v) = 1/d(u). Now, us-
ing Equation 5, the acceptance probability of the proposal
move is as shown in Equation 6.

α(v, u) = min

{

1,
Pζ(u) · 1

d(u
)

Pζ(v) · 1
d(v)

}

= min





1,

∑
t∈Πu

f(t) · d(v)
∑

t∈Πv

f(t) · d(u)





= min





1,

∑
t∈Πu

w(t) · d(v)
∑

t∈Πv

w(t) · d(u)






(6)

Algorithm 2 MCMC node sampling

1: procedure SelectNodeMCMC(current,{w(i)}i∈Π)
⊲ current is the currently visiting node, w(·) is user-
defined weights of the triples.

2: Wcurrent =
∑

x∈Πcurrent
w(x), ⊲ compute if not

available from earlier iterations
3: next = Uniform from adj(current) ⊲ Proposal step
4: Wnext =

∑
x∈Πnext

w(x) ⊲ compute if not available
from earlier iterations

5: acceptance← Wnext∗d(current)
Wcurrent∗d(next)

⊲ See Equation 6

6: if uniform(0, 1) ≤ acceptance then
7: return next
8: end if
9: return current
10: end procedure

Algorithm 1 illustrates the vertex-MCMC algorithm. The
sampling process starts from an arbitrary seed vertex (Line
3). To sample the next vertex from ζ, the method calls
the subroutine shown in Algorithm 2, which is simply an
implementation of MH algorithm, where the sample space
is the vertex set, and the target distribution is ζ. Once a
vertex is selected on Line 5, vertex-MCMC computes the
cmf of τv, and uses the direct sampling method to sample
a triple using τv (Line 6). The process continues until the
desired number of triples are obtained. The complexity of
vertex-MCMC for sampling k triples is O(kdmax), as weight
computations, and neighbor selection in Algorithm 2 can be
performed in O(dmax) time.

Why vertex-MCMC method works for a restricted graph?
The answer to this question is that the transition decisions of
the random walk of vertex-MCMC are made using informa-
tion that is locally available. More precisely, the transition
decision of vertex-MCMC’s random walk is made in Line 6
of Algorithm 2 using information computed in Line 2 and
Line 4; these lines compute the sum of weights associated
to the triples of current and next nodes, this computation
can be accomplished within the scope of a restricted graph.
Besides, vertex-MCMC method avoids the construction of
the cmf of ζ vector, which makes it computationally more
efficient than a direct sampling based method, the latter has
a quadratic complexity with respect to the number of ver-
tices in the network. Vertex-MCMC is also suitable for the
case of a dynamic network.

Lemma 2. The random walk over the graph G(V,E) in
Algorithm 1 converges to a stationary distribution which is
equal to ζ.

Proof: To achieve a unique stationary distribution, a ran-
dom walk needs to be ergodic which can be proved by show-
ing that the walk is finite, irreducible and aperiodic [13].
The state space of the random walk in Algorithm 1 is finite
with size |V |. We also assume that the input graph G is
connected, so in this random walk any state u is reachable
from any state v with a positive probability and vice versa,
so the random walk is irreducible. Finally the walk can be
guaranteed to be aperiodic by allocating a self-loop proba-
bility at every node 1. This prove that the random walk
achieves a unique stationary distribution. Now, consider
two adjacent vertices u, v ∈ V in graph G. Using Equa-
tion 6, the transition probability from v to u, Pvu = 1/d(v) ·
min

{
1,

Pζ(u)·d(v)

Pζ(v)·d(u)

}
which is equal to min

{
1

d(v)
,

Pζ(u)

d(u)·Pζ(v)

}
.

Assuming that the stationary distribution probability of the

node v is π(v) = Pζ(v), then π(v)·Pvu = min
{

Pζ(v)

d(v)
,
Pζ(u)

d(u)

}
.

Similarity, the transition probability from u to v is, Puv =

min
{

1
d(u)

,
Pζ(v)

d(v)·Pζ(u)

}
. Using π(u) = Pζ(u) yields π(u) ·

Puv = min
{

Pζ(u)

d(u)
,
Pζ(v)

d(v)

}
. Clearly we have, π(v) · Pvu =

π(u) · Puv. Thus the detailed balanced condition holds using
ζ as the stationary distribution. Since, detailed balanced con-
dition is a sufficient condition for an ergodic Markov chain
to achieve the given stationary distribution, the random walk
in Algorithm 1 achieves the stationary distribution ζ over the
vertices of G.

We proved that the MCMC sampling of Algorithm 1 chooses
a vertex v from the ζ distribution on convergence. Then the
Algorithm samples a triple t centered at v using τv distribu-
tion (On Line 6). Thus using the correctness of the two-step
direct sampling method, the sampled triple t is obtained
from the desired distribution f (which is proportional to the
weight w(t)). We will discuss the convergence of random
walk in more details in Section 4.5.
Uniform sampling using vertex-MCMC:, Pζ(v) =

(
d(v)
2

)
=

d(v)(d(v)−1)
2

, The Equation 6 then changes as follows:

α(v, u) = min

{
d(u)(d(u)− 1)/2 · 1/d(u)
d(v)(d(v)− 1)/2 · 1/d(v)

}

= min

{
d(u)− 1

d(v)− 1

} (7)

We do not show the pseudo-code of uniform triple sam-
pling using vertex-MCMC. But, it is easy to obtain by mak-
ing minor changes in Algorithm 1 and Algorithm 2. In Line
2 and Line 4 of Algorithm 2, we can compute the vertex
weights in O(1) time using the degree value of the corre-
sponding vertex; the acceptance probability (Line 5) changes
as shown in Equation 7. Finally, the Line 6 in Algorithm 1
requires to sample a triple from a uniform distribution in-
stead of τv, which also takes O(1) time. Due to the above
changes, vertex-MCMC is faster in uniform sampling setting
than weighted sampling setting. However, the theoretical
complexity of the uniform triple sampling is still O(kdmax);
although the weight computation cost is constant, we still
need to find a neighbor of the currently visiting vertex, which
in the worst case can take O(dmax) time.

1This is required only from a theoretical standpoint; in our
experiment we do not allocate any self-loop probability ex-
plicitly.

v1
v2 v3 v4 v5

v7 v8
v6

v9

(a)

v2− > v4, v7, v9

v3− > v1, v7, v9

v8− > v1, v4, v7

(b)

Figure 2: Induced triple and neighbors

4.4 MCMC walk over Triples
Our second indirect sampling method is named triple-

MCMC, which performs MCMC walk over the triples. Triple-
MCMC avoids computing cmf for both the distributions (ζ
and {τv}v∈V). In fact, triple-MCMC is completely oblivious
about the total number of triples in the graph. The set of
states for this sampling algorithm is the set of all the triples,
Π. Thus the random walk proceeds over the set of triples
along a neighborhood graph which is defined below.

The neighbor of a triple is another triple with two common
vertices. Thus, the triple-MCMC sampling obtains a se-
quence of dependent samples, where a sampled triple shares
two vertices with the previous sampled triple. To compute
the neighbor-set of a triple t, we need to find the other triples
that can be obtained by replacing exactly one of the vertices
of t.

Example: Suppose we are performing an MCMC walk
on the graph shown in Figure 2 (a). Let 〈v2, v3, v8〉 be the
currently visiting triple (triangle that is shown in bold line).
In Figure 2 (b) we show the information of all its neighbors.
The list labeled by v2 contains the vertices that can be used
to replace vertex v2 to get a valid neighboring triple and sim-
ilarly for the list labeled by v3 and v8. If the MCMC random
walk chooses to go to the neighboring triple by replacing the
vertex v8 with v1, the next sampled triple becomes a path
〈v1, v2, v3〉. On the other hand, if the vertex v3 is replaced
by v7, we get the closed triple 〈v2, v7, v8〉 where the center
of the triple is taken as v7, which is the lastly added vertex
of the triple. The transition between triples happens only
between the neighboring triples. For example, the transi-
tion probability between 〈v2, v3, v8〉, and 〈v4, v5, v6〉 is zero,
as they are not neighbors of each other according to our
neighborhood definition.

Let’s assume that the random walk of triple-MCMC is vis-
iting a triple t. For proposal distribution (say q), we choose
one of the triples from t’s neighborhood (say, s) uniformly.
So, q(t, s) = 1

|N (t)| . Here, N (t) is the set of neighbors of

triple t. Using Equation 5, the acceptance probability of the
proposal move is obtained as below:

α(t, s) = min

{

1,
f(s) · 1

|N|(s)|

f(t) · 1
|N (t)|

}

= min

{
1,

w(s) · |N (t)|
w(t) · |N (s)|

}

(8)
We show a pseudo-code in Algorithm 3. Since, the random

walk is performed over the triple space, we initialize the walk
with an arbitrary triple tp, any path of length 2 suffices (Line
3). Now, for the currently visiting triple, tp, we want to find
the next triple using MH algorithm. For this, we first find
all the neighboring triples of tp (Line 5). Reader may review
the Figure 2 to refresh the notion of the neighboring triples.
This computation requires finding unions or intersections of
the adjacency lists of the current triple’s vertices, and its
complexity is O(dmax). Then a neighboring triple (say, tq)
is selected uniformly from all the neighbors, and accepted

with the probability computed on Line 8. If the move is
rejected, the currently sampled triple is sampled again. The
process continues until k samples are obtained. The overall
cost of obtaining k samples is O(kdmax).

Lemma 3. The random walk over the triples of G(Π) in
Algorithm 3 converges to a stationary distribution with is
proportional to w(t)
Proof: The proof is almost identical to the proof of Lemma 2.
We first show that the walk is ergodic. The state space Π is
finite, because the number of triples is finite. We also as-
sume that the input graph G is connected, so in this random
walk any triple y is reachable from another triple x with a
positive probability and vice versa, so the random walk is
irreducible. Finally the walk can be made aperiodic by allo-
cating a self-loop probability at every node. Thus the random
walk reaches a stationary distribution. Similar to the proof
of Lemma 2, we can show that the random walk satisfies the
detailed balanced condition for the stationary distribution f
(proportional to w). Since the detailed balance condition is
sufficient for an ergodic random walk to reach the given sta-
tionary distribution, the lemma is proved.

Algorithm 3 triple sampling triple-MCMC

1: procedure tripleSampling3(G,k, {w(i)}i∈Π)
⊲ Graph G is given as vectors of

adjacency vector, k is number of triples to be sampled,
w(·) is user-defined weights of the triples.

2: S ← φ
3: tp ← a random triple ⊲ A length 2 path is sufficient
4: while |S| 6= s do
5: tq ← RandomNeighborT riple(tp)
6: np ← NeighborCount(tp)
7: nq ← NeighborCount(tq)

8: acceptance← w(tq)∗np

w(tp)∗nq

9: if uniform(0, 1) ≤ acceptance then
10: S.add(tq)
11: tp ← tq
12: else
13: S.add(tp)
14: end if
15: end while
16: return S ⊲ Return a set of s triples.
17: end procedure

4.4.1 Uniform triple sampling

For uniform sampling, the weight of an open triple is 1
and the weight of a closed triple is 3 (a triangle represents
three triples), i.e., for uniform sampling in Equation 8, we
set w(s) and w(t) to be 1 or 3 depending on whether the cor-
responding triple is open or close. MH algorithm guarantees
that the Algorithm 3 using the above acceptance probability
yields a uniform triple sampler.

4.5 Convergence Analysis
Convergence analysis is important for any MCMC sam-

pling based method because through such analysis we can
estimate the mixing time (number of walks to converge to
the stationary distribution overcoming the influence of the
starting state) of a Markov chain. Mixing time depends on
(i) the neighborhood structure of the space on which the

Name Nodes Edges Triple Count (|Π|)
ca-Hepth 8,638 24,806 297,397
ca-Grqc 4,158 13,422 227,919
ca-Cond 21,363 91,286 1,959,920

Table 1: Small real-life Networks used in sampling
quality experiments.

walk is performed, and (ii) the desired target distribution.
A method to measure the convergence rate is to find the
spectral gap of the transition probability matrix P . P has
n real eigenvalues 1 = λ0 > λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ −1.
Then, the spectral gap is defined as λ = 1−max{λ1, |λn−1|}.
Since the absolute values of all the eigenvalues are less than
one (based on Perron-Frobenius theorem) with the largest
eigenvalue λ0 be exactly one, the spectral gap is always be-
tween 0 and 1. The higher the spectral gap, the faster the
convergence [4]. For triple sampling in a restricted graph,
the entire transition matrix P is not available, so it is infea-
sible to measure the spectral gap.

However, if the objective of MCMC sampling is to measure
a metric over the sampling population, some experimental
methods are available to study the convergence of the chain
solely based on the convergence of the metric value. One
such method is called Geweke diagnostics [7]. Both vertex-
MCMC, and triple-MCMC sampling can be used to approx-
imate γ(G), the transitivity of the graph G, so this metric
can be analyzed for convergence study using Geweke diag-
nostics. It works as follows: we consider X to be a single
sequence of triple samples. Also let, Xi = 1 if ith sample of
the sequence is a triangle and Xi = 0 otherwise. Then the
expected value of the random variables in the sequence X
gives as unbiased estimate of transitivity, i.e., E[X] = γ(G).

Geweke considers two subsequences of samples, Xa form
the beginning part of X (typically first 10%) and Xb from
the last part of X (typically last 50%). From these two sub-

sequence he computes z-statistic: z = E[Xa]−E[Xb]√
V ar(Xa)+V ar(Xb)

.

Xa ans Xb goes further apart as the number of samples is
increased. Consequently, the correlation between the subse-
quences decreases. After convergence, there is no correlation
between Xa and Xb, and z becomes normally distributed
with mean 0 (E[Xa] = E[Xb] = γ(G), so, E[Xa]− E[Xb] =
0) and variance 1. The number of iterations that it takes for
the z-score to fall between [-1, 1] is considered the mixing
time. However, one should run the experiment for at least
a few distinct walks, and declare convergence when z-scores
from all the walks fall within the [−1, 1] range. In Section 5.4
we will show that only a few hundred walks are sufficient to
achieve convergence even on a graph having more than a
million of vertices.

5. EXPERIMENTS AND RESULTS
In our experiments we first show the performance of uni-

form triple sampling. Then we show the performance of
triple sampling from a nonuniform distribution. Finally, we
demonstrate that, uniform sampling of triples can be applied
for approximating triangle count, which provides an appli-
cation driven method for measuring sampling effectiveness.

5.1 Datasets
All the graphs 2 listed in Table 1 and 2, are undirected,

2obtained from http://snap.stanford.edu,http:

Name Nodes Edges Triangle Count

AS-Skitter 1,694,616 11,094,209 28,769,842
flickr 1,624,992 15,476,835 548,646,525

livejournal 5,189,809 48,688,097 310,784,143
orkut 3,072,441 117,185,083 627,584,181

Soc-LiveJournal 4,843,953 42,845,684 285,688,896
Wikipedia 2005/11 1,596,970 18,539,720 44,667,088
Wikipedia 2006/9 2,935,762 35,046,792 84,018,181
Wikipedia 2006/11 3,099,074 37,042,065 88,823,813
Wikipedia 2007/2 3,512,462 42,374,383 102,434,914

Table 2: Large real-life Networks used in approxi-
mate triangle count experiments.

unweighted, simple and connected. We pre-process them to
ensure these properties. The specification of the graphs (ver-
tex count and edge count) may not match with the source,
as in source, for some networks an undirected edge is repre-
sented by two directed edges in opposite directions; in our
representation, for such edges we discard one edge of the
edge-pairs. Additionally, we ensure that the graph is con-
nected as MCMC algorithms perform a random walk over
the graph. However, for all the graphs that we use, the
largest connected component of a graph retains more than
90% of the edges.

5.2 Uniform sampling performance
Our first experiment compares the performance of uni-

form triple sampling of vertex-MCMC with that of the direct
sampling method discussed in Section 4.2 (We skip triple-
MCMC for this experiment as It can be easily demonstrated
that for uniform sampling, vertex-MCMC is more efficient
than triple-MCMC). For this comparison we simulate both
the methods on an input graph by sampling triples (with re-
placement); then we study the statistics of sample count, a
random number representing the frequency at which a triple
is sampled. For each of input graphs, we run the sampler
for |Π| × i iterations, where Π is the set of distinct triples in
that graph. By definition, sample count follows a binomial
distribution B(k,m, p), where m = |Π|.i and p = 1

|Π|
. For

this distribution, the median sample count will be identical
to the mean, which is m.p = |Π|.i. 1

|Π| = i and the variance

is m∗p(1−p) = i(|Π|−1)
|Π| ≈ i. Since m is large, this binomial

distribution resembles a normal distribution. We run this
experiments using i=50 on smaller graphs that are listed in
Table 1. Performing this experiment on large graphs is in-
feasible, because for this experiment we need to store the
visit count of all the triples in the memory, and the number
of such triples is in the order of billions for large graphs.

30 40 50 60 70
0

5000

10000

15000

(a)

30 40 50 60 70
0

5000

10000

15000

(b)

30 40 50 60 70
0

5000

10000

15000

(a)

30 40 50 60 70
0

5000

10000

15000

(b)

Figure 3: Frequency
histogram of the visit
counts on ca-Hepth
network using (a) Di-
rect triple sampling (b)
vertex-MCMC triple
sampling.

Graph Direct Vertex
-MCMC

ca-Hepth 49.93 59.37
ca-Grqc 49.96 58.15
ca-Cond 50.09 52.05

Table 3: Comparison of
variances among Direct
sampling, and Vertex-
MCMC sampling (Me-
dian is 50 for all the
cases).

//socialnetworks.mpi-sws.org/,http://www.cise.
ufl.edu/research/sparse

In Figure 3, we show the frequency histogram of sam-
ple counts for the ca-Hepth network. In this plot, x-axis
shows different sample count values, and y-axis represents
the number of distinct triples that achieves that value for
its sample count. The shape of the histogram is a perfect
normal graph, which is expected from an ideal iid distribu-
tion. Besides, the median value for both the cases is also
50, as expected (note that i=50). The histograms of other
networks are almost identical, hence are not shown. We re-
port the variance of sample counts in Table 3 for both the
sampling algorithms on all 3 small networks. For an ideal
case, the variance value is around 50 (which is equal to i).
As we can see in this table, for Ca-Hepth network, using
vertex-MCMC uniform sampler, the variance is 59.37, but
the same is 49.93 for a direct triple sampler. For all the net-
works, the direct method’s performance is almost identical
to an ideal case; for vertex-MCMC method, variance of sam-
ple count is slightly bigger, yet very close to its true value.
Note that, the higher value of variance for vertex-MCMC
can be attributed to the nature of indirect sampling where
a sample is constrained to be within the neighbourhood of
the previous sample.

5.3 Non-uniform sampling performance
In this experiment we verify the quality of sampling when

the triples to be sampled follow a non-uniform distribution.
We compare Direct sampling with both vertex-MCMC and
triple-MCMC algorithms. In this experiment we use the
dataset listed in Table 1 for the reason discussed in Section
5.2. Here, our objective is to sample triple t in proportion
to w(t). For this experiment, we consider w(t) = |N (t)|,
i.e., a triple is sampled with the probability proportional to
the size of its neighbourhood. One motivation of choosing
such a sampling distribution can be to sample triples from a
community or a dense region of a graph; in such a neighbour-
hood, a triple will be surrounded by many triples, so |N (t)|
will be high for a triple t in a dense neighbourhood. For the
above choice of target distribution, the acceptance probabil-

ity of vertex-MCMC is, α(v, u) is min
{
1,

∑
t∈Πu

N (t)·d(v)
∑

t∈Πv
N (t)·d(u)

}

and the same for the triple-MCMC, α(t, s) is 1.
For a network with |Π| triples, the desired distribution

over Π can be expressed as a vector f of size |Π|, here,

f(t) = w(t)
W

. For each of the graphs, we run each sam-
pler for |Π| · i times (we choose i = 10 for our experiment).
The distribution f can be approximated by the sample fre-

quency of each of the triples. Therefore, f̂(t) = count(t)
|Π|·i ;

here, count(t) is the number of times the triple t was sampled

and f̂ is the approximation of f that is obtained by the sam-
pling algorithm. The performance of a sampling method can

Graph Direct MCMC
vertex triple

ca-Hepth 0.86 0.86 0.87
ca-Grqc 0.87 0.87 0.92
ca-Cond 0.93 0.93 0.94

Table 4: Correlation be-
tween target distribution
and achieved distribution
by different sampling algo-
rithms.

be measured by the
correlation between f

and f̂ . Table 4 shows
that all the three
methods achieves ex-
cellent value for the
correlation (more than
0.85). Interestingly,
direct method some-
times perform worse
than the other meth-
ods, our investigation
shows that this is be-

Graph Direct Vertex-MCMC Triple-MCMC
Time(s) Time(s) Time(s)

/1k /10k /1k /10k /1k /10k
ca-Hepth 5.07 27.46 3.87 27.66 0.03 0.33
ca-Grqc 10 78.83 8.83 80.51 0.05 0.47
ca-Cond 145.5 1225.05 82.65 1075.79 0.08 0.81

Table 5: Execution times of the algorithms for sam-
pling 1k triples and 10k triples.

cause of the precision issue of the floating-point while han-
dling very small probabilities. More precisely, Ca-Hepth net-
work has 227, 919 triples, and the cumulative mass proba-
bilities (which sums to 1) is stored in a vector of that size; in
this vector the difference between successive cells are some-
times as small as 10−8, and to perform well a uniform ran-
dom number generator’s precision has to be good for that
many decimal points, which apparently is not true for exist-
ing random number generators. In all our experiments we
use Boost random number generator library that has much
better performance that those available in standard C++

library. In Figure 4, we compare f vs f̂ distributions for all
the three methods using scatter plots for one of the graphs
(ca-Grqc). The superiority of triple-MCMC over other sam-
pling methods is easily visible in this figure.

Table 5 shows the execution time for sampling 1k and
10k triples from the networks using different sampling algo-
rithms. As the table shows, Triple-MCMC is much better
than Vertex-MCMC and the direct method. For example,
Triple-MCMC takes only 0.08 second to sample 1k triples
from ca-Cond network, whereas Direct method and Vertex-
MCMC takes 145.5 and 82.65 seconds respectively. This is
because, triple-MCMC does not need to compute the cmf ζ
and τv explicitly. Computing ζ is a fixed cost for the direct
sampling method. Vertex-MCMC distribute this fixed cost
over the iterations because it computes the ζ of each vertex
only on demand. On the other hand, triple-MCMC com-
putes w(t) of a specific triple only on demand. If we take
more samples, the difference between the direct sampling
and vertex-MCMC slowly diminishes, as with many itera-
tions, both the methods can amortize the fixed cost over
those iterations. Here, it should be noted that, cmf τv is not
explicitly stored in memory. Storing τv will require memory
in the order of O(|Π|), which is same as enumerating the
whole set of triples. And if enumeration is possible, then we
do not need to sample triples in the first place.

Target Dist.

A
c
h
ie

v
e
d
 D

is
t.

(a) Corr: 0.87

Target Dist.

A
c
h
ie

v
e
d
 D

is
t.

(b) Corr: 0.87

Target Dist.

A
c
h
ie

v
e
d
 D

is
t.

(c) Corr: 0.92

Figure 4: Target distribution vs achieved distribu-

tion plot for ca-Grqc network (a) Direct triple sampling

(Corr. 0.87) (b) Vertex-MCMC triple sampling (Corr.

0.87) (c) triple-MCMC triple sampling (Corr. 0.92).

Graph mixing time
vertex- triple-
MCMC MCMC

AS-Skitter 496 3001
flickr 114 230

livejournal 186 311
orkut 149 2276

Soc-LiveJournal <100 327
Wikipedia 2005/11 834 3628
Wikipedia 2006/9 773 3202
Wikipedia 2006/11 1233 3270
Wikipedia 2007/2 543 3827

Table 6: Mixing time to achieve convergence accord-
ing to Geweke diagnostics

5.4 Convergence experiments
In this experiment, we use Geweke diagnostics for study-

ing the mixing time of vertex-MCMC and triple-MCMC
methods while sampling from a uniform distribution. This
experiment is not shown for user-defined distribution, be-
cause mixing time is different for different choices of distri-
bution.

For this experiment, we use ten distinct walk sequences
for each dataset. For each sequence, we compute z-score
starting from 100’th walk and declare convergence when all
ten z-scores fall in [−1, 1] range. In Table 6 (column 2 and
3) we report the mixing time that we compute from Geweke
diagnostics. For all the graphs that we use, the mixing time
is only a few hundreds for vertex-MCMC and a few thou-
sands for triple-MCMC, which is very good considering the
size of these networks. The triple-MCMC takes more time
to mix as the neighborhood graph on which this method
performs the random walk is much larger than the same for
the vertex-MCMC’s walk.

5.5 Approximate triangle counting
In this experiment, we compare the performance of vertex-

MCMC algorithm with direct triple sampling [16, 17], and
one of the sampling method by Buriol et al. [5] 3. Note
that, recent works [17] have shown that the direct sampling
method is the best among the existing methods for approx-
imate triangle counting; so we do not include other triangle
counting methods such as DOULION [19] in this experi-
ment. However, we do include Buriol et al.’s method in this
comparison, because it is also a triple sampling method like
vertex-MCMC. We exclude triple-MCMC in this comparison
as when performing uniform sampling its execution time is
not competitive with these methods (although it is the best
choice for weighted sampling). The task assigned to each
sampling method is to approximate the triangle count by
sampling triples from uniform distribution. Here, we use the
sampled set of triples to approximate triangle count using
the idea that was explained in Section 3.1. For our experi-
ment, we use 9 large real-life networks; name and statistics
of these networks are shown in Table 2.

The performance of approximate triangle counting is mea-
sured by two metrics: execution time and accuracy. Typ-
ically, the method that wins in accuracy loses in running
time. So, to make the comparison easy, we compare the ac-
curacy (plotted on y axis) of different methods against dif-
ferent running time (plotted on x-axis). However, do note

3this method is actually proposed for arbitrary edge stream
setting, but for fair comparison we implement it as a non-
stream in memory method.

that for a given value for time, the number of triples that the
methods sample differ. We show the results in Figure 5(a-
c). We fitted the data with Bezier curve to show the trend
of the algorithms. All the accuracy and execution times are
average value that are computed from 10 runs of the algo-
rithms. We can see that the direct sampling method per-
forms the best, even for a small number of samples, and its
performance improvement remains almost flat as the sample
count increases; on the other hand, vertex-MCMC improves
sharply as the number of samples increases, and for some
graphs its performance even surpasses the performance of
direct sampling. So, vertex-MCMC is particularly suitable
for large graphs, where a sampling method can afford to take
many sample, and yet can be competitive with an exact al-
gorithm. For instance, in wiki20060925 graph, both direct
sampling and vertex-MCMC obtain 90% counting accuracy
for a 6 seconds execution time, but the exact method that
uses an efficient edge iterator algorithm takes 67 seconds to
execute. The charts in this figure also confirm that Buriol et
el.’s method is not competitive with either of these methods.

The accuracy of a direct sampling-based method is better
than that of a vertex-MCMC based method. This is be-
cause the latter performs indirect sampling in which a pair
of consecutive samples are dependent. So, it’s result has
high variances and it requires more samples in order to en-
sure uniformity of sampled set of triples. However, MCMC
based methods can work perfectly on restricted or dynamic
networks, whereas direct sampling based methods are not
applicable to those.

5.6 Comparison with different graph sampling
technique

In this section, we compare our triple sampling method
with various network sampling methods that are proposed
in Leskovec et al. [10]. These methods create a small net-
work from a large network through node (or edge) sampling
with an objective that the sampled network would preserve
various properties of the large network. For the purpose of
this experiment, we select the transitivity (γ(G)) property,
i.e., we investigate whether the exact transitivity value com-
puted from the sampled network using the above methods
is a good approximation of the actual transitivity value of
the original network. For node based sampling, we sample
a graph by sampling 5% of the nodes and then take the
graph induced by the sampled node set. Similarly for edge
based sampling, we sample 5% of the existing edges. The
detailed description of all the network sampling methods can
be found in [10].

The result is shown in Table 7 using average error metric,
which is obtained by averaging over 10 executions. As we
can see, none of the network sampling methods (9 methods,
from RN to FF) is able to preserve the transitivity met-
ric of the large network for an acceptable accuracy. The
best among those is the RN (random node sampling) with
a 6.8% error in the flicker dataset. On the other hand,
vertex-MCMC achieves much better accuracy by sampling
only 5% ∗ |V | number of triples from each of the graphs (see
the last column in Table 7).

6. CONCLUSION
In this work, we propose two MCMC based algorithms

for sampling triples form a large network. We show exper-
imental results that demonstrate that both the algorithms

 83

 88

 93

 98

 5 10 15

A
c
c
u
ra

c
y
 (
%)

Time (s)

as-skitter

Vertex-MCMC

Direct Sampling

Buriol Sampling
 83

 88

 93

 98

 0 5 10 15 20

A
c
c
u
ra

c
y
 (
%)

Time (s)

wiki20060925

Vertex-MCMC

Direct Sampling

Buriol Sampling
 80

 85

 90

 95

 100

 0 5 10 15 20

A
c
c
u
ra

c
y
 (
%)

Time (s)

wiki20061104

Vertex-MCMC

Direct Sampling

Buriol Sampling

Figure 5: Comparison (of running time and approximation accuracy of transitivity or triangle counting)
among the sampling algorithms (a) as-skitter (b) wiki20060925 (c) wiki20061104. Exact triangle counting
times are 3.8s, 66.6s and 72.57s respectively. Results on other graphs are similar, hence not shown.

Graph G(V, E) 5% of Avg Error (%)
V E RN RDN RE RNE HYB RNN RW RJ FF Vertex-MCMC

as-skitter 84731 554710 33 848 94 96 97 93 77 75 267 12
flicker 81250 773842 6.8 59 94 98 99 92 93 97 27 1.28
orkut 153622 5859254 64 43 98 96 97 97 69 96 59 4.49

Soc-LiveJournal 242198 2142284 15 100 95 96 97 93 73 91 60 12.6
wikipedia 2006/11 154954 1852103 63 517 94 96 97 87 47 91 168 5.26
wikipedia 2007/2 175623 2118719 51 513 95 96 97 88 58 91 145 6.68

Table 7: Average error of various algorithms proposed by Leskovec et al. 5% of nodes (0.05 ∗ |V |) are sampled
for node based algorithms and 5% of edges (0.05 ∗ |E|) are sampled for edge based algorithms. To be fair to
leskovec et al, Number of triples sampled for Vertex-MCMC is also equals 5% ∗ |V |. Each result is average
over 10 executions.

achieve excellent performance while sampling triples from
a large network using a given distribution. Direct sam-
pling method’s performance is almost identical to an ideal
sampler, but it is costly, specifically while sampling from
a weighted distribution. On the other hand, the MCMC
sampling methods that we propose is faster as it does not
compute the cmf of the desired distribution. More impor-
tantly, MCMC sampling methods can sample triples from
networks that are restricted or dynamic, for which direct
sampling methods fail.

7. REFERENCES
[1] M. Al Hasan and M. J. Zaki. Output space sampling for graph

patterns. Proc. of VLDB Endowment, 2(1):730–741, 2009.

[2] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in
streaming algorithms, with an application to counting triangles
in graphs. In Proc. of SODA, pages 623–632, 2002.

[3] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient
semi-streaming algorithms for local triangle counting in massive
graphs. In Proc. of 4th ACM SIGKDD, pages 6–24.

[4] S. Boyd, P. Diaconis, and X. Lin. Fastest mixing markov chain
on a graph. SIAM Review, 46(4):667–689, 2004.

[5] L. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela,
and C. Sohler. Counting triangles in data streams. In Proc. of
PODS, pages 253–262, 2006.

[6] J.-P. Eckmann and E. Moses. Curvature of co-links uncovers
hidden thematic layers in the world wide web. PNAS,
99(9):5825–5829, April 2002.

[7] J. Geweke. Evaluating the accuracy of sampling-based
approaches to the calculation of posterior moments. In
Bayesian Statistics, pages 169–193, 1992.

[8] M. Gjoka, M. Kurant, C. Butts, and A. Markopoulou. Walking
in Facebook: A Case Study of Unbiased Sampling of OSNs. In
INFOCOM, Proc. of IEEE, pages 1–9, 2010.

[9] M. Kolountzakis, G. Miller, R. Peng, and C. Tsourakakis.
Efficient triangle counting in large graphs via degree-based
vertex partitioning. Internet Math., 8(1-2):161–185, 2012.

[10] J. Leskovec and C. Faloutsos. Sampling from large graphs. In
Proc. of the 12th ACM SIGKDD, pages 631–636, 2006.

[11] A. S. Maiya and T. Y. Berger-Wolf. Sampling community
structure. In Proc. of WWW, pages 701–710, 2010.

[12] M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a
feather: Homophily in social networks. Annual Review of
Sociology, 27(1):415–444, 2001.

[13] R. Motwani and P. Raghavan. Randomize Algorithms.
Cambridge University Press, 1995.

[14] M. E. J. Newman, D. J. Watts, and S. H. Strogatz. Random
graph models of social networks. PNAS, 99(Suppl
1):2566–2572, 2002.

[15] M. Rahman, M. Bhuiyan, M. Rahman, and M. Hasan. Guise: a
uniform sampler for constructing frequency histogram of
graphlets. Knowledge and Info. Systems, pages 1–26, 2013.

[16] T. Schank and D. Wagner. Approximating clustering-coefficient
and transitivity. J. of Graph Algorithms and Applications,
9(2):265–275, 2005.

[17] C. Seshadhri, A. Pinar, and T. G. Kolda. Triadic measures on
graphs: The power of wedge sampling. In Proc. of Siam Data

Mining, 2013.

[18] S. Suri and S. Vassilvitskii. Counting triangles and the curse of
the last reducer. In Proc. WWW, pages 607–614, 2011.

[19] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos.
Doulion: Counting triangles in massive graphs with a coin. In
Proc. of KDD, 2009.

[20] D. J. Watts and S. H. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393:440–442, 1998.

