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Abstract

Most studies that follow subjects over time are challenged by having some subjects who dropout.

Double-sampling is a design that selects, and devotes resources to intensively pursue and find a

subset of these dropouts; then uses data obtained from these to adjust naïve estimates, which are

potentially biased by the dropout. Existing methods to estimate survival from double-sampling

assume a random sample. In limited-resource settings however, generating accurate estimates

using a minimum of resources is important. We propose using double-sampling designs that

oversample certain profiles of dropouts as more efficient alternatives to random designs. First, we

develop a framework to estimate the survival function under these profile double-sampling

designs. We then derive the precision of these designs as a function of the rule for selecting

different profiles, in order to identify more efficient designs. We illustrate using data from a

United States President’s Emergency Plan for AIDS Relief (PEPFAR)-funded HIV care and

treatment program in western Kenya. Our results show why and how more efficient designs

should oversample patients with shorter dropout times. Further, our work suggests generalizable

practice for more efficient double-sampling designs, which can help maximize efficiency in

resource-limited settings.
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1 Introduction

In most studies that follow subjects over time, some subjects discontinue their contact with

the investigators (also called patient dropout). Double-sampling is a design that selects a

subset of the dropouts and devotes enough resources to intensively pursue and find their

information. When survival is the target of estimation, the methods that are needed to

analyze the double-sampled data are different and more demanding than those for simpler

designs; see, for example, Frangakis and Rubin [1], Baker, Wax, and Patterson [2], and An
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et al. [3]. Most such designs so far assume that the double-sampled subset is a random

sample of all the dropouts.

In most settings, maintaining high precision of the estimates for low cost is a serious

concern. For example, the United States President’s Emergency Plan for AIDS Relief

(PEPFAR, www.pepfar.gov), an international response effort initiated in 2003 with a $15

billion budget and renewed in 2008 for five additional years with a $48 billion budget,

works in part to provide antiretroviral therapy (ART) to HIV-infected individuals in

resource-poor countries, primarily in sub-Saharan Africa. Key goals of this effort include

increasing access to treatment, and ultimately improving survival of HIV-infected patients

under care provided by its partners. Congress mandates, as part of the PEPFAR funding,

monitoring and evaluation of the funded programs. Therefore it is important, in order to

monitor the program, that methods of evaluating survival optimize precision subject to cost

and sampling constraints. A natural question then is, instead of double-sampling at random,

can we oversample certain profiles of individuals in order to gain efficiency?

There are several reasons why double-sampling based on patient characteristics is important

for gaining efficiency. First, it is well-known that patient characteristics (e.g., CD4 count)

can predict survival time in HIV patients [4, 5]. Second, imagine oversampling individuals

who have been under observation for a short period (i.e., they have short dropout times).

These individuals expectedly provide more information towards the target estimand, beyond

what we would have without double-sampling them, relative to individuals with long

dropout times. With the latter group, it is more likely they have passed the time for which

survival estimates are of interest. We refer to this selective double-sampling as “profile”

double-sampling.

We develop a framework that characterizes the role of different such profile double-

sampling designs for inference on survival data. Using this framework, we obtain insightful

expressions of precision as functions of the design. By studying classes of double-sampling

designs, we obtain profile designs that have improved precision and suggest generalizable

practice.

In Section 2, we briefly describe the circumstances motivating this work and review the

double-sampling design for survival data. In Section 3, first, we develop a likelihood

framework that allows survival estimation from a double-sample based on individual

information, and focus on a maximum-likelihood based approach. In Section 4, we derive

the precision of the maximum likelihood estimator (MLE) for a given profile double-

sampling design, which allows comparison of different double-sampling designs. In Section

5, we apply our methods in the evaluation of a large HIV care and treatment program in

western Kenya, and identify a profile double-sampling design that is considerably more

efficient than simple or ad hoc random double-sampling designs. Section 6 concludes with a

discussion.

2 Profile Double-Sampling Design and Goal

The design is motivated by data assembled for a cohort of 8,977 HIV-infected adults who

entered the Academic Model Providing Access to Healthcare (AMPATH), a comprehensive
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HIV care and treatment program located in western Kenya, between January 1, 2005 and

January 31, 2007. The goal here is to estimate the survival distribution of these individuals

after their enrollment in the program, P(T > t). The care and treatment program and the

patient double-sampling (“outreach”) efforts are described in detail elsewhere [3, 6–8]. For

our purpose we can summarize these by viewing the design as having two phases.

In Phase 1 of the design, monitoring proceeds with standard effort (i.e., no double-

sampling). Here, we observe the entry date Ei for all patients. If standard monitoring

continued indefinitely, we would observe that some patients discontinue contact from the

standard monitoring: we call these patients true dropouts and indicate them by Ri = 0, and

denote their time from enrollment (i.e., time 0) to dropout by Li. On the other hand, some

patients would be true non-dropouts, whom we indicate by Ri = 1 and for whom Li is

undefined. Further, patients may be subject to administrative censoring. That is, if the time

of analysis is “Now” (Emax), then the time between enrollment Ei and Emax is known as the

administrative censoring time, and denoted by Ci. Patients who have Ci < Ti are

administratively censored and are indexed by Δi = 0; otherwise patients are indexed by Δi =

1. It is important to note that administrative censoring allows only a subset of the true

dropouts (Ri = 0) to be observed and known as true dropouts, whereas for the others, their

true dropout status (that they would dropout later) is masked by administrative censoring. A

person observed to dropout is denoted by  and one observed to not dropout is

denoted by , and could either have Ri = 0 or Ri = 1.

Double-sampling efforts introduce a second phase in the design. In Phase 2, investigators

select a subset of the observed dropouts , called a double-sample, by using baseline

characteristics Zi and possibly dropout time Li, and devote enough resources to follow this

subset and find either their survival time or that they are alive until Emax, i.e., we find (Xi ≡
min(Ti, Ci), Δi). We indicate by Di = 1 those who are double-sampled, and Di = 0 otherwise.

Expressed statistically, this Phase 2 design structure adds the following important condition:

Condition 1: Designed Profile Double-Sampling

Among observed dropouts, the observed covariates Zi and dropout time Li include the

variables involved in the selection and successful recovery of those to be double-sampled.

We can express this by stating that, among observed dropouts and after we condition on

Profilei = (Zi, Li), selection for and recovery by double-sampling is independent of survival

and entry times, or equivalently,

Note that Li is measured after entry time, but can be an important factor for precision of the

design as discussed in the introduction. Because the typical survival data (Xi, Δi) are

functions of (Ti Ci), it is an immediate implication of Condition 1 that, conditional on the

observed covariates, selection for and recovery by double-sampling is independent of (Xi,

Δi): Di ⊥ (Xi, Δi) ∣ ( , Profilei).
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Based on the above, the choices the investigator has for a particular profile double-sampling

design are the time of analysis Emax, and the rule for double-sampling given dropout and

individual characteristics,

(1)

For a given pattern of entry dates, Emax determines the distribution of administrative

censoring times, P(C∣Z). We consider the time of analysis (Emax) fixed and search for best

designs of the form described in equation (1).

Information from these phases can be classified into patient characteristics (i.e., Ei, Ti, Ri, Li,

Zi; Figure 1), design characteristics (Emax, Di, Profilei; Figure 1), and a product of both

patient and design characteristics (Ci, , Xi, Δi; Figure 1); and can be used to estimate the

cohort survivor function P(T > t).

Note that Ri and  can be different. Ri is a characteristic of the patient, and both Ri and Li

are missing if the person is administratively censored. On the other hand , although

observed, is determined by both the patient characteristics Ri and Li and by the design’s time

of analysis Emax, namely whether Li < Emax–Ei. Thus the concept of true dropout behaviour,

Ri and Li, is central for separating patient from design characteristics.

For estimability, since T is still missing for the administratively censored patients, we invoke

the following condition:

Condition 2: Time homogeneity

Conditional on the observed covariates, entry time (equivalently, administrative censoring

time) is independent of survival time and of potential dropout status. We can express this as:

Ci ⊥ (Ti, Ri, Li) ∣ Zi, since entry times Ei = Emax–Ci.

We note that Condition 2 includes the typical conditional independence of administrative

censoring, Ci ⊥ Ti ∣ Zi. Moreover, Condition 2 is plausible within blocks of time if,

conditional on observed covariates such as gender, baseline CD4 count, baseline World

Health Organization (WHO) stage, clinic type, and treatment status, we assume no secular

trends in survival or true dropout behavior. Such an assumption could not be expressed in

terms of observed dropout status, which depends not only on patient characteristics but also

on design characteristics such as the time of analysis (Emax).

3 Estimation for a given design

A useful intuition for how appropriate estimation can work and for what can go wrong with

a standard approach is provided from the simple case where double-sampling does not

depend on patient data other than that a patient has been an observed dropout. Then, the

“typical survival information”, (Xi, Δi), is missing at random [9] within the stratum of

observed dropouts (Robs = 0). In that case, for the double-sampled individuals, for whom the

data (Xi, Δi) are recovered, the only remaining source of missing survival times is the

possible administrative censoring by Ci. Under Conditions 1 and 2 with no covariates, a
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consistent nonparametric estimator can then be constructed by, in principle, scaling up the

distribution of (Xi, Δi) from the double-sampled patients to the set of all dropout patients.

This scaling up in practice is achieved by mixing estimates of the two crude hazard

functions of observed non-dropouts and double-sampled dropouts [1]. In contrast, a standard

approach that would mix the two Kaplan-Meier estimators based on those two strata is in

general inconsistent even if there is no covariate necessary to stratify in Conditions 1 and 2.

This is because the strata of observed dropouts/non-dropouts are functions not only of the

inherent patient characteristic (Ri, Li, Ti) but also of the design characteristics (Section 2).

This creates a dependence between administrative censoring Ci and survival Ti within the

observed strata Robs even under Conditions 1 and 2, and so invalidates the within-strata

Kaplan-Meier estimators. Analogous arguments hold if we use a double-sampling design

that depends on discrete levels of baseline covariates, where a consistent nonparametric

MLE from simple data still exists [3].

When the design depends on a multitude of data or continuous patient history data, a

nonparametric MLE is not possible. In this case, one important task is to find and use the

MLE of a plausible parametric model. Alternatively, one can find estimators that use the

inverse of the double-sampling probabilities and are based on a semi-parametric framework,

e.g., [10]. The latter approach also requires the use of likelihood estimators because (a) the

augmentation part needed to construct locally efficient semi-parametric estimators is itself

derived from a general likelihood submodel [11]; and (b) the approach of inverting

probabilities does not work for designs that exclude from the double-sampling certain

patients who are practically impossible to find. Therefore, for all the above approaches, it is

central to first find the likelihood of data from designs under Conditions 1-2. So we present

the discussion on design efficiency from a likelihood perspective. Perspectives based on a

semi-parametric approach will be studied in future work.

The target estimand, the survivor function, can be expressed through the chain of conditional

distributions (here T, R, Z, L represent the random variables corresponding to their

respective individual counterparts Ti, Ri, Zi, Li):

When S(t ∣ Z, θ) := P(T > t ∣ Z, θ) is estimated by , we can estimate the cohort

(marginal) survivor function S(t ∣ θ) in our original goal as a function of t, by the empirical

average over all n individuals:

(2)

In order to estimate S(t ∣ Z, θ), it is important to find how the likelihood depends on arbitrary

(nonparametric) distributions of the observed data. To write the likelihood of the observed

data in Section 2, which we denote collectively by Datai for each person, first note that the

covariates Zi and administrative censoring time Ci are observed for all people. Then, it is
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useful to classify the patients into the following five types described below and displayed in

Figure 1:

a. a non-dropout who dies on observation ( , Δi = 1), for whom we also observe

survival time Ti and for whom Li is undefined;

b. a non-dropout alive at time of analysis ( , Δi = 0), for whom Li is either

undefined or missing according to whether they are true non-dropouts or true

dropouts, respectively;

c. a dropout who is double-sampled and dies on observation ( , Di = 1, Δi = 1),

for whom we also observe the dropout and survival times Li, Ti;

d. a dropout who is double-sampled and is alive at the time of analysis ( , Di =

1, Δi = 0), for whom we also observe dropout time Li; or

e. a dropout who is not double-sampled ( , Di = 0), for whom we also observe

dropout time Li.

It follows from the above that, if we let θ denote the vector of parameters, the observed

likelihood for an individual is given by:

(3a)

(3b)

(3c)

(3d)

(3e)

where the lettering (a)-(e) corresponds to the types of patients described above and displayed

in Figure 1. In the above expressions, we use, for example, P(Ti, Δ = 1, …) to mean P(Ti∣Δi

= 1, …) · P(Δi = 1, …), i.e., the likelihood contribution of an individual i who is observed to

die and whose survival is Ti and has other data …, which is the product of a density for Ti

(given Δi = 1, …) and the likelihood of (Δi = 1, …).

The above expression is important for two purposes. First, it indicates how we can develop

an E-M algorithm by capitalizing on the fact that (3b) is a mixture of terms for true dropouts

(R = 1) and true non-dropouts (R = 0) (see supporting web files).Further, it is important for

identifying a more efficient design, as shown in Sections 4 and 5. Notice that, once data are
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observed, the design components e() in (3c), (3d) and (3e) are ignorable [12] for likelihood

estimation. These components are important, however, for estimating precision of candidate

designs to be implemented on a larger scale, and thus will play a role in Sections 4 and 5.

4 The relation of precision to profile double-sampling designs

In order to facilitate the study of more efficient designs, it is useful to regroup the terms of

the likelihood into two parts - the part that is contributed by all individuals from Phase 1,

and the additional part that is contributed from the double-sampled individuals from Phase

2. We can do this by regrouping expression (2) as

(4)

plus terms not depending on θ, where the above can be shown to be expressable in terms of

the patient characteristics, as:

(5)

(6)

The information matrix of the MLE of θ, defined as the expectation of the negative second

derivative of (4), will depend on who is sampled, Di = 1, only through the second term of

(4), given in (6). From Section 2, “who is double-sampled” is characterized by the rule of

selection e(Profilei) where Profilei = (Zi, Li), the variables used to select double-samples. So

the expectation of the negative second derivative of (4) depends on the rule e(·) as well as θ,

and is denoted by I(e(·), θ). It is easy to show (see supporting web files) the following useful

results:

Result 1

The information of the MLE is related to the design e(·) by:

where

(7)

where 
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The design e(), through the above precision for θ, determines the precision for estimating

the target estimand, the cohort survival curve S(t). In the supporting web files, we show the

following:

Result 2

The large sample distribution of the estimator (2) is given by :

where V(e(·), θ) = Eθ{Sθ(t ∣ θ)’} I(e(·), θ)−1 Eθ{Sθ(t ∣ θ)} + varθ{S(t ∣ Zi, θ)} and Sθ(t ∣ θ) =

∂S(t ∣ θ)/∂θ, and  represents convergence in distribution as n → ∞ for fixed t.

Note that the variance V is controlled by the design e() only through I(e(), θ), hence, from

Result 1, only through  (e(·), θ), given in (7). We call a design that has already

been implemented and in particular, in which a double-sample has been obtained via, for

example a random double-sample design where epilot(·) = constant, a “pilot design.” In a

pilot design, the first expectation term in (7) can be estimated by replacing e(Profilei) with

Di and δ(Profilei, θ) with δi(θ), where

(8)

and taking the empirical average over all observed dropouts; and  can be

estimated by the observed proportion of dropouts in the total sample. We refer to a design

that has not yet been implemented, but is under consideration as ecandidate(·), a “candidate

design.” We can estimate (7) for a candidate design using data from the pilot design by:

whose expectation equals the expression in (7), and where δi(θ) is as defined in (8). In

summary, to estimate (7) using data from a pilot design,

(9)
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Based on the above, then, V can be estimated by:

(10)

where  is as in (9), and f, g, ,  are defined as:

5 Identifying more efficient designs in practice

5.1 General Procedure

In practice the researcher can use the above methods in the following way to identify a more

efficient design strategy.

1. Estimate the distribution of patient characteristics from pilot data using a simple

design. Implement the pilot design on a modest scale with a convenient, perhaps a

random, double-sampling design, i.e., e(·) =constant. From these pilot data,

estimate a model for the patient characteristics T, L, R. Obtain the MLE of the

parameters, , of such a model.

2. Decide on a class of designs to search. Decide on a set of candidate designs {e} for

the larger scale implementation. This set is usually dictated by administrative

reasons and so it often fixes a maximal allowable recruitment window (P(C ∣ Z)).

3. Identify a more efficient design. Estimate the best design e(Profilei) from the set of

candidate designs {e}. The best design is the rule e(·) which minimizes the variance

V(e(·), θ). The best design can be estimated, using the pilot data, as the design that

minimizes the estimated variance  in (10).

A larger-scale follow-up can then be conducted according to the more efficient design. After

the data have been collected, any method of survival estimation that is appropriate for use

with double-sampled data can be adopted (e.g., as described in [3] or in Section 3).

5.2 Illustration: Designing PEPFAR program evaluations

In this section, we illustrate identifying a more efficient design using a pilot design from the

AMPATH cohort. We use these pilot data to identify a design that uses the patient profiles

to more accurately estimate the survival function in larger scale studies with similar

characteristics.

1. Estimate the distribution of patient characteristics from AMPATH pilot data using

a simple design. We used the AMPATH cohort [3] as pilot data, and considered,

based on input from our collaborators for which variables they believe to be
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predictive of dropout, the following baseline covariates Z: gender, baseline CD4

count, baseline WHO stage, indicator of urban versus rural clinic, and ART start

status. We specified logit(R∣Z) as ; P(T∣R = 1, Z) as log-normal

; P(L∣R = 0, Z) as log-normal ; and P(T∣R = 0, L,

Z) as a log-normal , left-truncated at L (i.e., T > L). Based

on these variables and models, we formulated and used an EM algorithm [13] to

estimate the MLE of the parameters. The EM requires specification of the complete

data log likelihood (see Appendix). Note that other data distribution models could

be explored, so long as software exists to easily fit these models. We in turn

estimated the 1-year survival probability at 0.86 (se=0.008).

2. Search within the class of designs based on dropout time and predictor for dropout.

We consider the variables Profilei for selecting whom to double-sample in the

AMPATH cohort [3] to be a predictor, P, for dropout and the actual time for

dropout L. The former, P, is the linear predictor from a Cox model for dropping out

based on the baseline covariates (listed above), with advanced WHO status and

male gender being the primary risk factors of patient dropout [8]. Thus, P serves as

a single-number summary of factors predictive of dropout.

In practice to search for a more efficient design, it may be more convenient and

insightful to consider double-sampling from discrete groups. Such discretization

leads to a convenient estimator of the variance given in Result 2. Moreover,

studying the variation in precision across discretized groups can yield generalizable

suggestions on how to increase precision. We consider double-sampling within the

discretized groups formed by cross-classifying tertiles of the linear predictor for

removal (P ) and the tertiles of dropout time (L) (Table 1(a)). The idea is to allow

for oversampling of certain groups, but random sampling within groups.

A total of 3528 patients were observed dropouts. We distributed those dropouts in

the cross-classification of L and P so as to classify approximately 390 patients

(11%) in each of the nine cells. A total of 621 dropouts were double-sampled. Let

 denote the number of dropouts that the pilot design double-samples from cell

k, k = 1, 2, … , 9. It is interesting to note that in fact, even the original design

deviates from being independent of the observed predictors P, L. This deviation

does not matter for the validity of estimation of the parameters using our methods,

as the latter account for any dependence of the double-sampling on the observed

predictors. Denote by nk the number of dropouts that a candidate design double-

samples from cell k, k = 1, … , 9 (Table 1(a)-(b)).

3. Identify a more efficient design. We wish to find the allocation n1, …, n9 that

minimizes the variance of the survival estimator (2), subject to having a fixed total

number n(D=1) of patients to double-sample, i.e., 

To do this, we first estimate the components of the variance expression (10). Then, for a

fixed double-sample size n(D=1) = 621, we minimize the estimated variance (10) over
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possible designs e(·) characterized by Table 1(a). Using the expression of the information

I(e(·), θ) from Result 1, it is easy to show that this is equivalent to finding the number of

people, nk, to double-sample from each profile cell k, in order to minimize over all possible

designs {nk} the variance expression

such that the eigenvalues of  are positive, and where f, g,  can be

calculated from the pilot study based on the definitions in (10), and  can be

calculated via:

such that ∑k nk = n(D=1), and

We impose the condition on the eigenvalues to ensure that the information matrix is positive

definite.

We identified the more efficient design shown in Table 1(c) using a Gauss-Seidel-type

algorithm to search the design space. In the more efficient design, we observe an

oversampling of individuals with short dropout times (L). This confirms the intuition

expressed in the Introduction. Also, among individuals with higher risk for dropout in Phase

1, the more efficient design suggests double-sampling both individuals with short and

medium dropout times (L). This can be explained by the smaller observed variability of L in

these higher risk categories, and so the need to better inform on the regression relations by

ensuring that we include in the design enough variability in L.

Although this more efficient design has not yet been implemented, we estimate, using the

pilot data, that the potential gain in efficiency associated with the more efficient design

compared to the original design is 37% (=100(1 – 4.5/7.1) from Tables 1(b)-(c)). In other

words, the follow-up can save 37% of resources for the same precision. This increased

efficiency is particularly important when program monitoring and evaluation resources are

scarce as it is the case in most PEPFAR-funded HIV care and treatment programs. It is

worth noting again that in the original design, among individuals with similar dropout times,

the observed double-sampling was not random; this suggests that the potential efficiency

gains for an more efficient design relative to a truly random design may be greater than what

we estimate.
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5.3 Results based on sensitivity considerations

In order to understand better the above results, we conducted a number of additional

analyses. First, within the context of the model of Section 5.2 step 2, we changed the

predictor set for estimating the linear predictor P of dropout, by removing the ART start

status as this had not been decisively important in predicting time to dropout (hazard

ratio=1.21, se=0.21, p=.35). Analyses with this new risk index are reported in column

“without ART” in Table 2. Second, to examine the influence of the parametric functional

forms of the model of Section 5.2 step 1, we estimated the 1-year mortality and standard

error of the estimate using the nonparametric estimator of [3, 14] that adjusts for different

probabilities of double-sampling in each of the nine levels of the designs in Table 1. These

analyses are reported in the rows “nonparametric (estimate, se) in Table 2 for the original

design. Third, we also estimated the predicted more efficient design and the estimated

variance it would produce for the 1-year mortality if using the modified risk index in which

ART is excluded. This design is reported in Table 1(d) and its resulting standard error is

reported in the row of “predicted more efficient design” of Table 2 for the parametric

estimator (the nonparametric estimator cannot be applied in the predicted more efficient

designs because some of its cells are empty).

The parametric MLE of the 1-year mortality estimate when not using ART in the risk index

was 13.98% (se=0.81%) essentially the same as when using ART in the risk index (estimate

13.94%, se=0.84%). The nonparametric estimates were 11.59% (se=0.88%) and 11.64%

(se=0.85%) when not using versus when using ART in the risk index, respectively. These

are close to the parametric estimates, especially considering that if, instead of changing to

parametric estimates, one had changed instead the design to one without double-sampling

(with a standard survival analysis where dropouts are censored at time of dropout), the 1-

year mortality estimates are dramatically smaller (1.7%, [3]). Finally, the more efficient

design when not using ART versus using using ART in the risk index (Table 1 (d) vs. (c))

carry the same message of the need to focus double-sampling to patients with short and

medium dropout times; the variance of the 1-year mortality for these two designs are very

close to each other.

6 Discussion

The potential utility of imbalanced double-sampling designs for survival estimation has been

indicated earlier ([1, Sec 5, par 3]; and [15, Sec. 2]), but without an explicit search for good

such designs. We have shown how to characterize the precision of a profile double-sampling

design, and how to use a pilot study to find a better design that saves resources which can be

allocated for the treatment of additional patients. Based on a parametric likelihood approach,

better designs were ones that primarily oversample patients who have short dropout times or

have slightly longer L but higher risk for dropout P and either undersample or completely

avoid pursuing patients with long dropout times, regardless of the risk of dropout. This

strategy, in addition to being intuitive in the statistical sense, provides a reasonable means to

determine which dropouts to locate in a preferential fashion. Some of the factors which

increase dropout risk, particularly advanced WHO status, are also directly related to the risk

of mortality. This is because the mortality rate among dropouts is extremely high [3]. A
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recent meta-analysis of a number of HIV care and treatment programs, which perform

outreach, found up to 87% of located dropouts were deceased [16]. In addition, men have

higher dropout rates and consistently worse outcomes compared to women [6]. Thus,

oversampling early dropouts and patients at high risk for dropout and poor clinical outcome

makes sense, as such a sampling strategy performs outreach on some of the most vulnerable

patients in a program.

The estimates of mortality and the estimate of better designs depend on a number of

assumptions. First, Conditions 1 and 2 are about the structure of the problem regardless of

parametric assumptions. Condition 1 is plausible because we have elicited from the field

investigators information about how double-sampling is actually being conducted; Condition

2 is plausible within small time windows where concerns about trends of the epidemic are

not substantial. Second, there are dimension reduction and parametric assumptions. Both in

earlier work without using dropout time information [3] and also here, in Section 5.3, using

dropout time information, we have found that using a nonparametric versus a parametric

approach, did not materially change the mortality estimates; and that small changes to the

specification of a risk index for dropout provided similar messages about how to improve

the design. This provides evidence that the parametric model closely reproduces the

nonparametric results and that the design results are relatively robust to how a risk index for

dropout is summarized.

Here we considered a fixed double-sample size, and identified a more efficient allocation

under this constraint. Alternatively, we could also consider a target precision, and identify

the size of the sample and an allocation which minimizes the overall double-sample size or

cost. Finally, we note the importance of having a representative double-sample. There is

evidence that a representative double-sampling cohort is realistically possible in the setting

we consider ([14], [17]). Of course, the larger the representative sample, the more precise

the parameter estimates. So we hope that the utility of this design can lead to large

scalability.

In our framework, we introduced the concept of a “true dropout” (R). Because the true

dropout is a patient characteristic (i.e., independent of the design’s follow-up), its modeling

(i.e., what we learn from it) is expected to be more generalizable to other designs (and

communicable to researchers of different studies) than the modeling of the observed

dropout, which does depend on the design (and could have different meanings across

different studies.) For example, the concept of true dropout and L for such a person is

important if we were to also treat “Now” (i.e., the longest follow-up) as a possible design

factor to manipulate. This remains for future work, but the current framework holds for both

that and this current work.

In addition to mortality as a goal, one might also wish to assess a program with the

composite event of “death or dropout”. Using standard empirical process (nonparametric)

estimation for competing risks, we estimated that 41.9 % (se=0.6%) of the patients either die

or dropout after 1 year of follow-up (P(Ti ≤ 1, Ri = 1) + P(Li < 1, Ri = 0)); and that only

1.3% (se=0.1%) die by year 1 without being lost from observation. Note that both of these

probabilities are estimated without the information from double-sampling. The 41.9% rate of
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the composite event of death or dropout would be appropriate in a setting where dropout

would mean almost certain death. This is not the case here, however, where the 13%

mortality (based on the double-sampling information) is substantially less than 41.9% (for

example, patients who dropout from this surveillance system can be still visiting other

physicians not in the system).

As future work, it would be important to develop double-sampling designs and methods that

can handle clinical and program constraints. For example, clinical reasons may require the

design to double-sampling all patients within a certain subgroup of patients, for example

patients who are deteriorating rapidly. In this case, e(Profilei) = 1 for patients for whom

patient characteristics suggest rapid deterioration. Here our methods could be readily

extended to select profile double-sampling within the dropouts for whom e(Profilei) ≠ 1

subject to the constraint that the double-sample already includes those for whom e(Profilei)

= 1. Additionally, it may be that double-sampling is most likely to be both successful (in

finding dropouts) and clinically beneficial when efforts are focused on patients whose time

of dropout is relatively close to “Now,” which translates to requiring that Ci – Li ≤ c for

some constant c. In this case, e(Profilei) = 0 for patients with Ci – Li > c. Our methods would

need to be carefully extended to use a likelihood that will leverage the data close to the

boundaries of the exclusion regions, using regression discontinuity [18]. If the exclusion

regions are large or at the edge of the characteristics space, the missing information can be

bounded by upper and lower bounds, as in other missing data settings, e.g., [19, 20]. Finally

we could generalize the proposed methods to address double-sampled individuals who are

not found. On the field, this problem can be limited by careful planning. At the analysis

stage, we could treat any patients still not found as censored conditionally on time-

dependent information, and then use sensitivity analyses to assess impact to the results.

PEPFAR alone is directly involved in the care of over 11 million patients affected by HIV

and AIDS. With over 20% of these expected to be lost during the first year from enrollment

[21], any effort, however well-intentioned, to locate all dropouts is doomed to fail out of

lack of resources alone. On the other hand, monitoring and evaluation of programs that

involve long-term follow-up which, in the case of PEPFAR, is required by law, cannot be

performed solely based on the observed non-dropouts [3, 8, 16]. Thus, only sampling

techniques are capable of offering means of performing meaningful evaluation of the

effectiveness of these programs. Nevertheless, we expect that our proposed designs will be

embraced by both Public Health professionals, who monitor and evaluate these programs, as

well as clinicians who are focused in improving outcomes for their patients. This is because

these designs offer the possibility of significantly reducing the resources required as fewer

individuals must be sought, which appeals to the former group, and preferentially outreach

some of the patients who are most likely to have poor clinical outcomes, which interests the

latter.

In summary, double-sampling designs are useful in using data to address possible

nonignorable dropout. The choice of a particular design set may depend on the available

staff and infrastructure of a setting. In general, profile double-sampling designs, relative to

random double-sampling designs, can help to maximize the impact of limited amounts of

resources, which is significant, particularly in resource-limited settings.

An et al. Page 14

Stat Med. Author manuscript; available in PMC 2015 May 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors would like to acknowledge Beverly S. Musick of Indiana University for compiling the database on
which this study was based and for offering expert advice on the data; and Drs Mei-Cheng Wang and Bryan Lau for
useful discussions on competing risks. This study was funded in part by the National Institutes of Health (NIAID)
grant number U01-AI0669911 (East Africa IeDEA Regional Consortium), and a Targeted Evaluation supplement to
this grant by the President’s Emergency Plan for AIDS Relief (PEPFAR). Patient recruitment and outreach for the
AMPATH cohort was supported in part by a grant from the United States Agency for International Development
(USAID) to the USAID-AMPATH Partnership as part of PEPFAR. Preparation of this manuscript was supported in
part by the Phebe H. Beadle Science Fund.

References

1. Frangakis CE, Rubin DB. Addressing an idiosyncrasy in estimating survival curves using double
sampling in the presence of self-selected right censoring. Biometrics. 2001; 57(2):333–342.
[PubMed: 11414553]

2. Baker SG, Wax Y, Patterson BH. Regression analysis of grouped survival data: informative
censoring and double sampling. Biometrics. 1993; 49(2):379–389. [PubMed: 8369374]

3. An MW, Frangakis C, Musick B, Yiannoutsos C. The need for double-sampling designs in survival
studies: An application to monitor PEPFAR. Biometrics. 2008; 65(1):301–306. [PubMed:
18479488]

4. DeGruttola V, Tu X. Modelling progression of CD4-lymphocyte count and its relationship to
survival time. Biometrics. 1994; 50(4):1003–1014. [PubMed: 7786983]

5. Tsiatis A, DeGruttola V, Wulfsohn M. Modeling the Relationship of Survival to Longitudinal Data
Measured with Error. Applications to Survival and CD4 Counts in Patients with AIDS. Journal of
the American Statistical Association. 1995; 90(429):27–37.

6. Wools-Kaloustian K, Kimaiyo S, Diero L, Siika A, Sidle J, Yiannoutsos CT, Musick B, Einterz R,
Fife KH, Tierney WM. Viability and effectiveness of large-scale HIV treatment initiatives in sub-
Saharan Africa: experience from western Kenya. AIDS. 2006; 20(1):41–48. [PubMed: 16327318]

7. Einterz R, Kimaiyo S, Mengech HNK, Khwa-Otsyula B, Esamai F, Quigley F, Mamlin J.
Responding to the HIV pandemic: the power of an academic medical partnership. Acad Med. 2007;
82(8):812–818. [PubMed: 17762264]

8. Yiannoutsos CT, An MW, Frangakis CE, Music BS, Braitstein P, Wools-Kaloustian K, Ochieng D,
Martin JN, Bacon MC, Ochieng V, Kimaiyo S. Sampling-based approaches to improve estimation
of mortality among patient dropouts: Experience from a large PEPFAR-funded program in western
Kenya. PLoS ONE. 2008; 3:e3843. [PubMed: 19048109]

9. Rubin DB. Inference and missing data. Biometrika. 1976; 63(3):581–592.

10. Robins J, Rotnitzky A, Zhao L. Estimation of regression coefficients when some regressors are not
always observed. Journal of the American Statistical Association. 1994; 89(427):846–866.

11. Robins J, Rotnitzky A, Bonetti M. Discussion of the Frangakis and Rubin article. Biometrics.
2001; 57(2):343–347. [PubMed: 11414554]

12. Rubin DB. Bayesian Inference for Causal Effects: The Role of Randomization. The Annals of
Statistics. 1978; 6(1):35–58.

13. Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society. Series B (Methodological). 1977; 39(1):1–38.

14. Geng E, Emenyonu N, Bwana M, Glidden D, Martin J. Sampling-based approach to determining
outcomes of patients lost to follow-up in antiretroviral therapy scale-up programs in Africa.
JAMA: The Journal of the American Medical Association. 2008; 300(5):506–507. [PubMed:
18677022]

An et al. Page 15

Stat Med. Author manuscript; available in PMC 2015 May 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



15. Robins J, Rotnizky A, Bonetti M. Discussion on: Addressing an idiosyncrasy in estimating
survival curves using double sampling in the presence of self-selected right censoring. Biometrics.
2001; 57(2):343–347. [PubMed: 11414554]

16. Brinkhof MWW, Pujades-Rodriguez M, Egger M. Mortality of patients lost to follow-up in
antiretroviral treatment programmes in resource-limited settings: Systematic review and meta-
analysis. PLoS ONE. 2009; 4(6):e5790. [PubMed: 19495419]

17. Geng E, Glidden D, Emenyonu N, Musinguzi N, Bwana M, Neilands T, Muyindike W,
Yiannoutsos C, Deeks S, Bangsberg D, et al. Tracking a sample of patients lost to follow-up has a
major impact on understanding determinants of survival in HIV-infected patients on antiretroviral
therapy in Africa. Tropical Medicine & International Health. 2010; 15:63–69. [PubMed:
20586962]

18. Imbens G, Lemieux T. Regression discontinuity designs: A guide to practice. Journal of
Econometrics. 2008; 142(2):615–635.

19. Manski C. Nonparametric bounds on treatment effects. The American Economic Review. 1990;
80(2):319–323.

20. Zhang J, Rubin D. Estimation of causal effects via principal stratification when some outcomes are
truncated by death. Journal of Educational and Behavioral Statistics. 2003; 28(4):353–368.

21. Rosen S, Fox MP, Gill CJ. Patient Retention in Antiretroviral Therapy Programs in Sub-Saharan
Africa: A Systematic Review. PLoS Medicine. 2007; 4(10):1691–1701.

An et al. Page 16

Stat Med. Author manuscript; available in PMC 2015 May 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
Characteristics for different patient types. The observed patient type labels correspond to those in the likelihood, described in

Section 3. Data in square brackets[ ] are only partially observed; “UD” means undefined and “NA” means not available or

missing.
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Table 1

Designs for double-sampling and resulting variance of the 1-year mortality estimate with the PEPFAR data

described in the text.

(a) Discretized double-sampling (∑k nk fixed)

Risk for dropout

low med high

Dropout time

short n 1 n 2 n 3

med n 4 n 5 n 6

long n 7 n 8 n 9
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(b) Number of people double-sampled in original design (Variance=7:1 × 10−5)

Risk for dropout

low med high

Dropout time

short 32 79 88

med 37 102 78

long 36 88 81
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(c) Number of people to double-sample for more efficient design when using ARV (Variance = 4:5 × 10−5)

Risk for dropout

low med high

Dropout time

short 121 124 15

med 0 168 193

long 0 0 0
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(d) Number of people to double-sample for more efficient design when not using ARV (Variance = 4:3 × 10−5)

Risk for dropout

low med high

Dropout time

short 127 86 26

med 0 183 199

long 0 0 0
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Table 2

1-year mortality estimates when changing the design, estimation method, and covariate specification.

design estimation method covariates used for risk index

with ART without ART

original nonparametric

estimate (%) 11.64 11.59

se (%) 0.85 0.88

lognormal MLE

estimate (%) 13.94 13.98

se (%) 0.84 0.81

predicted more efficient lognormal MLE

se (%) 0.67 0.65
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