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ABSTRACT

Experimental analyses directly informhow an anatomical feature or complex functions during an organism’s lifetime,
which serves to increase the efficacy of comparative studies of living and fossil taxa. In the mammalian skull, food
material properties and feeding behaviour have a pronounced influence on the development of the masticatory
apparatus. Diet-related variation in loading magnitude and frequency induce a cascade of changes at the gross,
tissue, cellular, protein and genetic levels, with such modelling and remodelling maintaining the integrity of oral
structures vis-à-vis routinemasticatory stresses. Ongoing integrative research using rabbit and ratmodels of long-term
masticatory plasticity offers unique insight into the limitations of functional interpretations of fossilised remains.
Given the general restriction of the palaeontological record to bony elements, we argue that failure to account for
the disparity in the hierarchical network of responses of hard versus soft tissues may overestimate the magnitude
of the adaptive divergence that is inferred from phenotypic differences. Second, we note that the developmental
onset and duration of a loading stimulus associated with a given feeding behaviour can impart large effects on
patterns of intraspecific variation that can mirror differences observed among taxa. Indeed, plasticity data are
relevant to understanding evolutionary transformations because rabbits raised on different diets exhibit levels of
morphological disparity comparable to those found between closely related primate species that vary in diet. Lastly,
pronounced variation in joint form, and even joint function, can also characterise adult conspecifics that differ solely
in age. In sum, our analyses emphasise the importance of a multi-site and hierarchical approach to understanding
determinants of morphological variation, one which incorporates critical data on performance.
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I. INTRODUCTION

Establishing the morphological adaptations and phylo-
genetic position of fossil species often hinges on our
understanding of their behaviour and life history. Since
hard tissues are highly mineralised, skeletal remains rep-
resent the primary means by which we determine the
palaeobiology of extinct organisms. The information
gleaned from such materials is considerable, being used
to characterise a broad diversity of biological phenomena,
including: (i) evolutionary patterns of brain encephalisa-
tion, sensory development and sociality (Radinsky, 1977;
Jerison, 1979; Martin, 1990; Bush, Simons & Allman,
2004; Finarelli & Flynn, 2009; Silcox, Dalmyn & Bloch,
2009; Schultz & Dunbar, 2010; Rowe, Macrini & Luo, 2011;
Steiper & Seiffert, 2012); (ii) reconstructions of life history,
ecology and climate-induced size change (Fleagle, 1985;
Eisenberg, 1990; Roth, 1992; Raia & Meiri, 2006; Secord
et al., 2012); (iii) predator–prey coevolution, interspecific
competition and guild composition (Fleagle, 1978; Maio-
rana, 1990; Ungar & Kay, 1995; Schwartz, Rasmussen &
Smith, 1995); (iv) micro- and macroevolutionary patterns
of size variation (Koch, 1986; Alroy, 1998; Gould &MacFad-
den, 2004; Clauset & Erwin, 2008; Smith et al., 2010; Raia
et al., 2012; Steiper & Seiffert, 2012); and (v) feeding and
locomotor behaviour (Van Valkenburgh, 1982; Fleagle,
1985; Rose, 1990; Daegling & Grine, 1991; Ravosa, 1991,
1996a,b, 1999; Janis, 1995). Such remarkable diversity of
interests is not surprising, as bony elements are directly or
indirectly involved in myriad biological phenomena.
Considerable interest in the biology of extinct vertebrates

is exemplified by numerous studies directed at reconstruct-
ing functional diversity in the mammalian feeding com-
plex. This focus is related to the adaptive and phylogenetic
importance of variation in the oral cavity, coupled with the
greater availability of well-preserved craniodental remains.
In such cases, skeletal form is typically used to infer a given
behaviour. Preferably, this functional association is based
on a previously determined in vivo link between a spe-
cific feature and a given behaviour (Kay & Cartmill, 1977;
Lauder, 1995), thus potentially documenting the biologi-
cal role of the structure or anatomical suite (Bock & von
Wahlert, 1965; Radinsky, 1985).
While a fossil occasionally preserves all or most of the

skeletal information necessary for a comprehensive inter-
pretation of past behaviours (e.g. White et al., 2009; Foth,
Tischlinger & Rauhut, 2014), evidence on joint func-
tion and musculoskeletal biomechanics is inevitably lost
because such functional systems are not wholly composed
of mineralised tissues (Ravosa et al., 2007a; Holliday et al.,

2010). In other cases, the fragmentary nature of fossil
remains precludes a multifactorial perspective on com-
plex morphological systems, such as the feeding appa-
ratus. Perhaps due to the loss of information over time
and associated taphonomic processes, the study of skeletal
remains typically focuses on external aspects ofmorpholog-
ical variation and less frequently applies a hierarchical per-
spective incorporating information on internal anatomy,
microanatomy or cellular structure (Daegling & Grine,
1991; Bush et al., 2004; Chinsamy-Turan, 2005; Schweitzer
et al., 2005; Ravosa et al., 2007b; Villmoare & Kimbel, 2011).
As fossil remains typically represent one tissue type from

a (usually) incomplete structure, palaeontological analyses
of functional systems that are hierarchically organised and
composed of both hard and soft tissues present more diffi-
culty as regards behavioural reconstructions. For nearly as
long as workers have sought to reconstruct soft-tissue com-
ponents of specificmusculoskeletal systems, locomotor and
feeding behaviour, as well as overall body size, there has
been an awareness of the inherent difficulties and potential
pitfalls of unravelling the functional attributes of extinct
organisms (Kay & Cartmill, 1977; Radinsky, 1982; Conroy,
1987; Damuth & MacFadden, 1990; Jungers, 1990; Lauder,
1995; Smith, 2002). For instance, one analysis of extant
strepsirrhine primates observed that molar size, often used
to estimate body mass in fossils, can mispredict a species’
body size by an average of 30% (Dagosto & Terranova,
1992). While these fundamental concerns have prompted
a number of detailed solutions for inferring function and
behaviour from skeletalmorphology (Kay&Cartmill, 1977;
Lauder, 1995;Witmer, 1995; Benton, 2010), it is also impor-
tant to recognise and identify the various sources and cor-
responding levels of error in using hard tissues to infer the
biology of extinct organisms.
Integrating data from a series of analyses focused on

long-term diet-induced plasticity in the skull and feed-
ing apparatus of growing rabbits (Ravosa et al., 2007a,
2008a,b, 2010a; Scott et al., 2014a,b) and rats (Menegaz,
2013), we highlight some of the inherent limitations of
morphology-based interpretations of adaptation in extinct
organisms. In doing so, we identify the kinds of approaches
that might prove to be the most problematic and pro-
pose a series of integrative solutions to enhance the
accuracy of functional inference. Our analyses under-
score the utility of experimental investigations of plas-
ticity for addressing questions regarding determinants of
morphological variation, and contribute to the develop-
ment of new approaches for interpreting evolutionary
patterns of functional covariation in the vertebrate fossil
record.
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II. OVERVIEW OF DIET-MANIPULATION
EXPERIMENTS

(1) Rabbit intraspecific samples and experimental design

The white rabbit provides a unique opportunity to under-
stand diet-induced plasticity in the mammalian mastica-
tory apparatus. A major benefit of this animal model is
that dynamic changes in feeding behaviours and loading
regimes can be linked directly to post-weaning variation
in the form, function and plasticity of craniomandibu-
lar elements. This is due to extensive in vivo data on
jaw-adductor muscle activity, jaw kinematic and jaw load-
ing patterns, masticatory function during ontogeny, intra-
cortical remodelling, and the relationship between feeding
behaviour and dietary properties (Weijs & de Jongh, 1977;
Weijs & Dantuma, 1981; Weijs, Brugman & Klok, 1987;
Weijs, Brugman&Grimbergen, 1989; Langenbach,Weijs &
Koolstra, 1991; Hirano et al., 2000; Langenbach et al., 2001;
Langenbach & van Eijden, 2001). Similar to observations
in diverse groups of mammals, rabbit jaw-adductor mus-
cle activity patterns vary with dietary properties (e.g. Her-
ring & Scapino, 1973; Gorniak & Gans, 1980; Weijs et al.,
1987, 1989; Dessem & Druzinsky, 1992; Hylander, Johnson
& Crompton, 1992; Hylander et al., 2000), with increased
jaw-adductor recruitment resulting in elevated peak strains
and greater repetitive loading along the mandible (Weijs
& de Jongh, 1977; Hylander, 1979a,b; Hylander et al., 1998;
Ravosa et al., 2000). Further, work on dietary plasticity in
rabbits is consistent with similar shorter-term experiments
in other mammals (Beecher & Corruccini, 1981; Bouvier
& Hylander, 1981, 1984, 1996; Beecher, Corruccini & Free-
man, 1983; Yamada & Kimmel, 1991; He & Kiliaridis, 2003;
Lieberman et al., 2004; Ravosa et al., 2007a, 2008a,b).
The primary sources of evidence for comparisons pre-

sented herein are based on a series of experiments probing
the role of dietary variation on the post-weaning develop-
ment of musculoskeletal features in the skull of domestic
New Zealand white rabbits (Oryctolagus cuniculus); in all
such plasticity analyses, treatment groups consisted of 10
male subjects. The animal care facilities at which the rabbits
were housed are USDA-licensed and AAALAC-accredited,

with all procedures approved by respective Institutional
Animal Care and Use Committees. Daily care of the exper-
imental subjects, including monitoring of their health, was
always performed by trained veterinary staff.
While some comparisons have been published elsewhere

(Tables 1 and 2), these data are being compared and con-
trasted with recently collected unpublished data so as to
provide new insights into the limits of morphological infer-
ence in the fossil record. This combination of static adult
and more recent longitudinal data on the mechanobiol-
ogy of rabbit craniofacial connective tissues is unparalleled
among work on diet-induced plasticity in mammals and
other tetrapods.
In all rabbit plasticity experiments performed to date,

modification of food material properties began at wean-
ing for several reasons (Ravosa et al., 2007a; Menegaz et al.,
2009). First, it mitigates the effects of other loading influ-
ences that might confound comparisons among dietary
cohorts. Second, given that organisms are thought to
be differentially more susceptible to environmental cues
earlier in postnatal development (Hinton & McNamara,
1984; Meyer, 1987; Bouvier, 1988; Bertram & Swartz, 1991;
Rubin, Bain &McLeod, 1992; Pearson & Lieberman, 2004;
Hoverman & Relyea, 2007; Ravosa et al., 2008a; but see
Scott et al., 2014b), it maximises the plasticity response to
a diet-induced loading regime. Finally, as mammals begin
to adopt adult diets and chewing behaviours around the
time of weaning (Herring, 1985; Weijs et al., 1989; Langen-
bach et al., 1991, 2001; Iinuma, Yoshida & Funakoshi, 1991;
Westneat & Hall, 1992), the commencement of dietary
manipulation at such an early postnatal stage facilitates a
more naturalistic experiment for comparison with varia-
tion observed in feral populations.
Apart from protocol duration (see below), variation

in experimental design involved alteration of the pres-
ence/absence of hay cubes, combined with the uniform
presence of rabbit pellets to ensure adequate nutrition
(Table 1). Data on the material properties of intact pellets
and hay cubes indicate that the latter is more mechanically
challenging (i.e. tougher and with a higher elastic mod-
ulus) in terms of the forces and chewing cycles required
for fragmentation along the postcanine dentition, thus

Table 1. Comparisons of experimental procedures and analyses

Species
Experiment length/
subject age span Experimental diets Plasticity results presented herein Relevant citations

Rabbit #1 16weeks,
4–20weeks old

Under-use, over-use Static data on external/internal
skeletal metrics,
biomineralisation

Taylor et al. (2006), Ravosa et al.
(2007a, 2008a,b) and
Menegaz et al. (2009, 2010)

Rabbit #2 22weeks,
4–26weeks old

Under-use, over-use,
normal/control

Static data on joint ossification,
metrics, biomineralisation,
cartilage histology, jaw-muscle
fibre type size and biochemistry

Jašarević et al. (2010), Ravosa
et al. (2010a) and M. Ravosa
(unpublished data)

Rabbit #3 48weeks,
4–52weeks old

Normal/control,
annual/over-use,
seasonal (early/late)

Longitudinal data on jaw
cross-sectional areas and
jaw-muscle mechanical advantage

Scott et al. (2014a,b) and M.
Ravosa (unpublished data)

Rat 12weeks,
4–16weeks old

Annual/over-use,
annual/under-use,
seasonal (early/late)

Longitudinal data on mandibular
form and microstructure

Menegaz (2013) and R.
Menegaz & M. Ravosa
(unpublished data)
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Table 2. Comparisons of adult jaw cross-sectional robusticity between primate sister taxa that vary in dietary proclivities and
rabbits raised on different diets

Group mean ratio
Symphysis0.5/
jaw length (%)

Palate0.5/
jaw length (%)

Condyle0.5/
jaw length (%)

Corpus0.5/
jaw length (%)

Rabbits
Annual (= over-use)/control× 100 109 117 106 108
Annual (= over-use)/seasonal× 100 105 111 105 104
Seasonal/control× 100 104 105 101 103

Primates
Cebus apella/Cebus capucinus × 100 119 — — 122
Gorilla gorilla/Pan troglodytes × 100 96 — — 98
Procolobus badius/Macaca fascicularis × 100 102 — — 104
Lophocebus albigena/Macaca fascicularis × 100 99 — — 112

Percentages were calculated by dividing the mean ratio for the group with the more mechanically challenging diet by the mean ratio for
the other group and multiplying by 100. Corpus cross-sectional areas were obtained via computed tomography (CT) at M2 in primates
and via microCT at P4 in rabbits; while dietary effects on jaw length were minor in rabbits, the use of ratios controls for such factors in the
analysis of diet on mandibular cross-sectional areas. Symphyseal sections were taken mid-sagittally in primates and coronally in rabbits.
Mechanical differences in the primate pairwise dietary comparisons are well established: Cebus apella consumes harder and tougher
objects more frequently than other species of Cebus (Daegling, 1992; Wright, 2005), Gorilla gorilla is more folivorous than Pan troglodytes
(Tutin & Fernandez, 1993; Taylor, Vogel & Dominy, 2008) and, as compared to Macaca fascicularis, Procolobus badius is more folivorous
while Lophocebus albigena processes hard objects more extensively (Daegling, 2002). Further details about the samples, measures and
methods are elsewhere (great apes: Daegling, 2007; capuchins: Daegling, 1992; Old World monkeys: Daegling, 1993, 2002; rabbits: Scott
et al., 2014a).

inducing elevated osteogenesis of masticatory structures
(Ravosa et al., 2007a; Menegaz et al., 2009). Importantly,
the material properties of the experimental foods fall
within the range of values for diverse foods commonly
exploited by primates in the wild (Williams et al., 2005).
Our initial goal was to determine the broadest range
of voluntary physiological responses to ad libitum oral
processing of foods of different material properties and
associated masticatory stresses. To this end, earlier analyses
employed: (i) a control diet of intact pellets representing
a baseline range of loading and phenotypic variation; (ii)
an under-use diet consisting of powdered rabbit pellets
that required minimal mastication; and (iii) intact pellets
supplemented daily with hay cubes to characterise an
over-use diet with correspondingly elevated loading levels
and greater cyclical loading (Ravosa et al., 2007a, 2008a,b,
2010a). All specimens were scanned post mortem using
microcomputed tomography (microCT).
Recent work has attemptedmore closely to model dietary

variation in the wild, including seasonal ‘fallback foods’,
which are mechanically challenging items ingested during
periods of resource scarcity (e.g. Terborgh, 1983; Wright,
2005). Thus, in contrast to the annual (= over-use) diet
group, a seasonal diet group received hay cubes for only
part of the experimental period (Scott et al., 2014a). Vari-
ability between seasonal and annual reliance on a chal-
lenging diet models the differences between ‘filler’ and
‘staple’ fallback foods (Marshall & Wrangham, 2007) and
potential variation in loading stimuli experienced by wild
mammals. While it has been argued that cranial pheno-
types are more labile earlier in development (Hinton &
McNamara, 1984; Meyer, 1987; Bouvier, 1988; Rubin et al.,
1992; Ravosa et al., 2008b), the inclusion of early and late
seasonal diet groups has been beneficial for showing that
plasticity does not decrease uniformly with age (Scott et al.,
2014b). Rabbits in the early seasonal group each received

three hay cubes daily for the first 6 weeks of the experimen-
tal period (i.e., post-weaning) and were then switched to an
all-pellet diet for the following 18weeks. This schedule was
repeated in the second half of the experimental period.
The other seasonal group, late seasonal, was subjected to
the opposite feeding schedule; i.e. pellets only for the first
18weeks, then hay cubes daily for the next 6 weeks, etc.
In contrast to our prior static analyses of adult specimens
imaged post mortem, longitudinal analysis of growing sub-
jects was tracked via microCT. Subjects were scanned under
anaesthesia upon arrival (week 0) and then biweekly there-
after for the first half of the experimental period (week 24)
and then again following sacrifice (week 48), for a total of
14 postnatal ages (Scott et al., 2014a,b).
The broader significance of these analyses of

diet-induced plasticity in rabbits is that they were carried
out over a substantially longer period of (early) postnatal
ontogeny than prior work on othermammals (Table 1) (cf .
Beecher & Corruccini, 1981; Bouvier & Hylander, 1981,
1984, 1996; Beecher et al., 1983; Yamada & Kimmel, 1991;
He & Kiliaridis, 2003; Lieberman et al., 2004), which pro-
vides amore naturalisticmodelling of dietary influences on
an organism’s life history. The basis for determination of
developmental milestones is that in white rabbits, weaning
occurs at about 4–5weeks of age, with peak skeletal matu-
rity attained at approximately 6months old (Sorensen,
Rogers & Baskett, 1968; Yardin, 1974). The first study
was carried out using rabbits raised for 3.4months from
weaning until subadulthood (4.5months old) on either an
under-use or over-use diet (Taylor et al., 2006; Ravosa et al.,
2007a, 2008a,b; Menegaz et al., 2009, 2010). This static
sample is the source of microCT-based comparisons of
bone formation and biomineralisation in the mandibular
symphysis discussed herein. Subsequent research extended
the period of dietary manipulation to 5months, expanding
the treatment groups to under-use, control and over-use

Biological Reviews (2015) 000–000 © 2015 Cambridge Philosophical Society



Morphological inference in palaeobiology 5

diets kept until adulthood (6months old; Jašarević et al.,
2010; Ravosa et al., 2010a). This static sample is the source
of the following data: temporomandibular joint (TMJ)
microCT, microCT on mandibular symphyseal fusion, TMJ
articular cartilage histology, and masseter muscle fibre
type histochemistry. The most recent work involved an
experimental protocol that continued until the subjects
were mature adults (1 year old), raising them 11months
from weaning on one of four diets: control, late seasonal,
early seasonal or annual/over-use diets, as described
above (Scott et al., 2014a,b). This sample is the source
of longitudinal microCT data regarding the ontogeny of
cross-sectional area of the palate, mandibular corpus and
symphysis, as well as linear dimensions of masseter muscle
mechanical advantage. The reader is directed to these
publications for additional details on samples, imaging
protocols, histological procedures, measurements and
other analyses (Table 1).

(2) Rat intraspecific samples and experimental design

A longitudinal study of skeletal plasticity related to
intra-individual variation in dietary properties was con-
ducted using the Sprague-Dawley strain of laboratory rat
(Rattus norvegicus) (Menegaz, 2013). This research exam-
ined morphological plasticity during post-weaning growth
at both the macro- and micro-structural levels. Weekly in
vivo microCT imaging combined with post mortem fluo-
rescent histomorphometry was used to assess ontogenetic
changes in mandibular morphology. Rats were obtained
at weaning (21 days) and raised beyond skeletal maturity
(12weeks) into early adulthood (16weeks). Each dietary
treatment group consisted of 10 or 11 male subjects.
Animal care facilities in which the rats were housed are
USDA-licensed and AAALAC-accredited, with all proce-
dures approved by Institutional Animal Care and Use
committees. Further details on experimental design and
analyses are located in Menegaz (2013).
Four dietary treatment groups were used in the rat

study (Table 1). All groups were fed ad libitum comparable
amounts of a rodent diet in either intact pellet or powdered
pellet form. The use of the same diet presented in two
different consistencies allowed for themodification of mas-
ticatory behaviour and the frequency/intensity of loading
while offering comparable nutrition for all animals. Two
‘annual’ groups were fed a single diet for the duration of
the experiment: an annual/over-use group, which was fed
a diet of intact pellets; and an annual/under-use group,
which was fed a diet of powdered pellets. Two ‘seasonal’
groups were fed a single diet (either intact or powdered
pellets) for the first 6 weeks of the experimental periods,
and then switched to the opposite diet for the last 6 weeks.
The ‘early’ seasonal group was fed intact pellets for the
first 6 weeks post-weaning, while the ‘late’ seasonal group
was fed intact pellets for the last 6 weeks post-shift. The
mid-experiment dietary shift, which occurred during the
adolescent stage of rat ontogenymodelled a ‘seasonal’ shift
in dietary composition, thus allowing for the evaluation
of phenotypic plasticity during the optimal post-weaning
growth period.

(3) Primate interspecific comparative samples

To underscore the relevance of intraspecific data on
dietary plasticity for understanding interspecific or evo-
lutionary variation in the mammalian feeding complex,
rabbit microCT data on mandibular cross-sectional areas
(corpus, symphysis) were compared to similar CT-based
data for a series of pairwise analyses of primate sister taxa
that vary in dietary properties (Daegling, 1989, 1992, 1993,
2002). To adjust for differences in jaw size among taxa
and treatment groups, ratios of cross-sectional area versus
mandibular length were calculated for these robusticity
analyses. Our comparisons between rabbits and primates
are employed to gauge empirically the magnitude of
the morphological differentiation witnessed in long-term
plasticity experiments vis-à-vis the metric disparity in
mandibular cross-sectional area observed among adult
wild-caught specimens. This contrasts the behavioural
influence of diet properties in a protracted experimental
setting to that experienced in a lifetime of species-specific
feeding behaviours and attendant jaw-loading patterns.
Additional information regarding the samples, CT imaging
protocols and analyses are available elsewhere (Daegling,
1992, 1993, 2002, 2007).

III. DEVELOPMENT, EVOLUTION AND
DIET-RELATED PHENOTYPIC PATTERNS

A number of workers have emphasised the importance of
plasticity for understanding evolutionary change (Stearns,
1989; Gotthard & Nylin, 1995; Agrawal, 2001; Pigliucci,
2001, 2005; West-Eberhard, 2003, 2005). One argument
against intraspecific models of plasticity is that they do not
generate comparable levels of morphological diversity as
witnessed between sister taxa that vary in a given behaviour
for an entire lifetime and which differ in history of adaptive
genetic evolution. This criticism is untested largely because
most plasticity studies examine biological phenomena over
an extremely limited span of an organism’s life history or
during adult phases when reaction norms are thought to
be lower or absent (Hinton & McNamara, 1984; Meyer,
1987; Bouvier, 1988; Bertram & Swartz, 1991; Rubin et al.,
1992; Pearson & Lieberman, 2004; Hoverman & Relyea,
2007; Ravosa et al., 2008a; but see Scott et al., 2014b). Our
analyses rectify this problem by inducing the onset of
dietary divergence at weaning, when mammals typically
adopt ‘adult-like’ jaw-adductor muscle and jaw-loading
patterns (e.g. Herring, 1985; Weijs et al., 1989; Iinuma
et al., 1991; Langenbach et al., 1991, 2001; Westneat & Hall,
1992), and via the experimental modification of dietary
properties for a longer-term, more naturalistic duration
(i.e. typically from weaning through adulthood; Ravosa
et al., 2010a; Scott et al., 2014a,b).
To explore the influence of diet on intra- and inter-

specific variation in jaw cross-sectional area, similar data
are compared between rabbit cohorts and four sets of
closely related primate species. Interestingly, while the
disparity for mandibular cross-sectional areas is greater
between capuchin (Cebus) species than among rabbit
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cohorts, the latter exhibit differences that equal or exceed
sister-taxa differences in great apes and Old World mon-
keys (Table 2). Thus, despite the fact that the primate
samples consisted of individuals that likely engaged in
adult-like feeding behaviours for an appreciably longer
portion of adulthood than in the rabbit samples, the mag-
nitude of diet-induced variation in the mandible is equiv-
alent at the intra- and interspecific levels (Daegling, 1989,
1992, 2002, 2007; Scott et al., 2014a,b). This suggests that
dietary adaptive plasticity can contribute significantly to
phenotypic variation observed between ecologically diver-
gent species.
Another way plasticity can affect evolution is that altered

reaction norms change the heritable variation upon which
natural selection acts. Because plasticity influences pheno-
typic covariance structure, this can alter the way in which
hereditary variation and selection interact to produce
evolutionary change (Gupta & Lewontin, 1982; Cheverud,
Rutledge & Atchley, 1983; Stearns, 1989). This means that
the effects of diet-induced plasticity on cranial variance
and covariance patterns will, in turn, alter the phenotypic
response to natural selection. For example, lower facial
structures in vertebrates are differentially affected by mas-
ticatory stresses and such factors can vary with size (Hylan-
der, Picq & Johnson, 1991; Bouvier & Hylander, 1996;
Hylander & Johnson, 1997; Ravosa et al., 2000, 2010b; Ross
& Metzger, 2004; Menegaz et al., 2010). Thus, phenotypic
covariation patterns will differ between lower and upper
facial skulls for sister taxa that likewise differ in dietary
properties, and these associations may vary allometrically.

IV. INTEGRATED SYSTEMS AND FUNCTIONAL
VARIATION BETWEEN HARD AND SOFT TISSUES

Plasticity is often viewed as adaptive in nature, inform-
ing us about functional patterns of morphological covari-
ation (Stearns, 1989; Gotthard & Nylin, 1995; Agrawal,
2001; Pigliucci, 2001, 2005; West-Eberhard, 2003, 2005).
As emphasised previously (Kay & Cartmill, 1977; Lauder,
1995), determination of specific functional associations in
extant organisms is critical before a structure can be used to
infer behaviour in the fossil record. This is especially impor-
tant if a form or configuration can be linked uniquely to
a given behaviour and thus has a particular biological role
(sensu Bock& vonWahlert, 1965; Radinsky, 1985). Such cri-
teria are potentially more difficult to uphold in the case of
tissue composites such as joint and muscle systems, where
only one component of a complex is amenable to fossilisa-
tion. The attendant challenges to this issue will be explored
via a consideration of soft-/hard-tissue systems in themam-
malian feeding apparatus, one related to load resistance
and movement, and another related to force generation.

(1) Jaw joints

The temporomandibular joint (TMJ) of mammals is the
bilateral articulation between the lower jaw and skull base,
containing an articular disc interposed between articular

Table 3. Comparisons of temporomandibular joint (TMJ)
external dimensions (mm) and biomineralisation (𝜇) from
adult rabbits raised on one of three different diets from
weaning

Variable
Under-use
mean

Control
mean

Over-use
mean

Condyle AP length (mm)* 11.800 12.037 12.473
Condyle ML width (mm) 5.080 5.200 5.517
Articular surface (𝜇)* 1.751 1.874 2.128
Subchondral bone (𝜇)* 1.966 2.125 2.390
Condylar neck (𝜇)* 1.930 1.974 2.177

Anteroposterior (AP) and mediolateral (ML) measures of joint
size were obtained using digital calipers whereas biomineral-
isation values were quantified with microCT. For most TMJ
hard-tissue parameters, rabbits that routinely process a more
mechanically challenging diet develop significantly larger and
more mineralised condylar heads (ANOVA: *P < 0.05).
Adapted from Ravosa et al. (2010a).

surfaces. In the TMJ of rabbits subjected to elevated mas-
ticatory stress during biting and chewing of hay (Weijs &
de Jongh, 1977), there is a stereotypical adaptive response
with members of the ‘over-use’ dietary cohort developing
larger and more biomineralised condylar heads (Ravosa
et al., 2007a, 2010a) (Table 3). By contrast, the expression
of type II collagen and proteoglycans –extracellular matrix
(ECM) proteins that confer soft-tissue viscoelasticity – is
lower in the TMJ articular cartilage of rabbits raised on the
same mechanically challenging diet (Ravosa et al., 2007a)
(Fig. 1). This finding suggests that, because the TMJ is a
tissue composite that functions to resist joint loads, a com-
ponent of the long-term adaptive bony increase in condy-
lar parameters compensates for diet-induced decreases in
cartilage stiffness due to a reduction in ECM protein syn-
thesis. Accordingly, one must temper conclusions about
the strength of the adaptive signal in the TMJ, and per-
haps the hard tissues of all joints for that matter, that
follow from analyses concentrating on skeletal parame-
ters. Put differently, in the absence of the soft-tissue data
one would consistently overestimate the magnitude of the
dietary influence on condylar form and, in turn, routinely
misinterpret the extent to which different TMJ morphs
in the palaeontological record reflect behavioural varia-
tion rather than related soft-tissue changes. Similar caution
should be employed in neontological studies that base con-
clusions about joint function solely on protein expression
in soft-tissue structures.
As the joint articular surface in fossils is usually incom-

plete due to the absence of cartilaginous remains (Ravosa
et al., 2007a; Holliday et al., 2010) and taphonomic pro-
cesses, this lack of evidence can also hinder an under-
standing of joint integrity, kinematics and kinetics. Clearly,
further research is needed to identify better the soft-
and hard-tissue contribution to joint performance and
whether such tissue interactions vary with age, across skele-
tal regions and among species (cf . Holliday et al., 2010).
Of relevance is that there are limited data documenting
an age-related divergence in bone architecture and bone
quality between the TMJ and mandibular symphysis in the

Biological Reviews (2015) 000–000 © 2015 Cambridge Philosophical Society



Morphological inference in palaeobiology 7

Over-use diet Under-use Control (A) (B) (C)

Fig. 1. Coronal histological sections of middle sites of the tem-
poromandibular joint (TMJ) condyle articular surface from
adult rabbits raised on one of three different diets (A–C) from
weaning (about 50×). Sections were stained with safranin O
to characterise proteoglycan distribution. TMJ articular car-
tilage in ‘over-use’ rabbits shows lower proteoglycan content
(i.e. decreased red staining intensity and distribution), which
is indicative of reduced TMJ articular cartilage viscoelasticity.
Thus, in contrast to hard tissues of the TMJ, rabbit TMJ artic-
ular cartilage routinely subjected to elevated loading due to a
challenging diet experiences decreases in the ability to resist
compressive loads during biting and chewing (adapted from
Jašarević et al., 2010; see also Ravosa et al., 2007a, 2008b).

same mature adult rabbits (Ravosa et al., 2008a). Compar-
isons of proximal limb joints in growing pigs subjected to
exercise-induced dynamic loading likewise indicate differ-
ences in bone and cartilage responses between the proxi-
mal humerus and proximal femur in the same experimen-
tal subjects (Congdon, Hammond & Ravosa, 2012).

(2) Jaw-adductor muscles

Musculoskeletal units represent another functional system
comprised of soft and hard tissues. The force-generating
abilities of a given muscle include its mechanical advan-
tage, which is tracked via bony attachment sites, the inter-
nal anatomy of the muscle itself (i.e. pinnation, fibre type,
fibre size), and neuromotor factors such as compartmen-
talisation and spindle density. In a study of masseter mus-
cle plasticity, rabbits raised on an ‘over-use’ diet developed
a greater proportion of, and larger, type II muscle fibres
(Fig. 2), both of which positively affect force-producing
capabilities (Taylor et al., 2006; Ravosa et al., 2010a). How-
ever, analyses of the ontogeny of masseter mechanical
advantage among rabbit dietary groups fails to detect any
differences in the growth trajectories or terminal adult con-
figurations (Fig. 3). This suggests that if one attempted to
unravel the dietary correlates ofmasticatory form in rabbits
based on jaw-adductor size andmechanical advantage, as is
the case with fossils (e.g. DuBrul, 1977; Spencer & Demes,
1993; Ravosa, 1996a; Friscia, Van Valkenburgh & Biknevi-
cius, 2007; Eng et al., 2013), it would have been impossible
to infer most soft-tissue indicators of muscular function
that covary with feeding behaviour.
This is not to say that variation in the soft and hard tissue

components of a musculoskeletal unit cannot be detected
between sister taxa, but rather that significant functional
variation may be wholly unrecognised in those cases where

Under-use diet Control diet Over-use diet (A) (B) (C)

Fig. 2. Plasticity in fibre-type biochemistry and cross-sectional
area for the intermediate region of the superficial masseter
muscle in adult rabbits. In comparing the three dietary cohorts
(A–C), note the trade-off in the relative abundance and size
of type I (grey) versus type II (brown; encircled) muscle fibres,
with over-use rabbits developing fewer, smaller type I fibres
and more, larger type II fibres. Such increases in type II fibres
facilitate the generation of faster and higher jaw-muscle forces
during postcanine biting and chewing of a challenging diet,
as well as likely explaining the presence of similar patterns
of masseter muscle size increase across groups (adapted from
Ravosa et al., 2010a; see also Taylor et al., 2006).

the response is singularly or differentially muscular in
nature. Thus, if using only skeletal parameters, one may
underestimate the functional disparity between morphs
that exhibit variation in the mechanical advantage of the
jaw-adductor muscles. Biomechanical systems that effect
movements consist of skeletal, muscular and neural com-
ponents, all of which affect force generation and contrac-
tion velocity. However, as fossils only permit assessments of
mechanical advantage, it will be necessary to evaluate more
broadly if, and in what way, specific musculoskeletal units
covary with a given oral function and whether such patterns
vary among skeletal sites and across taxa.

V. HIERARCHICAL DISPARITY IN THE
FUNCTIONAL SIGNAL WITHIN A STRUCTURE

A frequent goal of researchers working on fossils is to
compare quantitative measures of skeletal form to simi-
lar parameters for extant close relatives and/or presumed
functional analogs (Kay & Cartmill, 1977; Lauder, 1995;
Benton, 2010). Typically, this entails quantification of
external bony dimensions, particularly for large interspe-
cific samples (e.g. Ravosa & Hogue, 2004). Such propor-
tions, however, may not adequately reflect the biomechan-
ical characteristics of a bony structure (Daegling & Hylan-
der, 2000). For instance, information on mandibular cor-
tical bone geometry and distribution has been used to
increase the accuracy of functional interpretations of feed-
ing behaviour in extinct organisms (e.g. Daegling & Grine,
1991). Since the performance of skeletal elements is dic-
tated by a number of internal factors including bone qual-
ity, bone quantity and bone distribution, there remains the
possibility that a functional signal may be differentially rep-
resented at one level of organisation versus another level.
Indeed, such factors characterise diet-induced plasticity
responses in the rabbit mandibular symphysis.
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Fig. 3. Rabbit cranial growth allometries in four dietary cohorts raised from weaning through adulthood. MicroCT-based linear
measures characterise themechanical advantage of the superficial masseter muscle at the first premolar. Each datum represents a
weekly groupmean for each treatment group. Comparisons indicate that all dietary treatment groups exhibit similar ontogenetic
trajectories and common terminal adult phenotypic configurations, suggesting the absence of functional differences in the
mechanical advantage of the superficial masseter muscle.

Much like the TMJ, variation in the proportions and
biomineralisation of the rabbit mandibular symphysis
is associated with differences in the properties of foods
processed during post-weaning development (Ravosa et al.,
2007a). Interestingly, depending on whether one consid-
ers an external or internal joint dimension, the magnitude
of the disparity between dietary groups varies and thus the
apparent degree of dietary divergence. Internal dimen-
sions such as cortical bone thickness, which are examined
less frequently (but see Daegling, 1989, 1992, 1993, 2002),
exhibit a greater disparity versus gross external dimensions
more commonly used to track diet-related variation (e.g.
Ravosa, 1991, 1996a; Ravosa & Hogue, 2004; Wright,
2005; Friscia et al., 2007). In comparing external dimen-
sions versus cortical bone thickness among rabbit dietary
cohorts, the disparity is markedly greater for the internal
dimensions (Table 4). Given that a number of biome-
chanical parameters are directly related to cortical bone
thickness, this suggests that the use of external measures
alone would underestimate the functional signal related to
dietary properties, particularly as bone quality also varies
between such dietary groups. Interestingly, the disparity in
cortical bone biomineralisation between dietary groups is
lower than that for cortical bone thickness, which suggests
that variation in cortical bone distribution is potentially a
more labile means of influencing functional variation in
symphyseal morphology.
One aspect of symphyseal form that appears to be

particularly sensitive to dietary variation in rabbits is
the degree of joint fusion or ossification, which also
varies with diet in diverse mammalian clades (Beecher,
1977, 1979; Scapino, 1981; Ravosa, 1991, 1996b, 1999;
Ravosa & Hogue, 2004; Scott, Hogue & Ravosa, 2012a;
Scott, Lack & Ravosa, 2012b). Young rabbits typically
exhibit a relatively simple mandibular symphysis that
develops into a variably interdigitating or partially fused
condition by adulthood with corresponding changes in
the soft-tissue components (Hirschfeld, Michaeli & Wein-
reb, 1977; Beecher, 1979). Remarkably, rabbits raised
throughout post-weaning ontogeny on an ‘over-use’ diet

Table 4. Comparisons of symphyseal external proportions and
biomineralisation values (𝜇) from subadult rabbits raised on
one of two different diets from weaning

Variable
Under-use
mean

Over-use
mean

%
change

Symphysis length ratio 0.351 0.396 12.8*
Symphysis width ratio 0.129 0.148 14.7*
Articular breadth ratio 0.140 0.173 23.6*
Superior cortex thickness ratio 0.134 0.176 31.3*
Lateral cortex thickness ratio 0.058 0.089 53.4*
Symphyseal surface (𝜇) 1.668 2.024 21.3*
Symphyseal cortex (𝜇) 2.326 2.624 12.8*

Measures of joint size were obtained with digital calipers while
biomineralisation was quantified via microCT. To adjust for subtle
variation in overall skull size, ratios were calculated by dividing a
measure of interest by cranial length. In all symphysis parameters,
rabbits that regularly consume a more mechanically challenging
diet develop significantly larger and more mineralised joints as
well as thicker cortical bone. The column on the right presents
the % mean difference based on the ratio of mean values for
over-use versus under-use diet cohorts. Note that the magnitude
of the disparity between diet groups is greater for cortical bone
thickness than biomineralisation and symphysis external dimen-
sions (ANOVA: *P < 0.05).
Adapted from Ravosa et al. (2007a, 2008b).

develop incipient ossification of the symphysis by adult-
hood (Fig. 4). Such diet-induced intraspecific variation
tracks that typically observed above the genus level in vari-
ousmammals (Ravosa, 1991, 1996b, 1999; Ravosa &Hogue,
2004; Scott et al., 2012a,b). Indeed, if considered in the
absence of additional data from the feeding apparatus of
the rabbit samples (i.e. fragmentary and out of context,
much like most fossil specimens), the observed pattern
of accelerated developmental onset of symphyseal fusion
would seemingly represent a macroevolutionary or hete-
rochronic event rather than a diet-induced reaction norm
within a single species. Similar work on locomotor plastic-
ity in a ray-finned fish capable of facultative terrestriality
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Under-use diet Over-use diet (A) (B)

Fig. 4. Coronal microCT sections of middle symphyseal sites
from adult rabbits raised on different diets from weaning
(about 5×). At the top of the image in (B), note the encircled
part of the joint spanned by bone. This synostosis alters joint
function by increasing symphysis strength during mastication
and differs significantly from the configuration in (A) for the
other diet cohort, where the strength of such a synarthrosis is
more dependent on variation in soft-tissue properties.

(Polypterus senegalus) showed that subjects raised in a ter-
restrial environment developed changes in the pectoral gir-
dle mirroring those changes characteristic of the transition
between the earliest tetrapods and their aquatic ancestors
(Standen, Du & Larsson, 2014).
In another recent study with implications for palaeo-

biological interpretations, variation in metacarpal form
among living apes and humans is utilised to predict
locomotor and manipulative behaviours in australopiths
(Skinner et al., 2015). Of particular importance is the
incorporation of data on patterns of trabecular bone
distribution that affords a new source of morphological
information undetected in prior analyses of external
anatomy. Nonetheless, such inferences would bene-
fit greatly from experimental research regarding the
ontogeny and plasticity of cancellous bone architecture
in metacarpals subjected to the range of behavioural
variation witnessed across extant hominoids.
As there is a paucity of work regarding how postna-

tal changes in loading stimuli affect bone properties
in the mammalian skull, it is not surprising that few
palaeontological studies have examined variation in fos-
sil microstructural properties (e.g. Ravosa et al., 2007b).
Fortunately, there is considerably more information on
the postcranium. Analysis of bone cross-sectional geome-
try, bone mechanical properties, and tissue composition
in the mouse tibia revealed that exercise can elicit alter-
ations in bone composition and structural integrity with-
out changes in bone geometry (Kohn et al., 2009; Wallace,
Ron & Kohn, 2009; Wallace et al., 2010). Thus, exercise sig-
nificantly increased tibial strength in the absence of bone
formation, with improved skeletal performance due only
to an altered mineralised matrix. These findings further
stress the importance of a hierarchical assessment of reac-
tion norms, coupled with the need to evaluate the per-
formance of such load-induced changes. As there was no
plasticity response to altered loads at a gross anatomical
level between mouse treatment groups, one might assume
that skeletal performance was also similar, much as would
be the case based on traditional analyses of cortical bone
geometry. Only in detecting a notable difference in tib-
ial bending strength was it then determined that exercise

induced finer-scale plasticity in bonemineral content inde-
pendent of variation in other parameters that influence
skeletal function. Clearly, adaptive variation in bone qual-
ity, architecture and geometry can develop independently
of one another, with evidence of a behaviour-induced sig-
nal and consequent influences on skeletal performance
overlooked if multiple levels of bony organisation are not
considered.

VI. REGIONAL AND POSTNATAL DIFFERENCES IN
THE FUNCTIONAL SIGNAL

Palaeobiology aims to reconstruct the behaviour of fos-
sil organisms. In such cases, it is typically assumed that
the ultimate form reflects the intra-individual ontogeny
of behavioural influences on bone formation (e.g. Hein-
rich, Ruff & Weishampel, 1993), that variance in tissue
responses among adjacent regions under similar functional
influences is minimal, and that plasticity decreases with age
(see Section II.1). A longitudinal perspective on postna-
tal dietary shifts among rabbit cohorts provides evidence
to the contrary. Annual and early seasonal rabbits raised
from weaning on a similar ‘over-use’ diet exhibit similar
growth patterns for three jaw measures, which differs from
that of a control group raised on a baseline diet of only
rabbit pellets (bootstrap test; Scott et al., 2014a). When the
early seasonal group is switched to a pellets-only diet, it
develops adult proportions for palate, symphysis and cor-
pus cross-sectional areas that are not statistically distin-
guishable from the control group and significantly lower
than those for the over-use/annual group (bootstrap test;
Fig. 5; Scott et al., 2014a). This is much as would be pre-
dicted based on its intermediate postnatal loading history.
Since adult proportions for the early seasonal group are
indistinguishable from those of the control group (Fig. 5),
these latter results are particularly interesting as the adult
proportions in ‘early seasonal’ rabbits reflect no signal
whatsoever about earlier behavioural influences, when this
cohort experienced the same over-use loading stimuli as
the annual group. If only adult patterns of morphological
variation were sampled, which replicates the conditions for
most extant and extinct comparative analyses, one would
not be able to recover the ‘seasonal’ shift in diet-induced
loading signal. Rather, similar behaviours would have been
inferred incorrectly as underlying the phenotypes of early
seasonal and control rabbits.
Simultaneously vexing and intriguing is that among mas-

ticatory elements in the same organisms subjected to the
same loading regimes, functional responses nonetheless
vary, and the corresponding signal differs depending on
the onset and perhaps sequence of loading events (cf .
Menegaz, 2013; Scott et al., 2014a). Within-element varia-
tion in the osteogenic responses to elevated loads between
the femoral diaphysis and metaphysis has also been
observed in mice subjected to differing levels of treadmill
exercise (Hamrick et al., 2006). Emerging evidence further
indicates that age-related decreases in plasticity might vary
among skeletal regions and across taxa (Scott et al., 2014b).
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Fig. 5. Post-weaning rabbit jaw growth in four dietary cohorts raised until adulthood. MicroCT-based measures of bone
cross-sectional area0.5 versus mean cranial length: (A) palate, (B) corpus, and (C) symphysis. Each datum represents a weekly
group mean. Note that the trajectories of the early seasonal group are similar to those of the annual/over-use group until the
seasonal shift in diet. Subsequently, the early seasonal group’s trajectories converge on those for the control group. In other
words, the terminal adult phenotype of the early seasonal cohort reflects only the most recent behavioural impact of the control
diet (adapted from Scott et al., 2014a).

Rabbits subjected to a shift to a mechanically challenging
diet around the time of skeletal maturity (late seasonal
group) exhibited an unexpectedly strong plastic response,
similar to that observed in the rabbit cohort given the same
diet just after weaning (early seasonal). This indicates that
young adults can be as susceptible to environmental con-
ditions as juveniles (Scott et al., 2014b; Fig. 5). Arguably, an
under-appreciation of intrinsic regional variation in the
sensitivity of connective tissues to external stimuli is due to

a currently pervasive, site-specific perspective on skeletal
form and function (see also Hsieh et al., 2001).
A study of dietary seasonality in a different mammalian

model, the laboratory rat, also found ontogenetic variance
in tissue responses among adjacent regions subjected to
the same loading regimes (Menegaz, 2013). In adult rats
that had undergone one ‘seasonal’ shift mid-adolescence,
osseous mandibular morphologies within close proximity
were found to differentially reflect dietary treatments. For
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Fig. 6. Results of a canonical variates analyses of three-dimensionalmandibularmorphology in adult rats (adapted fromMenegaz,
2013). The x-axis is canonical variate 1 (CV1), the y-axis is CV2. CV1 groups individuals by their early diet, and describes changes
in mandibular length and coronoid process morphology. CV2 groups individuals by their late diet, and describes changes in
angular process and masseteric fossa morphology. Wireframe mandibles represent the shape changes at either +10/−10 along
their respective CVs. Red lines indicate an increasing linear or angular dimension; blue lines represent a decreasing linear or
angular dimension.

example, animals subjected to an early seasonal ‘over-use’
diet were most similar to those raised on an annual
‘over-use’ diet in mandibular length and in features
related to the coronoid process, while subjects with a late
seasonal ‘over-use’ diet were most similar to those raised
on an annual ‘over-use’ diet in features related to the
angular process and masseteric fossa (Fig. 6). Despite their
close proximity and common function as attachment sites
for masticatory muscles, these structures – the coronoid
and angular processes – produced disparate ‘ecological’
signals even within a single individual raised on a seasonal
diet. Furthermore, in immature rats that had not yet under-
gone a ‘seasonal’ dietary shift, it was considerably more
difficult to distinguish between subjects in the ‘over-use’
versus ‘under-use’ groups. This was due to the fact that the
majority of morphological variance in these younger indi-
viduals was concentrated in themandibular corpus, reflect-
ing the overarching importance of dental eruption and
formation during this stage of ontogeny (Menegaz, 2013).
In addition to these regional differences in macrostruc-

tural skeletal plasticity, Menegaz (2013) also observed
regional variation in microstructural processes. Adjacent
regions, such as the molar and incisal portions of the
mandibular corpus, exhibited different responses in min-
eral apposition rates to the experimental dietary shift.
Larger mandibular regions, such as the ramus and the
corpus, varied in the timing of the transition from bone
modelling to remodelling as the dominant physiological
process. In sum, data from both our rabbit study and a
similar study of rats (Menegaz, 2013) emphasises that – in

the presence of simulated dietary seasonality – the eco-
morphological signal derived from craniomandibular mor-
phology is largely dependent on the specific anatomical
feature under study as well as the age of the individual.

VII. INTEGRATIVE AND NEONTOLOGICAL
APPROACH TO PALAEOBIOLOGICAL
RECONSTRUCTION

The comparisons provided herein serve to underscore
the limits in our ability to employ morphological data
for reconstructing the behaviour of extinct organisms.
While acknowledging that some issues are intractable
(e.g. preservation, taphonomy), nonetheless they draw
attention to potential approaches that one might use
to minimise problems with morphological inference. As
advanced by previous workers, an integrative perspec-
tive is clearly warranted, one informed by experimental
and ecomorphological analyses of biological systems for
understanding the fossil record and associated evolu-
tionary transformations in a clade. We further advocate
hierarchical and multifactorial analyses of determinants
of morphological variation in complementary hard- and
soft-tissue components as well as the need to consider all
functional aspects of skeletal architecture, such as cortical
and trabecular bone as well as bone quality (i.e. ultrastruc-
ture, material properties). While it is often assumed that
morphological differences among taxa are indicative of
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functional variation, it is requisite to examine the per-
formance of a given structure or system vis-à-vis multiple
skeletal parameters. As bone is hierarchically organised
and responds adaptively to mechanical stimuli on multiple
levels, elevated bone formation is only one mechanism of
increasing bone strength. It is unlikely that the singular use
of external skeletal dimensions will furnish the requisite
evidence for accurate palaeobiological reconstructions.
While not a primary focus of this discussion, our observa-

tions have direct implications for the increasingly common
use of finite element analysis (FEA) in functional stud-
ies of diverse vertebrate fossils (e.g. Dumont, Piccirillo &
Grosse, 2005; Strait et al., 2009; Young et al., 2012; Gill et al.,
2014). While it has been acknowledged that there are lim-
its to accurate modelling of dynamic jaw-loading regimes
in extinct organisms (Richmond et al., 2005; Young et al.,
2012), our analyses highlight additional challenges with
the current application of such methods. The presence of
significant variation in tissue mineral density within and
between masticatory elements (see Tables 3 and 4), which
greatly affects bone properties and skeletal performance
independent of cortical bone quantity (Kohn et al., 2009;
Wallace et al., 2009, 2010), undermines widespread assump-
tions about homogeneity of tissue properties in FEA mod-
els of fossil crania. Indeed, the underlying regional, hier-
archical and ontogenetic complexity of biological systems
highlights the inherent problems with applying FEA to
extinct organisms. For similar reasons, approaches utilising
geometric morphometrics exclusively are ill-suited to the
analysis of function in fossil vertebrates (e.g. Brusatte et al.,
2012; van Heteren et al., 2014; but see Cornette et al., 2013,
for an integrative perspective on musculoskeletal covaria-
tion in the masticatory system).
Barring information on biological roles of systems, bone

properties and site-specific tissue responses of extant
analogs, it would be premature to assume that in silico mod-
els of musculoskeletal function in extinct taxa can offer
us reliable insights into functional and behavioural varia-
tion, much less adaptation, in the fossil record. Rather than
filling a gap in our understanding of determinants of vari-
ation in a given anatomical complex, such analyses intro-
duce assumptions that can considerably oversimplify phys-
iological characterisation of the system of interest, espe-
cially when variation in internal skeletal anatomy is disre-
garded. In addition, the dynamic nature of bonemetabolic
activity is neglected, and instead stress fields are charac-
terised and compared under the assumption that the form
of these stress fields permits inference of behavioural adap-
tation. Arguably, the eventual utility of computer-based
functional models of fossil specimens would profit from
significantly greater efforts directed first at laboratory- and
field-based research on how individual components of an
integrated and hierarchically organised biological system
contribute to phenotypic variation in performance (Vin-
yard, Yamashita & Tan, 2008; Yamashita, Vinyard & Tan,
2009). Applications of such models to ontogenetic pro-
cesses of skeletal modelling and remodelling show great
promise (Carter & Beaupré, 2001).
A common conclusion drawn from our findings is

that morphology-based analyses of behaviour based on a

single anatomical region or type of data, particularly gross
dimensions (a common approach in palaeontology), are
the most likely to be misleading. This highlights the impor-
tance of a hierarchical and multifactorial perspective for
addressing the functional characterisation of tissue com-
posites. Such a framework will aid in understanding how
individual components of an integrated biological sys-
tem contribute to phenotypic variation in performance
(e.g. Ravosa et al., 2007a; Kohn et al., 2009; Wallace et al.,
2009, 2010). For instance, in vivo and ex vivo analyses of
tree-gouging behaviour, jaw form and symphyseal perfor-
mance in gouging versus non-gouging NewWorld monkeys
indicate a number of TMJ, anterior dental and jaw-muscle
features unique to gouging marmosets. However, tests of
symphyseal bending and shear strength indicate that this
region is under-constructed for resisting loads vis-à-vis
non-gouging sister taxa, which implies the presence of
functional trade-offs (Hogg et al., 2011; Vinyard et al., 2011;
see also Hylander & Johnson, 1997, regarding in vivo strain
and the functional morphology of the zygomatic arch).
Likewise, the variable contribution of epiphyseal cartilage
to archosaur long bones underscores inherent difficulties
in reconstructing joint congruence, posture and range of
motion in the locomotor apparatus of dinosaurs (Holliday
et al., 2010). Although researchers attempt to derive the
most parsimonious explanation for biological phenomena,
usually via a limited number of variables, the inclusion of
additional evidence has the potential to result in greater
accuracy in palaeobiological scenarios regarding feeding
behaviour and dietary adaptations in the vertebrate fossil
record.

VIII. CONCLUSIONS

(1) Although previously unappreciated, the magnitude
of the within-species plasticity response to long-term
dietary manipulation can vary to the same extent as wit-
nessed between sister taxa that differ in feeding behaviour.
Our work indicates that the role of plasticity is potentially
on a par with natural selection in affecting patterns of phe-
notypic covariation and variation within and across species.
Taken a step further, determination of species status based
on masticatory features subject to functional variation can
be problematic when applied to fossil remains.
(2) Hard and soft tissues respond differently to mechan-

ical stimuli and thus impart different functional signals.
This likely reflects the integrated and compensatory nature
of such biological systems. As studies of fossil joints and
muscle mechanics directly consider only the bony compo-
nent, it is important to detail how phenotypic variation in
that component tracks functional variation in the entire
system.
(3) The adaptive signal to a loading pattern can vary

hierarchically within and across bony elements. As skele-
tal parameters and sites respond differently to altered
mechanical stimuli, they will convey different signals for
behavioural reconstructions. Our analyses also note the
presence of regional variation in intrinsic factors such as
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biomineralisation. If solely skeletal in nature, comparative
analyses can only track one aspect of an organism’s func-
tional morphology. Thus, palaeobiological reconstructions
relying on a limited number of parameters have a greater
likelihood of being inaccurate. It is imperative that one
determines the strength of a functional signal obtained
with fossil remains, the extent to which it varies within
and among skeletal sites, and how specific bony parameters
relate to the performance of a given structure or system.
(4) Musculoskeletal form, function and behaviour can

change ontogenetically, even in adults. For these reasons,
loading history inferred from adult form, including signif-
icant osteogenic events, can be obscured by subsequent
behavioural shifts. As the ability to respond plastically
varies across taxa, ages and anatomical sites (Scott et al.,
2014b), morphological variation among adult specimens
may reflect an amalgam of adult and juvenile influences on
a system of interest. This can hinder the ability to recover
information about skeletal function from fossil remains.
Indeed, studies of immature organisms can recover differ-
ent – and sometimes less ecologically informative – signals
as compared to adults (Holmes & Ruff, 2011; Menegaz,
2013).
(5) Intraspecific phenotypic variation related to

functional differentiation has the potential to be mis-
interpreted as non-homologous and macroevolutionary in
nature. Therefore, evaluating the functional and ecolog-
ical determinants of character-state variation is central to
considerations of homology in phylogeny reconstructions
that incorporate fossil remains.
(6) We advocate a neontological solution to the unique

challenges posed by fossils, one informed by the palaeon-
tological record so as to identify the biological system(s) of
greatest relevance to understanding evolutionary transfor-
mation in a clade. Such an approach should be inherently
integrative, including hierarchical andmultifactorial analy-
ses of determinants ofmorphological variation in hard- and
soft-tissue components, as well as myriad aspects of mus-
culoskeletal architecture and functional organisation. To
the extent possible, these investigations should be longitu-
dinal, exploring complex in vivo patterns of developmental
and functional covariation (e.g. Dodson, 1975a,b; Bernays,
1986; Erickson, Lappin & Vliet, 2003; Scott et al., 2014a).
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