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Abstract

After the initial mechanical insult of spinal cord injury (SCI), secondary mediators propagate a 

massive loss of oligodendrocytes. We previously showed that following SCI both the total 

phospholipases activity and cytosolic PLA2-IVα protein expression increased. However, the 

expression of secreted isoforms of PLA2 (sPLA2) and their possible roles in oligodendrocyte death 

following SCI remains unclear. Here we report that mRNAs extracted 15 min, 4 hr, 1 day, or 1 

month after cervical SCI show marked upregulation of sPLA2-IIA and IIE at 4 hr after injury. In 

contrast, SCI induced down regulation of sPLA2-X, and no change in sPLA2-IB, IIC, V, and XIIA 

expression. At the lesion site, sPLA2-IIA and IIE expression were localized to oligodendrocytes. 

Recombinant human sPLA2-IIA (0.01, 0.1, or 2 μM) induced a dose-dependent cytotoxicity in 

differentiated adult oligodendrocyte precursor cells but not primary astrocytes or Schwann cells in 

vitro. Most importantly, pretreatment with S3319, a sPLA2-IIA inhibitor, before a 30 min H2O2 

injury (1 or 10 mM) significantly reduced oligodendrocyte cell death at 48 hr. Similarly, 

pretreatment with S3319 before injury with IL-1β and TNFα prevented cell death and loss of 

oligodendrocyte processes at 72 hr. Collectively, these findings suggest that sPLA2-IIA and IIE 

are increased following SCI, that increased sPLA2-IIA can be cytotoxic to oligodendrocytes, and 

that in vitro blockade of sPLA2 can create sparing of oligodendrocytes in two distinct injury 

models. Therefore sPLA2-IIA may be an important mediator of oligodendrocyte death and a novel 

target for therapeutic intervention following SCI.
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INTRODUCTION

Spinal cord injury (SCI) results from an initial mechanical damage to the cord tissue 

followed by a cascade of “secondary injury”, leading to widespread neuronal and glial cell 

death as well as demyelination (Cao et al. 2005b; McTigue et al. 2001; Totoiu and Keirstead 

2005). Notably, oligodendrocytes are particularly sensitive to apoptosis during secondary 

injury, which results in a loss of myelin around surviving axons peripheral to the lesion 

epicenter (Blight 1985; Crowe et al. 1997; Totoiu and Keirstead 2005). By seven days post 

injury, 93% of the oligodendrocytes at the impact site are lost (McTigue et al., 2001). 

Therefore, therapeutic manipulation of oligodendrocyte survival after neurotrauma 

represents a viable approach to restore functional conduction of intact but demyelinated 

axons.

To date, many mediators of secondary injury have been suggested such as free radicals (Liu 

et al. 2004a; Park et al. 2004) and cytokines including TNFα an IL-1β (Demjen et al. 2004; 

Hostettler and Carlson 2002; Wang et al. 2006). Previously we proposed that phospholipases 

A2 (PLA2) might function as both a secondary mediator of SCI as well as a convergence 

molecule that mediates the cytotoxicity of other injurious agents (Liu et al. 2006). Since the 

CNS is predominantly composed of lipids and 44% exclusively phospholipids, it could be 

particularly susceptible to phospholipases A2 (Morell 1984). PLA2 are a group of enzymes 

that hydrolyze the ester bond at the sn-2 position of membrane phospholipids producing a 

free fatty acid, such as arachidonic acid (AA), and a lyso-phospholipid, such as lysolechithin 

(a.k.a lysophosphatidyl choline, L-PC).

Our previous work demonstrated that both total PLA2 activity and cPLA2α (PLA2-IVα) 

protein expression increased following SCI (Liu et al. 2006). However, total PLA2 activity 

peaked at 4 hr while cPLA2α (PLA2-IVα) protein did not significantly increase until 7 days 

post injury. This paradox suggests that another isoform of PLA2 might be responsible for the 

increase in total phospholipases activity after SCI. The PLA2 isoforms are divided into 

either secreted (sPLA2), Ca2+-dependent cytosolic (cPLA2; group IV), or Ca2+-independent 

cytosolic (iPLA2; group VI) (Six and Dennis 2000). To date, eleven mammalian sPLA2s, 

i.e., groups IB, IIA, IIC, IID, IIE, IIF, III, V, X, XII, and XIII, have been identified. 

Normally, many of the sPLA2s are present in the mammalian brain (Kolko et al. 2006; 

Molloy et al. 1998) and spinal cord at low levels (Svensson et al. 2005). More clinically 

relevant, sPLA2 has recently immerged as a mediating factor in cerebral ischemia and 

neuronal apoptosis (Adibhatla and Hatcher 2007; Estevez and Phillis 1997; Lin et al. 2004; 

Yagami et al. 2002). However, any role that sPLA2 might play in oligodendrocyte death 

following neurotrauma is unknown.

One rational for investigating sPLA2’s role in SCI-induced oligodendrocyte death is that 

many mediators of secondary SCI are both activators of sPLA2 and cytotoxic to 

oligodendrocytes. For example, hydrogen peroxide injury triggers phospholipid metabolism 

and AA release in various cell types (Cane et al. 1998; Meyer et al. 1996; Tournier et al. 

1997) and H2O2 induced AA release is mediated, at least in part, by sPLA2-IIA (Han et al. 

2003). Likewise, IL-1β and TNFα trigger AA release from cultured cells via a sPLA2-IIA 

and cPLA2-IVα dependent mechanism (Kuwata et al. 2005; Mounier et al. 2004). Finally 
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H2O2 (Mronga et al. 2004; Richter-Landsberg and Vollgraf 1998), IL-1β (Takahashi et al. 

2003), TNFα (Lee et al. 2000; Selmaj and Raine 1988), and AA (Wang et al. 2004) have all 

been shown to damage cultured oligodendrocytes.

Until now, the expression of sPLA2 isoforms after SCI and their possible role in 

oligodendrocyte death has not been directly studied. Here we provide cellular and molecular 

evidence that sPLA2-IIA and IIE are the two major sPLA2 isoforms that are induced in the 

hours following SCI and that both isoforms are present within oligodendrocytes. Moreover, 

exogenous administration of sPLA2-IIA in vitro can induce oligodendrocyte cell death but 

has no affect on astrocytes or Schwann cells. Finally, blockade of sPLA2 can partially 

ameliorate cultured oligodendrocyte cell death induced by either H2O2 or IL-1β and TNFα 

injury. Thus, sPLA2-IIA may serve as a mediator of oligodendrocyte death and a target for 

therapeutic intervention against injury-induced oligodendrocyte cell death following SCI.

MATERIALS AND METHODS

Animals

A total of 82 female Sprague–Dawley rats (Harlan, Indianapolis, IN), 200 to 220 g, were 

used (Table 1). All surgeries and animal care were performed in accordance with the Guide 

for the Care and Use of Laboratory Animals and the Guidelines of the University of 

Louisville Institutional Animal Care and Use Committee.

Spinal Cord Injury

Rats were anesthetized with sodium pentobarbital (50 mg/kg), given preoperative 

gentamicin (5 mg/kg, s.c.), 5 ml of normal saline, and placed on a homeothermic blanket. 

Skin was incised and the underlying muscles were dissected to expose the C2-C7 vertebrae. 

The exposed vertebral column was stabilized using bilateral transverse supports placed 

underneath the spinal column which were developed at the University of Louisville (Cao et 

al. 2005b; Liu et al. 2007; Zhang et al. 2004). A dorsal laminectomy was performed at the 

C4-5 level to expose the spinal cord. The body was immobilized with a horizontal brace 

gently secured over the middle of the back to prevent it from moving upward during the 

SCI. Rats received either a 200 kDyn injury (measured force = 210±7 kDyn, Cv = 3.28%) 

inflicted via an Infinite Horizons (IH) impactor with an enlarged head (3.4 mm vs. 2.5 mm), 

or sham laminectomy (Onifer et al. 2007; Scheff et al. 2003). Displacements were measured 

to insure lesion uniformity (1086±93 μm; Cv = 8.56%). Muscle and skin incisions were 

closed with silk sutures and wound clips, respectively. Histological quantification of the 

injury is provided in Sup.1 using methods previously described (Titsworth et al. 2007).

Special post-operative care was given as previously described (Onifer et al. 2007). Briefly, 

injured rats were universally quadriplegic but showed no signs of respiratory distress. Each 

rat was returned to its cage with clean bedding. Half of the cage was placed on a water 

circulating heating pad for 24 hr. Water bottles with straight spouts were used and standard 

rat chow, rat chow softened with water, and ENSURE® were placed on the bedding when 

necessary. The state of hydration and gastrointestinal function were monitored daily. 

Bladders were manually voided twice daily until bladder function returned. Breathing was 
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monitored every 10 min for the first hr, every hr for the first 12 hrs, and twice daily 

thereafter. Antibiotics were injected at 2 day intervals for 6 days. The wound clips were 

removed 7–10 days post surgery.

RNA Extraction and RT-PCR

A 1.5 cm long spinal cord segment containing the injury epicenter or equivalent (shams) was 

removed 4 hr post injury, frozen in liquid nitrogen, and later homogenized in STAT-60 

solution (TelTest, Friendswood, TX) according to the manufacturer’s instructions. Purify 

RNA was quantified by spectrophotometric analysis at 260 nm. Primers used for end point 

RT-PCR are listed in Table 2.

Primers for sPLA2-IID, IIF, and XIIA were designed using Primer Express 2.0 (Applied 

Biosystems, Foster City, CA). Each primer set was validitated in mRNA extracted from the 

liver, lung, kidney, or spleen. Total RNA (0.5 μg) was used in a 20 μl mixture containing 4 

μl of 5× reaction buffer, 0.2 mM dNTP, 1 μM of up and down stream primer, 1 mM MgSO4, 

0.1 u/μl AMV Reverse Transcriptase, and 0.1 u/μl Tfl DNA Polymerase. The reverse 

transcription was conducted with a 45 min first strand cDNA synthesis (45 °C), 2 min 

denaturation (94 °C), followed by 35 cycles of synthesis and amplification consisting of 30 

seconds (94 °C), 1 minute (60 °C), and 2 minutes (72 °C) (Access RT-PCR system, 

Promega, Madison, WI). Amplified samples were separated on a 1% agarose gel containing 

ethidium bromide in 1× TBE buffer. After electrophoresis, gels were imaged using an Image 

Station 4000R (Kodak, Rochester, NY).

Real-Time Quantitative PCR

Total RNA was extracted 4 hr after sham operation or 15 min, 1 hr, 4 hr, 1 day, or 1 week 

after SCI. Primers and a taqman probe for sPLA2-IIA were designed using Primer Express 

2.0 and are as follows: IIA sense 5′-CCAAATCTCCTGCTCTACAAACC-3′, IIA antisense 

5′-CTTTTCTTGTTCCGGGCAAAAC-3′, and IIA probe 5′-

CGGCAGCTTTATCGCACTGGCACA-3′. MX3000P (Stratagene, La Jolla, CA) calculated 

the threshold cycle number (Ct) as ten-fold the standard deviation of the baseline. Primer 

pairs were chosen to minimize primer dimerization and secondary structure; and to generate 

an amplicon of 96 bp. To correct for volume differences and cap transparency the passive 

reference dye 5(6)-carboxy-X-rhodamine-C5-maleimide (Stratagene) was used. After a 3 

min denaturation step, the samples were subjected to 40 cycles of 30 sec annealing and 30 

sec extension at 72 °C. Relative expression of the PCR products was determined by using 

the ΔΔCt method (Gibson et al. 1996). Each sample was run in duplicate, and the mean Ct 

was used in the ΔΔCt equation. After PCR, reaction products were electrophoresed as before 

to ensure that the PCR product was the desired amplicon size.

Western Blotting

Western blotting followed a previously described procedure (Liu et al. 2007). In brief, whole 

cell lysis proteins were extracted from a 1.5 cm long spinal cord segment containing the 

injury epicenter 4 hr after sham laminectomy or 15 min, 4 hr, 1 day or 1 week after SCI. 

Additionally, subcellular protein isolation was performed on either sham animals or 4 hr 

after injury using the Focus SubCell kit (G-Biosciences, St. Louis, MO) according to 
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manufacturer’s protocol. In brief, 100 mg of fresh tissue was homogenized and centrifuge at 

700 × g for 5 minutes to pelletise nuclei. Supernatant was removed and centrifuged at 

12,000 × g for 10 min to pelletise mitochondria. Supernatant was again removed and 

centrifuged at 14,000 × g for 60min to separate the enriched cytosolic membrane fraction 

from the soluble cytosol fraction. The protein content of all samples was assessed by the 

Bradford method (Bio-Rad Protein Assay, Hercules, CA) and normalized prior to adding 

sample buffer.

Similar amounts of protein (40 μg) was electrophoresed on a 12% SDS-polyacrylamide gel 

and immunoblotted with primary rabbit monoclonal anti-sPLA2-I antibody (1:100; “Anti-

PLA2, low molecular weight” Millipore, Billerica, MA), polyclonal anti–sPLA2-IIA 

antibody (1:1000; Cayman Chemical, Ann Arbor, MI), polyclonal anti-sPLA2-IIE antibody 

(1:1000; Biovendor, Candler, NC), or goat polyclonal anti-sPLA2-X antibody (1:200; Santa 

Cruz Biotechnology, Santa Cruz, CA) and a secondary horseradish peroxidase–conjugated 

donkey anti–rabbit or anti-goat IgG antibody (1:10,000; Amersham Pharmacia Biotech, 

Piscataway, NJ). Whole cell lysis membranes were stripped and reblotted with anti-β-tubulin 

(mouse monoclonal antibody, 1:1000, Sigma, St. Louis, MO). Subcellular fraction 

membranes were stripped and reblotted with anti-β-tubulin, caveolin (rabbit polyclonal 

antibody 1:100, Santa Cruz), or histone H1 (rabbit polyclonal antibody, 1:200, Santa Cruz) 

for the cytosol, membrane, and nuclear fractions respectively. The primary antibody was 

omitted for negative controls. Splenic protein served as positive control for sPLA2-IIA. 

Densitometry allowed for relative comparison of signal strength by Image J software.

Immunohistochemistry

Spinal cords were removed 4 hrs after sham operation or 15 min, 1 hr, or 4 hr after SCI. 

After perfusion with PBS and 4% paraformaldehyde, a 2 cm-long spinal cord segment 

containing the injury epicenter of each rat was removed, cryoprotected in 30% sucrose 

buffer, sectioned transversely at 40 μm, and mounted on charged slides in eight identical 

sets. Three sections were taken from each of five sample sites within the tissue, every 0.5cm, 

and were incubated with either anti-sPLA2-IB (1:200), anti-sPLA2-IIA (1:300), anti-sPLA2-

IIE (1:200), or anti-sPLA2-X antibody (1:200) overnight at 4°C and subsequently with 

secondary biotinylated IgG antibody (1:400; Vector Laboratories, Burlingame, CA) for 1 hr 

at room temperature. The reaction product was shown by incubation with 0.02% 

diaminobenzidine tetrahydrochloride (DAB) and 0.003% H2O2 in 0.05M Tris-HCl. 

Negative controls of pooled normal antibodies (Vector Laboratories) were used 

simultaneously.

Using standard light and aperture settings, images were captured at 2 × and staining 

intensities were determined using Image J software (NIH) by first inverting the image and 

then measuring the mean intensity. The intensity of the negative control animal was 

subtracted from the recorded intensities to account for unintentional secondary antibody 

binding and natural tissue coloration.
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Immunofluorescence Labeling

Immunofluorescence double labeling at the injury epicenter was performed on different 

tissue sets using previously described methods (Liu et al. 2004b). A mixture of anti-sPLA2-

IB (1:100), anti-sPLA2-IIA (1:100), anti-sPLA2-IIE (1:50), or anti-sPLA2-X antibody 

(1:50), and mouse anti-CC1 (1;100; Chemicon), anti–glial fibrillary acidic protein (1:300; 

Sigma), and anti-O4 (1:1; hybridoma), anti-NeuN (1:100; Chemicon, Temecula, CA), and 

anti-SMI-31 (1:2,000; Sigma) antibodies were used to examine neurons, axons, 

oligodendrocytes, or astrocytes in vivo or mature oligodendrocytes in vitro respectively. The 

following day, sections were incubated with fluorescein-conjugated goat anti–mouse (1:100) 

and Texas red-conjugated goat anti–rabbit antibodies (1:100; Jackson Immunoresearch; 

West Grove, PA). Controls were similar to immunohistochemistry. Images were taken using 

a Nikon Eclipse 90i confocal microscopy (Nikon Instruments; Melville, NY).

sPLA2-IIA signal within oligodendrocytes was quantified using StereoInvestigator software 

(Microbrightfield,Williston, VT) under 100× oil immersion. Under standard exposure times 

contour tracing was begun around the cells of interest while viewed through an FITC filter. 

After switching to Texas Red filter, luminescence data was acquired for the cell of interest 

by closing the contour. Twenty oligodendrocytes were chosen from each of three different 

tissue sections, by systematic random sampling from the ventral funiculus of the lesion 

epicenter. The intensities of these cells were averaged to create mean florescence for 

oligodendrocytes in each animal (n=5, per group). Background intensity was gathered in a 

similar manner from primary antibody omission control section and subtracted from the 

mean intensity for that given animal. This was done to control for non-specific binding of 

secondary antibody following contusion.

Cell Culture

Adult oligodendrocyte precursor cells (aOPCs) were obtained from adult rat spinal cords 

using protocols modified from (Cao et al. 2002). Minced spinal cords were incubated in 

HBSS containing 0.1% papain, 0.1% neutral protease, and 0.01% DNase. Following the 

addition of DMEM containing 10% fetal bovine serum (FBS) tissues were dissociated and 

incubated on an anti-RAN-2 antibody (ATCC, Rockville, MA) coated dish to deplete type-1 

astrocytes and meningeal cells and then an anti-O4 antibody-coated dish to select for adult 

OPCs. The purified aOPCs were cultured in DMEM/F12 medium containing N2 and B27 

supplements, FGF2 (20 ng/ml), PDGF-aa (10 ng/ml), Insulin (5 μg/ml) and BSA (0.1%). 

Only those cell preparations in which >95% A2B5+ cells were used.

The cells were seeded onto either PDL/laminin coated culture dishes or chamber slides. Two 

days after seeding or once cells reached 70-80% confluence, the FGF-2 and PDGF-aa were 

removed, and CNTF (0.001 μg/ml) was added to the OPC medium to induce differentiation. 

aOPCs were induced to differentiate in vitro for 4 days prior to use.

The procedures for Schwann cell preparation and purification have been extensively used in 

our lab (Xu et al. 1995). Schwann cells were purified from sciatic nerve explants with 10% 

FBS in DMEM. Explants were passaged 5 times and treated with 1.25U/ml dispase 

(Boehringer Mannheim Biochemicals, Indapapolis, IN), 0.05% collagenase (Worthington 
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Biochemical Corp., Freehold, NJ), and 15% FBS in DMEM. Explants were dissociated, 

plated onto poly-L-lysine coated dishes, and treated with 20 μg/ml pituitary extract (BTI, 

Stoughton, MA) and 2 mM forskolin (Sigma). When SC’s reached confluence they were 

treated with Ca2+ and Mg2+ free HBSS and briefly treated with 0.05% trypsin (Gibco) and 

0.02% EDTA (Gibso) for passage and were plated in a 96-well plate at a density of 4×104 

cell per well. The purity of the SCs was ascertained by s-100 staining.

Astrocytes were isolated from the cerebral cortices of postnatal 2 to 3 day old SD rat pups. 

Minced cortices were incubated in DMEM with 0.25% (w/v) trypsin-EDTA at 37 °C for 7 

min. The suspension was filtered and centrifuged at 1000 rpm for 5 min. The cell pellet was 

re-suspended in DMEM plus 10% (v/v) FBS, 100 IU/mL penicillin, 100 μg/mL 

streptomycin, and transferred to T75 culture flasks. The medium was changed twice a week 

until cells reached approximately 80–90% confluence, flasks were shaken at 170 rpm for 16 

h at 37 °C to remove microglia. Then, cells were removed from the flasks by 0.05% (w/v) 

trypsin-EDTA treatment, and seeded at 1×104 cells per well in 96 well culture dishes. 

Astrocytes were identified by GFAP staining with purity > 95% in all cultures.

Schwann cell, astrocytes, and mature oligodendrocyte cultures were injured with 

recombinant human sPLA2-IIA (Biovendor, Candler, NC) and assayed at 48 hr. Cytotoxicity 

was measured by measuring lactate dehydrogenase (LDH) in the medium (CytoTox96 

assay; Promega, Madison, WI). Data were normalized to the amount of LDH released from 

similarly-treated cells lysed with 9% Triton X-100 and are corrected for background from 

wells lacking cells. Cell viability was assessed by reduction of (3-(4,5-Dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide by the mitochondria of surviving cells (MTT, CellTiter 

96 Cell Proliferation Assay; Promega). Control wells were run in each plate to ensure that 

measurements fell within test sensitivity.

It has been previously shown that the commercially available, small (487.63 MW), 

lipophilic molecule 5-(4-Benzyloxyphenyl)-4S-(7-phenylheptanoylamino) pentanoic acid 

(henceforth referred to as S3319; Sigma) inhibits sPLA2-IIA in vitro using a standard 

enzyme assay (IC50 = 0.029 μm, 0.000019 mole fraction; compound 2b in (Hansford et al. 

2003). Therefore, a second set of cultures were pretreated with vehicle, or 0.25, 1.25, 6.25 

μM of S3319, a sPLA2-IIA inhibitor diluted in 1% DMSO (Sigma). Then cells were 

challenged with vehicle, 1mM, 5 mM, or 10mM H2O2, with or without sPLA2-IIA inhibitor 

for 30min, washed once with fresh medium, and the vehicle or S3319 was replaced. Again 

cytotoxicity was evaluated by measuring LDH released.

A third set of cultures were pretreated as above with S3319 but were challenged with the 

cytokines IL-1β (PeproTech Inc., Rocky Hill, NJ) and TNFα (PeproTech) at low (1 and 2 ng 

respectively) or high dose (5 and 10 ng). Again cytotoxicity was evaluated by LDH released. 

All cell culture experiments consisted of 4-6 separate wells and were repeated in triplicate 

on separate days. The results presented are the averaged of the three separate experiments. 

The area of process extensions was calculated using three separate images take from the 

center of each well. Images were converted to binary by setting a common constant 

threshold and then the area was determined by Image J software.
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Statistical Analysis

One-way analysis of variance (ANOVA) with post hoc Tukey HSD was used to determine 

statistical significance of three or more groups. A multiple analysis of variance (MANOVA) 

with post hoc Tukey HSD was used to determine statistical significance of three or more 

groups when repeated measures were taken from each animal overtime or space. Two 

extreme outliers were excluded from the Q-PCR data using the Grubb’s extreme studentized 

deviate method.

RESULTS

sPLA2 mRNAs are differentially expressed following SCI

End point RT-PCR was used to scan for the expression of all the sequenced mammalian 

sPLA2 isoforms in sham and contused animals 4 hr following surgery (n = 3). Of the nine 

mammalian sPLA2 isoforms, seven were detected in naïve and contused animals (sPLA2-IB, 

IIA, IIC, IIE, V, X, and XIIA; Fig. 1A). Among all sPLA2 isoforms examined, sPLA2-IIA 

showed the most dramatic change after SCI (Fig. 1A). Similarly, sPLA2-IIE showed an 

increase in the injured cord. In contrast, PLA2-X showed a decrease in signal intensity (Fig. 

1A). sPLA2-IB, IIC, V and XIIA were present in both the sham and contused cord in similar 

amounts.

Next, real-time Q-PCR was used to quantify the increase seen after RT-PCR and determine 

the time course of sPLA2-IIA expression following SCI. sPLA2-IIA was chosen because of 

its significant association with inflammation (Kolko et al. 2004) and is quantified as a fold 

increase from naïve animals (Fig. 1B). In agreement with the RT-PCR results, sPLA2-IIA 

mRNA expression had a significant 4-fold increase at 1hr following contusion and remained 

elevated at 4 hr (ANOVA, F6, 30 = 4.313, p = 0.0012).

sPLA2 proteins are differentially expressed following SCI

To confirm that mRNA changes corresponded to changes in protein production, spinal cord 

homogenates were immunoblotted with antibodies to sPLA2-IB, IIA, IIE, or X. While a 

general increase in the mean expression of sPLA2-IB was seen, this was not statistically 

significant further confirming the PCR results (Fig. 2A & B; ANOVA, F4,15 = 0.8335, p = 

0.52). In contrast, sPLA2-IIA showed a 3-fold increase in protein expression at 4 hr 

compared to sham controls (Fig. 2A & C, ANOVA, F4,15 = 4.860, p < 0.01). Significantly 

increased sPLA2-IIA expression was also found at both 4 hr and 1day post injury (Fig. 2C). 

An equal amount of splenic protein was run as a positive control for sPLA2-IIA and showed 

a band about 3.6 times greater than the strongest spinal cord band, confirming the lower 

abundance in the spinal cord as compared to the spleen (Fig. 2A, lane 6 of IIA blot). Not 

surprisingly, sPLA2-IIE showed similar results to IIA with a significant 2.5 fold-increase 

that peaked at 4 hr after SCI and returned to the baseline by 1 day (Fig. 2A & D, ANOVA, 

F4,15 = 5.025, p < 0.01). Finally, while sPLA2-X mRNA decreased following SCI there was 

little change in the protein levels compared to the sham controls (Fig. 2A & E, ANOVA, 

F4,15 = 0.2554, p = 0.90). Interestingly, the peak expression of the two sPLA2 isoforms 

coincides well with the peak activation of total PLA2, as we demonstrated previously (Liu et 
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al. 2006). Thus, sPLA2-IIA and IIE may represent major contributors to phospholipase 

activity following SCI.

Spatiotemporal distribution of sPLA2 isozymes following SCI

Since sPLA2 mRNA and proteins were differentially expressed post SCI, we next 

determined their temporal and spatial distribution using immunohistochemistry. In this 

study, sPLA2-IB, IIA, IIE, and X were examined at 5 mm intervals from the injury 

epicenter. Initial examination of whole spinal cord sections reveals significantly more 

immunoreactivity of IIA (Fig. 3B & F) and IIE (Fig. 3C & G) in the contused animals with 

little change in either IB or X isoforms (Fig. 3A, E, D & H). Quantification of staining 

intensity using Image J showed no change in sPLA2-IB signaling either among different 

time points post SCI or distance from the epicenter (MANOVA F3, 263.806 = 4.367, p > 0.05, 

Fig. 3I). However, a significant increase in sPLA2-IIA immunoreactivity was observed at 

the injury epicenter in all SCI groups over sham controls (MANOVA F18.3, 15.575 = 46.437, 

p < 0.001, Fig. 3J).

We chose to focus on white matter because previous results indicate that bilateral injections 

of sPLA2-III (0.1 μg) into the ventral grey matter/white matter interface of rat spinal cords 

resulted in a massive destruction of white matter with a relative sparing of grey matter at 4 

weeks (Sup. 2)(Liu et al. 2006). Within the white matter sPLA2-IB showed strong 

expression both before and after injury (Fig. 3K & O). In contrast, sPLA2-IIA and IIE each 

showed a weak baseline staining in the white matter of sham controls (Fig. 3L & M 

respectively). However, following SCI, sPLA2-IIA and IIE immunoreactivity increased 

markedly (Fig. 3P & Q). Finally, sPLA2-X showed little immunoreactivity either in sham or 

SCI animals (Fig. 3N & R). Based solely on morphology it appears that within the white 

matter, a strong increase in sPLA2-IIA and IIE staining in glial cells and axons, particularly 

swollen axons, was seen (Fig. 3P, arrows). Subsequently these observations were confirmed 

with immunofluorescent double labeling of axons (SMI-31+), astrocytes (GFAP+), and 

neurons (NeuN+) and are provided in the Supplemental Figures 3-5. It should be noted that 

IIA and IIE are structurally and functionally similar and are both located at the same genetic 

locus (Kudo and Murakami 2002).

Cellular localization of sPLA2 isozymes following SCI

To better characterize what cell types express sPLA2 isoforms, immunofluorescent double 

labeling of sPLA2–IB, IIA, IIE, or X and cell specific markers was performed. As was 

suggested by the immunohistochemistry, we found that oligodendrocytes (CC1/APC; Fig. 4) 

co-localized with sPLA2-IB (Fig. 4B & C), sPLA2-IIA (Fig. 4E & F), and sPLA2-IIE (Fig. 

4H & I). However, sPLA2-X did not appear to co-localize with oligodendrocytes (Fig. 4J-L). 

The sPLA2-X staining appeared to reside only in the extracellular space. This morphology is 

not surprising since sPLA2-X has the greatest secreted fraction and the lowest cytosolic 

fraction of any sPLA2 (Murakami et al. 2002). Additionally, previous work with stably 

transfected cell lines yielded similar sPLA2-X immunofluorescence (Kudo and Murakami 

2002).
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Within the white matter, astrocytes (GFAP; Sup. 3) co-localized with sPLA2-IB (Sup. 3B & 

C) and weakly with sPLA2-IIA (Sup. 3E & F) but showed no co-localization with sPLA2-

IIE (Sup. 3H & I) or with sPLA2-X (Sup. 3J-L). Neurons within the ventral grey matter 

(NeuN; Sup. 4), showed similar staining to oligodendrocytes with the presence of sPLA2-IB 

(Sup. 4B & C), sPLA2-IIA (Sup. 4E & F), and sPLA2-IIE (Sup. 4H & I), but not sPLA2-X 

(Sup. 4K & L). Almost all axons (SMI-31; Sup. 5) within the ventral white matter showed 

co-localization with sPLA2-IB (Sup. 5B & C) and sPLA2-IIA (Sup. 5E & F). sPLA2-IIE 

staining was weak and confined mainly in axons that appeared to be swollen (Sup. 5H & I, 

arrows) and no axons appeared to co-localize with sPLA2-X (Sup. 5K & L).

To further confirm that sPLA2-IIA was not merely present in oligodendrocytes but increases 

following contusion, we compared sPLA2-IIA labeling intensities within oligodendrocytes 

at the injury epicenter 4 hr after either sham surgery (Fig. 5A-C) or SCI (Fig. 5D-F). A 

significant increase in sPLA2-IIA expression was found within oligodendrocytes (t(5.947) = 

−3.517, p = 0.01, Fig. 5G). Increased expression of sPLA2s, particularly IIA, opens a new 

possibility that it may play a role in the death of oligodendrocytes following SCI.

sPLA2-IIA increases in membrane fraction following SCI

sPLA2-IIA could only increased phospholipid hydrolysis following SCI if it co-localized 

with its phospholipid substrate, which is most abundant in the membrane fraction of cells. 

Therefore subcellular fractions of sham and contused spinal cords were immunoblotted for 

sPLA2-IIA expression. Four hours following contusion, sPLA2-IIA increased about 4-fold 

within the membrane fraction of the cytosol (Fig. 5H). While the non-membrane fraction of 

the cytosol did show a strong band for sPLA2-IIA there was little increase following 

contusion. Additionally, the nuclear fraction showed no sPLA2-IIA expression. The purity 

of subcellular fractions was confirmed by separate blotting for caveolin, histone H1, and β-

tubulin (Fig. 5I). These results suggest that the increase in sPLA2-IIA protein expression 

observed in the whole cell lysates after SCI is within the membrane fraction which is rich in 

phospholipid substrates suggesting a functional role sPLA2-IIA on its phospholipid 

substrates.

sPLA2-IIA induces oligodendrocyte death in vitro

We next examined what effect increased sPLA2-IIA might have on oligodendrocytes 

directly. These studies focused on oligodendrocytes for two reasons. First, whereas sPLA2-

IIA induced neuronal apoptosis has already been shown (DeCoster 2003; Yagami et al. 

2002; Yagami et al. 2003), the role of sPLA2-IIA in oligodendrocyte cell death remains 

unexamined. Secondly, our previous observation indicates that sPLA2 is potentially more 

destructive to white matter than grey matter (Sup. 2).

To determine whether sPLA2-IIA can directly affect oligodendrocyte viability, recombinant 

human sPLA2-IIA was added to differentiated aOPC, astrocytes, and Schwann cells. In 

oligodendrocytes sPLA2-IIA triggered a dose-dependent increase in LDH corresponding to 

an increase of cell cytotoxicity from 16.0 ± 5.3 % in control wells to 34.3 ± 6.3 % in wells 

treated with 2 μM of sPLA2-IIA at 48 hr (F3,16 = 13.04, p < 0.001; Fig. 6E). Similarly, the 

MTT assay showed a corresponding change with control wells showing an optical density 
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(OD) of 0.040 ± 0.005 and the 2 μM sPLA2-IIA dose resulting in an OD of 0.027 ± 0.005 

(F3,16 = 13.04, p < 0.001; Fig. 6F). Phase contrast images of these wells confirmed 

oligodendrocyte damage with a decreased arbor in the 0.01 and 0.1 μM concentrations and a 

complete degradation of the cell soma and processes at the 2μM concentration (Fig. 6A-D).

To determine the relative specificity of sPLA2-IIA’s effect on oligodendrocytes, identical 

concentrations were added to primary astrocytes and Schwann cells cultures. Interestingly, 

no cell death was noted in either culture suggesting that sPLA2-IIA has little effect on 

astrocytes (another CNS glia) or Schwann cells (PNS glia). These findings might explain 

why sPLA2 injections into the spinal cord white matter result in oligodendrocyte death but 

showed strong gliosis and delayed remyelination of spared axons by Schwann cells 

(Titsworth et al. 2007). Since sPLA2-IIA administration can induce oligodendrocyte and 

neuron death in vitro, blocking sPLA2-IIA expression or activity may prevent such cell 

death following injury.

sPLA2 inhibition attenuates H2O2 induced oligodendrocyte death in vitro

To address what effects injury induced sPLA2-IIA expression might have on 

oligodendrocytes, an in vitro Hydrogen peroxide (H2O2) injury model was developed. When 

aOPC were challenged with a 30 min pulse of H2O2, there was a dose dependent increase in 

sPLA2-IIA expression over the vehicle control 48 hr after H2O2 insult (Fig. 7A). 

Immunoflorescence staining confirmed the presence of sPLA2-IIA in oligodendrocytes in 

naïve cultures (Fig. 7B-D) and following H2O2 treatment (Fig. 7E-J). Interestingly, sPLA2-

IIA staining in naïve oligodendrocytes was homogenously distributed (Fig. 7D insert) 

whereas in H2O2 treated cells sPLA2 aggregated into perinuclear puncta (Fig. 7G & J 

inserts). It should be noted that the cells showing sPLA2-IIA aggregation also show nuclear 

fragmentation stained by Hoechst 33342, a nuclear dye suggesting apoptosis (Fig. 7G&J 

inserts, blue).

Next, differentiated oligodendrocyte cultures were challenged with either 1 mM or 10 mM 

H2O2 for 30 min after the administration of various doses of S3319, a small molecule 

inhibitor designed to block the sPLA2-IIA enzymatic site. Forty-eight hours following H2O2 

injury, wells containing the sPLA2-IIA inhibitor S3319 showed reduced cytotoxicity in both 

H2O2 injury intensities (MANOVA F3,48 = 26.63, p < 0.0001; Fig. 8). In the 10 mM H2O2 

treated wells; cells treated with vehicle showed LDH levels suggestive of 46.3 ± 9% cell 

death as compared to 28.4 ± 3% cell death in the S3319 treated wells (p < 0.001). These 

results suggest that increased sPLA2-IIA enzymatic activity partially mediates H2O2 induced 

oligodendrocyte cell death.

sPLA2 mediates IL-1β and TNFα induced oligodendrocyte injury in vitro

To investigate whether the beneficial effects of sPLA2 blockade mediate more than H2O2 

induced oligodendrocyte injury, we developed a cytokine injury model for oligodendrocyte. 

IL-1β and TNFα were chosen because both are suggested mediators of secondary SCI 

(Demjen et al. 2004; Hostettler and Carlson 2002) and exogenous IL-1β and TNFα induces 

sPLA2-IIA dependent AA release in many cell lines (Kuwata et al. 1998; Kuwata et al. 

2005; Kuwata et al. 2000). Similarly, we found that treatment with IL-1β and TNFα created 
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a time dependent increase in sPLA2-IIA expression in cultured oligodendrocytes (Fig. 9A). 

When high doses of IL-1β and TNFα were added pretreatment with S3319 showed a 

decrease in cytotoxicity, as measured by LDH release after treatment (MANOVA F1,30 = 

16.85, p < 0.0001; Fig. 9H). More dramatic than the observed sparing was the 

morphological changes associated with this injury model. IL-1β and TNFα treatment results 

in a dramatic decrease in oligodendrocyte processes extending from the soma at 48 hr (Fig. 

9B-D). Interestingly, this process loss was similar to that observed following addition of 

0.01 and 0.1 μM of sPLA2-IIA to oligodendrocyte cultures (Fig. 6B & C). When cultures 

were pretreated with S3319, this loss of oligodendrocyte processes was almost fully 

prevented (Fig. 9E-G). Quantification of area covered by oligodendrocyte processes 

confirms this observation (MANOVA F1,30 = 9.27, p < 0.01, Fig. 9I).

DISCUSSION

sPLA2 expression following SCI

We previously showed that cPLA2-IVα (cPLA2α) protein expression increased following 

SCI and peaked at 7 days post injury. However, measurements of total PLA2 enzymatic 

activity in spinal cord homogenates peaked much earlier, at 4 hr (Liu et al. 2006). This led 

us to believe that some other PLA2 isozyme contributed to the increase in phospholipases 

activity observed following SCI. We found that of the seven sPLA2 isoforms expressing 

mRNA, two were up regulated (IIA and IIE). These results were further confirmed at the 

protein level with a peak expression at 4 hr which coincides with both apoptosis following 

SCI (Liu et al. 1997) and the time of peak phospholipase A2 activity following SCI (Liu et 

al. 2006).

The presence of sPLA2-IB, IIA, IIC, IIE, V, and X within the mammalian brain is well 

established (Kolko et al. 2004; Molloy et al. 1998; Suzuki et al. 2000). However, only 

sPLA2-IIA and V protein expression has been investigated in the spinal cord and no study 

has looked at the effect of neurotrauma on sPLA2 expression (Svensson et al. 2005). 

Interestingly, sPLA2-IB has been shown to increase following KA injection and 

electroconvulsive shock (Kolko et al. 2005); IB, V, and X increased after retinal damage 

(Kolko et al. 2004); and IIA increased following cerebral ischemia (Adibhatla and Hatcher 

2007; Lin et al. 2004; Yagami et al. 2002). In comparison, this study found that only the 

group II enzymes increased following neurotrauma. Consistent with this tight regulation, the 

promoter region of sPLA2-IIA gene contains TATA and CAAT boxes as well as several 

elements homologous with consensus sequences for binding of transcription factors such as 

AP-1, C/EBPs, CREB, NF-κB, STAT, and PPARγ (Touqui and Alaoui-El-Azher 2001). The 

differential regulation of sPLA2 groups suggests a possible injury and isoform specific 

induction mechanism and varying cellular functions for sPLA2 isoforms in 

neuropathogenesis.

This study also demonstrated an increase of sPLA2 within the membrane fraction of cells 

and a perinuclear compartmentalization of sPLA2-IIA following H2O2 injury. This is 

significant since sPLA2-IIA, while being a secreted molecule, actually displays extremely 

low enzymatic activity toward the phosphatidylcholine-rich external membrane of cells. 

sPLA2-IIA cannot bind to the zwitterionic interface, as a result it shows a marked preference 
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for anionic phospholipids located on the inner leaflet of the bi-lipid membrane (Bezzine et 

al. 2000; Murakami and Kudo 2001). This is supported by the fact that μM levels of 

exogenously added sPLA2-IIA was cytotoxic as opposed to nM levels of sPLA2-III 

(unpublished observation), which shows little preference for anionic phospholipids. Recent 

studies have confirmed that AA release by sPLA2-IIA transfected cells occurs within the 

Golgi compartment following synthesis but prior to its initial secretion to the extracellular 

fluid or binding to anionic heparan sulfate chains on the cell surface (Mounier et al. 2004). 

Therefore, we believe that our observations of increased mRNA levels and increased protein 

within the cytosolic membrane fraction, in conjunction with a perinuclear punctuate 

appearance of sPLA2-IIA following injury indirectly supports the prevailing theory of 

sPLA2-IIA synthesis and activation. However, further enzymatic studies will be needed for 

conclusive confirmation.

sPLA2-IIA’s effect on oligodendrocytes

We next showed that H2O2 or IL-1β and TNFα injuries induce sPLA2-IIA expression in 

cultured oligodendrocytes and that blockade of sPLA2 attenuates H2O2 or IL-1β and TNFα 

induced cell injury. ROS damage is a pervasive injury mechanism involved not only in SCI 

(Liu et al. 2004a; Liu et al. 1999; Park et al. 2004) but also Multiple Sclerosis (Lev et al. 

2006), Alzheimer Disease (Reddy 2006), and Huntington Disease (Rego and Oliveira 2003). 

It was previously shown that H2O2 (Richter-Landsberg and Vollgraf 1998) and AA (Wang 

et al. 2004) can trigger oligodendrocyte death and that H2O2 injury utilizes cPLA2α and 

sPLA2-IIA for AA release in non-CNS cell lines (Han et al. 2003). However, this was the 

first study to demonstrate that blockade of sPLA2-IIA could partially ameliorate the 

cytotoxic effects of H2O2 in oligodendrocytes.

Likewise, IL-1β and TNFα have been known to increase sPLA2-IIA expression and trigger 

AA release from cultured cell lines via sPLA2-IIA and cPLA2-IVα dependent mechanisms 

(Kuwata et al. 2005; Mounier et al. 2004). Additionally these cytokines have been shown to 

damage cultured oligodendrocytes (Lee et al. 2000; Selmaj and Raine 1988; Takahashi et al. 

2003). However, this was the first study to demonstrate that blockade of sPLA2-IIA could 

partially ameliorate the cytotoxicity and morphological damage created by IL-1β and TNFα 

in oligodendrocytes. It must be noted that although S3319 was developed as a specific 

inhibitor of sPLA2-IIA, its activity against other isozymes has not been fully assessed. This 

being said, sPLA2 induction in oligodendrocytes following ROS and cytokine injury could 

be a novel target for therapeutic intervention.

sPLA2-IIA exhibited cytotoxicity at concentrations around 1 μM in cultured 

oligodendrocytes. Does the concentration of endogenous sPLA2-IIA reach such a high level 

in vivo? By comparing the signal intensity of protein extracted from the injured spinal cord 

to purified recombinant human sPLA2-IIA protein we determined that SCI yields roughly 

5×10−3 μg of sPLA2-IIA protein per μg of SCI protein. In comparison we added 4×10−1 μg 

of recombinant human sPLA2-IIA per μg of oligodendrocyte protein in culture to induce 

cytotoxicity. In other words, approximately 80 times more sPLA2-IIA protein was used to 

induce cytotoxicity in vitro than in vivo. This calculation was made on the assumptions that 

the antibody has similar affinity for both rat and recombinant human sPLA2-IIA and that the 
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in vivo and in vitro protein extraction methods are comparable. Other authors have found 

that sPLA2-IIA activity induced apoptosis in cultured neurons but only at levels 300 times 

that found in ischemic brain tissue (Yagami et al. 2002). This discrepancy between in vivo 

and in vitro toxicities can be explained by the following reports. First, sPLA2-IIA generated 

from cytokine-stimulated astrocytes might reach to such a high concentration within a 

microenvironment at the cell surfaces via attachment to heparan sulfate proteoglycan 

(Koduri et al., 1998). Second, sPLA2-IIA might cause neuronal and oligodendrocyte cell 

death at lower concentrations in the presence of cofactors (Murakami et al., 1991; Fourcade 

et al., 1995). Third, the sensitivity of the cells to endogenously produced sPLA2-IIA is 

higher than exogenously added sPLA2-IIA due to its intracellular location (Murakami et al., 

1999). The latter seems likely given the preference of sPLA2-IIA for inner leaflet 

phospholipids (Porcellati 1983). It must be noted that the efficacy of S3319, a sPLA2 

inhibitor, in systems with cytokine and peroxide induction of sPLA2-IIA suggests that its 

blockade can crucially affect cytotoxicity despite high levels being need to directly induce 

cytotoxicity.

In this study we chose to focus on the direct cytotoxicity of sPLA2 in isolated 

oligodendrocytes. A second, equally compelling, yet unexplored hypothesis is that sPLA2 

could increase secondary SCI not merely by direct cytotoxicity but also by exacerbating the 

recruitment of neutrophils and macrophages to the injury site which has been previously 

reported (Popovich et al. 1997). Following sPLA2 hydrolysis, phospholipids generate a free 

fatty acid, such as arachidonic acid (AA), and a lysophospholipid such as lysophosphatidyl 

choline (LPC, a.k.a. lysolechithin). AA can later form epoxides via the cytochrome P450 

pathway, leukotrienes via the lipoxygenase pathway, or thromboxanes or prostaglandins via 

the cyclooxygenase pathway. Many of these products, such as prostaglandin E2 (PGE2), can 

subsequently act as potent chemoattractants that increase the endogenous immune response 

(Resnick et al. 2001; Tonai et al. 1999). Furthermore, LPC has been shown to act as a 

proinflammatory chemoattractant for macrophages (Lauber et al. 2003). Therefore, sPLA2-

IIA could directly induce tissue damage as we have shown here or increase inflammation 

following SCI and exacerbate secondary spinal cord injury, a hypothesis that is under 

current investigation.

One assumption made by this work is that SCI results in demyelination and that either 

protection of myelin or de novo production by spared oligodendrocytes could result in 

measurable functional gains. This assumption is based on several observations. First, 

traumatic SCI results in transient post-injury membrane phospholipid hydrolysis (Demediuk 

et al. 1989). Secondly, increased spared white matter correlated with increased functional 

recovery (Rosenberg et al. 1999; Wrathall et al. 1994). Third, transplantation of myelinating 

stem cells results in normal-appearing myelin, recovery of transcranial magnetic motor-

evoked potential responses, and improvements in overground locomotion (Cao et al. 2005a; 

Karimi-Abdolrezaee et al. 2006; Keirstead et al. 2005). Finally, remyelinated axons are 

present from 14 to 450 days post injury but that remyelination was incomplete, as indicated 

by the presence of demyelinated axons at every time point examined (Totoiu and Keirstead 

2005). However, recent studies have brought into question whether chronic demyelination 

persists in functionally intact axons since myelin sheaths not only ensure successful 
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propagation of action potentials, but also participate in axonal transport and survival (Edgar 

and Garbern 2004; Edgar et al. 2004). Lasiene, et al., (2008) used anterograde tracing to 

evaluate the myelin status of functionally intact axons. They showed that virtually no “intact 

axon” remained unmyelinated at 12 weeks in mice suggesting that remyelination or myelin 

sparing strategies may be less promising than originally hypothesized. This hypothesis is 

supported by the fact that remyelination by transplanted cells shows efficacy but only if 

transplants are delivered before 3 weeks (Cao et al. 2005a; Karimi-Abdolrezaee et al. 2006; 

Keirstead et al. 2005) Additionatly pharmacological demyelination studies show an almost 

complete remyelination at chronic time points (Blakemore et al. 1977; Blakemore and 

Murray 1981; Jeffery and Blakemore 1995). These studies suggest that a delayed but 

sufficient endogenous remyelinating system exists. Finally, most of the conclusions drawn 

from pharmacological sparing of oligodendrocytes or white matter and on the persistence of 

“demyelinated” axons are based on correlations rather than true experiments.

A second assumption is that while the total destruction of phospholipids following SCI 

would obviously result in pathology of both axons and myelin, intrinsic phospholipase 

activity could potentially facilitate repair. It has been shown by several groups that myelin is 

a non-permissive substrate for neurite outgrowth (Niederost et al. 1999; Schwab and Caroni 

1988). Most of myelin’s inhibition has been attributed to proteins within the myelin fraction 

binding to the Nogo receptor complex (Filbin 2003). This raises the possibility that sPLA2 

activity following SCI could function as a clearance mechanism for myelin debris thus 

facilitating axon regeneration and functional recovery. Therefore inhibition of sPLA2 could 

possibly worsen SCI in vivo.

The results presented here suggest that the expression of sPLA2, particularly IIA, might 

participate in oligodendrocytes death mediated by several cytotoxic pathways. More 

importantly the blockade sPLA2 could provide a crucial therapeutic intervention for not only 

SCI but other CNS injuries in which H2O2, IL-1β and TNFα mediate damage. Whether 

inhibition of sPLA2 following SCI in vivo creates histological and functional sparing is 

under active investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Changes in secretory PLA2 mRNA following SCI. A) Representative mRNA from 3 sham 

(lanes 2-4) or 3 SCI rats (lanes 5-7) 4hr post surgery. Lane 1 is a 100 bp ladder. Increases 

were seen in sPLA2-IIA and IIE with a decrease seen in sPLA2-X. B) Relative fold increase 

of sPLA2-IIA mRNA expression after real time Q-PCR (mean ± SD).
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Fig. 2. 
sPLA2 protein expression following SCI. A) Representative western blots from sham or 

contused animals at 15 min, 4 hr, 1 day, or 1 wk post injury. The top panel in A shows time 

course of sPLA2-IB (16 & 14 kDa) showing no changes following SCI. SCI induced 

significant increase in sPLA2-IIA (15 kDa) and IIE (18 kDa) beginning at 4 hr and 1 day 

post injury, but returning to baseline by 1 week. Group X (13 kDa) showed no change in 

expression. Note lane 6 in IIA blot is equal amount of splenic protein for control. B - E) 

Quantification of western blots in A (n = 4/group, mean ± SD). (**p < 0.01 versus sham)
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Fig. 3. 
Immunohistochemical changes in sPLA2 expression following SCI. There was an increase 

in the sPLA2-IIA and IIE immunoreactivity following SCI (F & G) compare (B & C). No 

change in sPLA2-IB (A & E) or group X (D & H). Bar: A-H, 500 μm. Quantification of IB 

(I) and IIA (J) staining at the epicenter and at 5 mm increments rostrally and caudally show 

increases in sPLA2-IIA only and only at the epicenter. I-J; n = 5, mean ± SD; * p < 0.05; 

sham,  15 min , 1 hr , 4 hr . Changes was also seen in the ventral white matter 

between the sham (K - N) and 4 hr SCI (O - R). SCI induced a significant increase in 

sPLA2-IIA (L & P) and IIE (M & Q) within the white matter. However, there was little or 

no staining of sPLA2-X (N & R).
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Fig. 4. 
Co-localization of sPLA2 in oligodendrocytes post-SCI. Confocal images of 

immunofluorescent double labeling indicates that sPLA2-IB (A-C), IIA (D-F), IIE (G-I), but 

not X (J-L) are present within oligodendrocytes (CC1/APC) 4 hr following contusion. 

Orthoganol views of confocal image stacks. Scale bars: 20 μm for all.
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Fig. 5. 
sPLA2-IIA expression increases within oligodendrocytes following SCI and within the 

membrane fraction. sPLA2-IIA localizes to CC1-positive oligodendrocytes in both sham 

animals (A-C) and 4 hr post-SCI (D-F) with expression increasing post SCI (E versus B). G) 

Quantification of the sPLA2-IIA staining intensity in oligodendrocytes at the injury 

epicenter (n = 5 animals per group, mean ± SD; ** p<0.01). H) Western blots of subcellular 

fractions showing the increase of sPLA2-IIA is predominantly within the membrane 

fraction. I) Anti-caveolin antibody a membrane marker, anti-histone H1 a nuclear marker, 

and β-tubulin a cytosolic marker demonstrate the purity of the subcellular fractions.
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Fig. 6. 
sPLA2-IIA selectively triggers cell death in Oligodendrocytes. Low levels of exogenously 

added sPLA2-IIA (0.01 and 0.1 μM; B & C) result in a loss of processes extending from the 

soma and at higher dose (2 μM; D) triggers a complete loss of process and cell death (phase 

contrast images). An 18.2 % increase in cytotoxicity as measured by an increase in LDH 

within the media (E), and a 33.1% decreased conversion of MTT (F) suggesting decreased 

cell survival. In contrast, 2 μM of sPLA2-IIA had no effect on cultured Schwann cells (G-H) 

or astrocytes (I-J) suggesting a specific sensitivity of oligodendrocytes to sPLA2-IIA.
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Fig. 7. 
H2O2 injury induces sPLA2-IIA expression in cultured oligodendrocytes. A) Western blots 

show a dose dependent increase in sPLA2-IIA 48 hr following a 30 min injury with vehicle, 

1mM, or 10mM of H2O2. B–J) Confocal images of oligodendrocytes 48 hr following 

treatment with vehicle (B-D) or 10 mM of H2O2 (E – J). Dead or dying cells showed either a 

fragmentation of the nuclei, loss of arborization, and micro-puncta (E – G) or a round nuclei, 

swelling of primary processes, and larger puncta (H – J). Bar: 50 μm.

Titsworth et al. Page 27

Glia. Author manuscript; available in PMC 2015 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8 
. sPLA2-IIA enzymatic inhibition by S3319 partially reverses H2O2 induced 

oligodendrocyte cell death. Pretreatment with 1.25 μM S3319, a sPLA2 inhibitor, decreases 

cytotoxicity of a 30 min, 10 mM H2O2 pulse by by 17.9 %. (n = 7 wells per group, all in 

vitro studies repeated in triplicate, mean ± SD; * p<0.05, ** p < 0.01, *** p < 0.001).
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Fig. 9. 
Blockade of sPLA2 in oligodendrocyte cultures prevents IL-1β and TNFα injury. A) 

Western blot showing time dependent sPLA2-IIA expression following treatment with 5 

ng/ml IL-1β and 10 ng/ml TNFα. B-G) Phase contrast images showing oligodendrocyte 

cultures 72 hr after injury with either vehicle, low doses (1 and 2 ng/ml) or high doses (5 and 

10 ng/ml) of IL-1β and TNFα. Cultures were either pretreated with vehicle (B-D) or 1.25 

μM S3319 (E-G). Note the decrease in oligodendrocyte process extension. H) IL-1β and 

TNFα injury resulted in very mild cytotoxicity at 72 hr, but a significant sparing when 

pretreated with the sPLA2 inhibitor S3319. I) Quantification of process area in (B-G) 

showing 1.25 μM S3319 significantly prevents the destruction of oligodendrocyte processes 

after cytokine injury.
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Table 1

Animal Usage and Experimental Groups

Sham 15 min 1 hr 4 hr 1 day 1 week

Contusion − + + + + +

mRNA n=3 n=3 n=3 n=3 n=3 n=3

Protein n=4 n=4 - n=4 n=4 n=4

Subcellular Protein n=4 - - n=4 - -

Histology n=5 n=5 - n=5 n=5 n=5

Cell Culture n=5 - - - - -
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Table 2

End point RT-PCR primers.

Gene Accession No. Primer sequence 5′-3′ Product (bp) Reference

PLA2-IB NM_031585 232–251: ACA ATC AGG CCA AGA AGC TG
462–481: ACG GCA TAG ACA GGA AGT GG

250 (Kolko, 2004)

PLA2-IIA NM_031598 687-707: TTGCCATTGTGGTGTGGGTGG
965-986: CAACTGGGCGTCTTCCCTTTGC

300 (Molloy, 1998)

PLA2-IIC NM_019202 1-20: CCTCCACCTCTCAAATGCTG
231-250: CATTGCTGTTCCAGCCTTTT

250 (Molloy, 1998)

PLA2-IID NM_001013428 1–20: CTGCCTTGCTCTGTGCTGGA
234-253: CCATCGATCTTCAGGTGGGC

254

PLA2-IIE XM_238421 401-419: GTGGGAACCTGGTCCAGTT
667-687: GGCAGCTCTCTTGTCACACTC

285 (Kolko, 2004)

PLA2-IIF XM_233589 1-20: ATGAAGGAGGTTGAGTTTGC
242-261: TGGAATATCACAGAGCTGGA

262

PLA2-III XM_223553 12-36: TATACTTGAGTATAAGACCTCGTGT
243-262: TCAGAAGAATTGAGCAGGAC

251

PLA2-V NM_017174 380-401: CCCTAAGGATGGCACTGATTGG
530-551: CCCTAAGGATGGCACTGATTGG

172 (Molloy, 1998)

PLA2-X NM_017176 461–481: TCC CCT CGG TTT TAT GTG AG
640–660: GCT CCA CAG GCT CAT AGT CC

200 (Kolko, 2004)

PLA2-XIIa XM_342340 144-163: CCAGGAACAGGACCAGACCA
373-393: CTTGGTCAGGGAAGGGATGC

250
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