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Abstract

Exposures to environmental toxicants and toxins cause epigenetic changes that likely play a role in

the development of diseases associated with exposure. The mechanism behind these exposure-

induced epigenetic changes is currently unknown. One commonality between most environmental

exposures is that they cause DNA damage either directly or through causing an increase in

reactive oxygen species, which can damage DNA. Like transcription, DNA damage repair must

occur in the context of chromatin requiring both histone modifications and ATP-dependent

chromatin remodeling. These chromatin changes aid in DNA damage accessibility and signaling.

Several proteins and complexes involved in epigenetic silencing during both development and

cancer have been found to be localized to sites of DNA damage. The chromatin-based response to

DNA damage is considered a transient event, with chromatin being restored to normal as DNA

damage repair is completed. However, in individuals chronically exposed to environmental

toxicants or with chronic inflammatory disease, repeated DNA damage-induced chromatin

rearrangement may ultimately lead to permanent epigenetic alterations. Understanding the

mechanism behind exposure-induced epigenetic changes will allow us to develop strategies to

prevent or reverse these changes. This review focuses on epigenetic changes and DNA damage

induced by environmental exposures, the chromatin changes that occur around sites of DNA

damage, and how these transient chromatin changes may lead to heritable epigenetic alterations at

sites of chronic exposure.
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Background

Epigenetics is the study of heritable gene expression changes that are not due to a change in

the DNA sequence. These changes can involve changes in DNA methylation, histone

modifications, and/or microRNA expression (reviewed in [Baylin and Jones 2011; Klaunig
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et al. 2011]). DNA methylation involves the addition of a methyl group to the cytosine of a

CpG dinucleotide pair. CpGs in intergenic and repetitive regions of the genome tend to be

highly DNA methylated. Environmental exposures and disease development have been

associated with loss of DNA methylation from these regions, which may cause reactivation

of transposable elements and re-expression of adjacent genes [Kulis and Esteller 2010; Hou

et al. 2012]. In contrast to repetitive DNA, about 60% of gene promoters contain dense

regions of CpGs, called CpG islands. DNA methylation of a CpG island causes

transcriptional repression of the associated gene and aberrant DNA methylation of these

islands has been highly studied in carcinogenesis [Baylin and Jones 2011].

In addition to DNA being modified to alter gene expression, histones can also be modified.

DNA in the nucleus of cells is wrapped around nucleosomes that are made up of histones.

Each histone has a histone tail that protrudes out of the nucleosome and can be post-

translationally modified at various residues in many different ways. These modifications are

called histone marks. Histone marks are either active marks allowing for open chromatin

and expression of the associated genes or repressive marks resulting in compact chromatin

and reduced expression of the associated genes [Baylin and Jones 2011]. Environmental

exposures have been associated with global and locus-specific changes in histone mark

levels [Cortessis et al. 2012; Hou et al. 2012].

The third epigenetic change involves microRNAs (miRNAs), which are a family of small

non-coding RNAs that modulate expression of other genes in a sequence specific manner by

binding to 3′-untranslated regions of target mRNAs (reviewed in [Di Leva et al. 2013]).

miRNAs are short single-stranded RNAs of approximately 20–24 nucleotides in length that

are transcribed from DNA but not translated into proteins. miRNAs negatively regulate

expression of target genes at the post-transcriptional level by binding to 3′-untranslated

regions of target mRNAs. The expression of miRNAs has been shown to change with

exposures to toxicants and at sites of inflammation [Cortessis et al. 2012; Hou et al. 2012;

Tili et al. 2013].

Exposure to environmental toxicants and toxins plays a role in the etiology of a diverse array

of diseases and can lead to epigenetic changes [Cortessis et al. 2012; Hou et al. 2012]. Since

by definition epigenetic changes heritably alter gene expression levels, it is thought that such

exposure-induced epigenetic alterations may play a direct role in disease formation and/or

progression. However, the mechanisms by which exposures cause epigenetic changes are

unclear. Exposures to toxicants and toxins can cause DNA damage either directly by the

parent compound, via the production of reactive intermediates, or through the generation of

reactive oxygen species (ROS) [Poirier 2004; Klaunig et al. 2011]. DNA damage plays a

known role in disease etiology through inducing mutation that leads to gain of function or

loss of function for key genes. The epigenetic changes discussed above also occur in a

transient manner during chromatin-based processes including DNA damage repair,

transcription, and DNA replication. However, these transient changes are not considered

true epigenetic changes unless they are stable and heritable, being passed on to daughter

cells during cell division. For the purpose of this review there is no delineation between

epigenetic changes that are permanent versus those that are heritable through a finite number

of cell divisions, but ultimately are reversible as both types of epigenetics changes could

O’Hagan Page 2

Environ Mol Mutagen. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



conceivably play roles in disease development. In this review, I will first discuss the types of

DNA damage and epigenetic changes associated with specific environmental exposures and

the chromatin changes that are associated with DNA damage repair. I will then discuss the

possibility that at least some epigenetic changes are initiated by normally transient

chromatin-based changes associated with DNA damage repair.

Environmental exposure-induced DNA damage

A common toxicity inflicted upon cells following environmental exposures is DNA damage.

DNA damage can occur directly by exposure to ionizing or ultraviolet (UV) radiation, which

ionize components of DNA and are absorbed directly by DNA bases, respectively.

Chemicals or their reactive intermediates can react with DNA to modify DNA bases, form

DNA adducts, and/or form DNA interstrand crosslinks [Poirier 2004]. Exposures can also

act through a mechanism by which elevated levels of ROS cause oxidative DNA damage.

ROS may be generated from the agent itself or from many sources in the cell including

xenobiotic metabolism, damaged mitochondria, or an immunologic response to the exposure

[Klaunig et al. 2011]. ROS are a set of reactive compounds including superoxide, the

hydroxyl radical, and hydrogen peroxide (H2O2). Increases in cellular ROS, whether

through physiological modification or through chemical exposure contribute to the process

of carcinogenesis [Klaunig et al. 2011]. Furthermore, environmental exposures can

indirectly cause genotoxcitiy through interference with the mitotic spindle, causing an

unbalanced nucleotide pool, interference with DNA damage repair processes, or allowing

for bypass of cell cycle checkpoints [Kirsch-Volders et al. 2003]. The above mechanisms of

DNA damage can result in single or double strand DNA breaks (DSBs) and base

modifications [Klaunig et al. 2011]. Below I briefly discuss both the epigenetic changes

associated with various environmental exposures, namely heavy metals, particulate matter

(PM), polycyclic aromatic hydrocarbons (PAH), other chemicals, and radiation, and the

DNA damage caused by these exposures.

Epigenetic changes resulting from exposure to heavy metals include global changes in DNA

methylation after exposure to arsenic, cadmium, and lead; arsenic, chromium, and nickel-

associated hyper and hypomethylation of key gene promoters; arsenic, chromium, and

nickel-associated changes in histone marks; and arsenic and cadium-induced changes in

miRNA expression [Cheng et al. 2012; Chervona and Costa 2012; Chervona et al. 2012].

These heavy metals, as well as beryllium, chromium, cobalt, and iron, are demonstrated

carcinogens [Bal and Kasprzak 2002]. There are many molecular mechanisms suggested for

the carcinogenicity of these metals. However, several of them, including cobalt, chromium,

copper, iron, and nickel, induce reactive oxygen species and/or high valence metal ions that

can act as catalytic centers for redox reactions that directly oxidize DNA [Bal and Kasprzak

2002]. Moreover, millions of people consume water contaminated by inorganic arsenic, an

environmental carcinogen, and the ROS produced by arsenic exposure is a key factor in

arsenic carcinogenicity [De Vizcaya-Ruiz et al. 2009; Chervona and Costa 2012]. Further

supporting the importance of ROS in arsenic exposure, several studies have demonstrated

that the use of antioxidants significantly reduces the toxic and genotoxic effects of arsenic

[Mandal et al. 2007; Mittal and Flora 2007].
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Another kind of environmental exposure widely implicated in human cardiovascular and

lung disease/carcinogenesis is PM, which can be found in air pollution. Exposure to PM

with a diameter of < 10 μm has been associated with decreased DNA methylation levels of

repetitive elements and global histone mark and miRNA expression changes in blood cells

[Hou et al. 2012; Motta et al. 2013]. In vivo and in vitro studies suggest that PM exposure

causes ROS production [Li et al. 2002; Li et al. 2003; Xia et al. 2004; Hou et al. 2010]. At

least in part, this ROS generation is by mechanisms that involve the mitochondria-regulated

death pathway and the generation of iron-derived free radicals [Upadhyay et al. 2003; Xia et

al. 2004].

PAHs are combustion-related environmental pollutants that are found at high levels in

charcoal broiled foods, cigarette smoke, and diesel exhaust and are known DNA damaging

agents. The PAH benzo[a]pyrene (BaP) is one of the most studied PAHs with a well

understood mechanism of action. BaP can be metabolized to form anti-BP-7,8-

dihydrodiol-9,10-epoxide (BPDE), a carcinogen that covalently binds to DNA causing DNA

damage that can lead to mutations. Other PAHs operate by similar mechanisms to cause

DNA damage and mutation [Luch and Baird 2010]. Additionally, PAH-metabolites can be

further converted to PAH o-quinones and diesel exhaust particles contain quinoid PAHs,

some of which are highly redox active compounds that participate in redox cycling resulting

in the generation of ROS [Park et al. 2006; Chung et al. 2008; Zhang et al. 2012]. In

children and workers exposed to PAHs, level of exposure positively correlates with levels of

DNA damage in the form of DNA strand breaks and levels of oxidative DNA damage

[Ruchirawat et al. 2007; Cavallo et al. 2009; Wang et al. 2010; Kuang et al. 2013]. PAH

exposure has also been associated with changes in both global and locus specific DNA

methylation levels, genome-wide lysine 9 histone H3 (K9H3) acetylation profiles, and

expression of miRNAs [Sadikovic et al. 2008; Pavanello et al. 2009; Halappanavar et al.

2011; Herbstman et al. 2012; Lizarraga et al. 2012; Alegria-Torres et al. 2013].

Another environmental toxicant known to cause epigenetic changes is bisphenol A (BPA), a

well-known endocrine-disrupting chemical that has received particular attention because of

its widespread use in food containers and its potential for reproductive effects. In a mouse

model, in utero exposure to BPA causes DNA methylation changes associated with

increased obesity and insulin resistance [Dolinoy et al. 2007]. BPA exposure also induces

changes in miRNA expression and global levels of trimethyl K27H3 [Avissar-Whiting et al.

2010; Doherty et al. 2010; Tilghman et al. 2012]. Results for the genotoxicity of BPA are

still inconclusive, but recent studies suggest that BPA exposure may induce DNA damage

accumulation in cells via oxidative stress [Tiwari et al. 2012; Wu et al. 2013].

Pesticides constitute a wide variety of chemicals including herbicides, insecticides, and

fungicides and exposure to them may cause acute and delayed health effects. Exposure to

many of these chemicals has been linked to epigenetic changes including DNA methylation,

histone modification, and miRNA expression changes (reviewed in [Collotta et al. 2013]). In

both pesticide factory and agriculture workers, exposure to pesticides has been demonstrated

to result in genomic DNA damage, which was evaluated either by using the comet assay or

the frequency of micronuclei, although the exact mechanism by which pesticide exposure
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induces DNA damage is unclear [Bhalli et al. 2006; Sailaja et al. 2006; Benedetti et al. 2013;

Khayat et al. 2013].

Benzene is widely used in chemical industry and is a component of cigarette smoke

associated with hematological disorders and cancer formation. Exposure to benzene is

associated with changes in DNA methylation, including global hypomethylation of DNA,

hypomethylation of repetitive elements, and hypermethylation of specific gene promoters

[Hou et al. 2012; Seow et al. 2012; Xing et al. 2013]. Benzene itself is not mutagenic, but

benzene is metabolized into toxic metabolites that cause an increase in intracellular

production of ROS resulting in oxidative DNA damage [Hiraku and Kawanishi 1996].

Exposure to ionizing radiation (IR) occurs through diagnostic and therapeutic medical

devices as well as background radiation, cosmic rays, radioactive waste, radon decay,

nuclear tests, and nuclear accidents. Exposure to IR can cause global DNA hypomethylation,

DNA methylation changes at specific loci, and changes in expression of the DNA

methyltransferases (DNMTs) both acutely and up to 14 days post-irradiation [Kuhmann et

al. 2011; Chaudhry and Omaruddin 2012; Antwih et al. 2013] (reviewed in [Kim et al.

2013]). IR exposure also induces phosphorylation of H2AX, a decrease in K20H4

trimethylation, and changes in miRNA expression [Pogribny et al. 2005; Aypar et al. 2011;

Metheetrairut and Slack 2013]. Interestingly, both single high dose and chronic low dose

whole-body irradiation can significantly alter global and site-specific DNA methylation in

mouse tissue [Pogribny et al. 2004; Koturbash et al. 2005; Bernal et al. 2013]. IR is a known

carcinogen that damages cellular components, including DNA in the form of single and

double strand breaks, base damage, and DNA crosslinks and also increases cellular ROS

levels [Klaunig et al. 2011].

UV radiation exposure through sunlight and artificial sources is a primary risk factor for

melanoma. Chronic exposure of the skin of mice to UVB radiation or of human

keratinocytes in culture to UVA radiation causes chromatin and DNA methylation changes

at specific gene promoters [Nandakumar et al. 2011; Chen et al. 2012]. miRNA expression

changes have also been demonstrated in mouse skin 24 hours after a single UVB exposure

[Xu et al. 2012b]. Exposure of skin to UV radiation induces oxidative stress, inflammation,

and DNA damage in the form of DNA photoproducts such as cyclobutane pyrimidine

dimers [Xu et al. 2012b].

In addition to directly causing increases in ROS and DNA damage, exposure to

environmental toxicants can induce acute and/or chronic inflammation. For example, PM

from tobacco smoke and air pollution is associated with chronic obstructive pulmonary

disease [Punturieri et al. 2009]. Such inflammation results in increased exposure to ROS.

Cells undergo oxidative stress when ROS levels exceed the cell’s ability to balance the

oxidative environment. In response to tissue injury caused by exposures, inflammatory cells

are activated and directed to the site of injury (reviewed in [Medzhitov 2008]). Chemokines

are released that attract specific leukocyte populations, including neutrophils, eosinophils,

and macrophages. These cells produce a variety of ROS and release them at sites of

inflammation. Inflammatory cells may also use cytokines to stimulate ROS production in

neighboring epithelial cells.
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Chronic inflammation has been associated with cancer-specific epigenetic changes.

Infection with Helicobacter pylori, a carcinogenic bacterium, causes changes in histone

modifications, global DNA hypomethylation, and DNA hypermethylation of specific genes

in the human gastric mucosa, including those that are DNA methylated and silenced in

human gastric cancer cells [Maekita et al. 2006; Ding et al. 2010; Ushijima and Hattori

2012]. H. pylori-mediated inflammation appears to play a key role in these epigenetic

changes [Hur et al. 2011]. In the intestine, some Polycomb Repressive Complex 2 (PRC2)

target genes, which are a set of genes that have a tendency to DNA methylated and silenced

in cancer, are subject to aberrant DNA methylation and decreases in K27H3 trimethylation

following chronic inflammation, both in inflamed tissue and tumors [Hahn et al. 2008].

Furthermore, murine infection with a toxigenic bacterium, enterotoxigenic Bacteriodies

fragilis, causes acute epigenetic changes in colonic epithelial cells harvested from the areas

of highest inflammation. Changes in polycomb group (PcG) protein recruitment have been

demonstrated at gene promoters known to become epigenetically silenced in colon cancer

[O’Hagan et al. 2011]. miRNA expression is also altered in inflammatory conditions both in

immune and epithelial cells and likely plays roles both in controlling chronic inflammation

and in promoting cancer development (reviewed in [Chiba et al. 2012]).

Most studies linking environmental exposures and/or inflammation to epigenetic changes

have focused on chronic or repetitive exposures. While there is evidence that acute exposure

to IR can cause persistent epigenetic changes, chronic low-dose exposures are more potent

inducers of lasting epigenetic changes [Kovalchuk et al. 2004; Koturbash et al. 2005].

Furthermore, in mouse a model of colitis, it has been demonstrated that chronic

inflammation, as opposed to treatment with a genotoxic agent only, is necessary for the

induction of DNA methylation changes also suggesting that most exposure-related

epigenetic changes occur through chronic exposure [Katsurano et al. 2012].

Transient chromatin-based changes at sites of DNA damage

DNA in the nucleus is packaged into chromatin, which is a barrier to DNA damage

recognition and repair. Compacted chromatin is refractory to full activation of the DNA

damage response and disruption of DNA integrity alone can cause a change in chromatin

structure that activates DNA damage signaling [Berkovich et al. 2007; Murga et al. 2007;

Soria et al. 2012]. In order for repair machinery to access sites of DNA damage chromatin

must undergo remodeling. In part this remodeling is done by ATP-dependent nucleosome

complexes removing and/or sliding nucleosomes out of the way (reviewed in [Smeenk and

van Attikum 2013]). The heterochromatin-associated proteins, HP1 and Kap-1, also

participate in the early response to DSBs in euchromatin, although their exact role in DNA

repair is still unclear [Luijsterburg et al. 2009; Baldeyron et al. 2011; Soria et al. 2012]. In

addition to the movement of nucleosomes, histones are also post-translationally modified at

sites of DNA damage to both aid in DNA damage signaling and the recruitment and

retention of DNA repair factors [Lukas et al. 2011b]. One of the most well studied histone

modifications that occurs in the chromatin surrounding sites of DNA damage is

phosphorylation of the histone variant H2AX. phospho-H2AX promotes the retention and

accumulation of DNA repair proteins as well as histone modifiers and chromatin remodelers

[Lukas et al. 2011b]. Beyond aiding in DNA damage accessibility and signaling, it has been

O’Hagan Page 6

Environ Mol Mutagen. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



hypothesized that chromatin modifiers are recruited to the sites of DNA damage to locally

inhibit transcription to prevent it from interfering with the repair process and/or DNA

damage signaling [Price and D’Andrea 2013].

Finally, after DNA damage repair is complete, the chromatin is restored by both

repositioning nucleosomes and returning the epigenetic code back to its original state. All of

these processes require chromatin-modifying enzymes found at sites of DNA damage.

Interestingly, many of these proteins and complexes, particularly those discussed below, are

also involved in stable epigenetic changes during development and in cancer bringing into

question whether the transient recruitment of these proteins during DNA damage repair can

be tied to stable disease-associated epigenetic alterations.

NuRD

The nucleosomes deacetylase and remodeling (NuRD) complex is a co-repressor complex

that is recruited to sites of DNA damage induced by UV light and IR [Chou et al. 2010;

Larsen et al. 2010; Polo et al. 2010; Smeenk et al. 2010]. A core component of NuRD is the

chromodomain-helicase-DNA-binding 4 (CHD4), a member of the SNF2 superfamily of

ATPases, which use ATP hydrolysis to move nucleosomes along DNA. NuRD also contains

the histone deacetylases, HDAC1 and HDAC2, making the complex capable of forming

repressive chromatin. NuRD has been found to be rapidly recruited to sites of DSBs by its

interaction with the ubiquitin liagse RNF (RING finger protein) 8. The chromatin-

remodeling activity of CHD4 is proposed to decondense the chromatin at the DNA damage

site, which stimulates the formation of ubiquitin conjugates by RNF8/RNF168 [Larsen et al.

2010; Luijsterburg et al. 2012; Smeenk et al. 2013]. This ubiquitylation is needed for

amplification of the DNA-damage repair signal and recruitment of DNA damage repair

proteins including BRCA1 (breast cancer early-onset 1). Loss of BRCA1 recruitment leads

to impaired DSB repair and activation of the G2/M checkpoint and increased IR sensitivity.

CHD4 also binds BRIT1, a key regulator of homologous recombination, and loss of CHD4

impairs the recruitment of BRIT1 to DNA damage again leading to a reduction in BRCA1

recruitment [Pan et al. 2012]. CHD4 has also been found to be recruited to sites of laser

microirradiation in a poly(ADP ribose) polymerase (PARP1) dependent manner [Chou et al.

2010; Polo et al. 2010]. PARP enzymes are activated by DSBs, single-strand breaks, and

DNA nicks and, by modifying target proteins with poly(ADP-ribose) chains at DNA damage

sites, play a role in the recruitment of DNA repair factors to lesions. CHD4 has been found

to directly bind PARylated proteins, including PARP1 itself, at DNA damage sites [Polo et

al. 2010].

Polycomb

PcG proteins were originally discovered as chromatin modifiers that control silencing of the

homeotic (Hox) genes during embryonic development in fruit flies (reviewed in [Aloia et al.

2013]). In mammals, PcG members are also important in development by regulating

expression of key genes in developmental pathways. The PcG proteins make up two main

Polycomb Repressive Complexes, PRC1 and PRC2. To initiate silencing, PRC2, which

contains the histone methyltransferase EZH2, trimethylates histone H3 at lysine 27. PRC1,
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which contains E3 ubiquitin ligases and BMI1 (B lymphoma Mo-MLV insertion region 1

homolog), is then recruited to sites of this mark and catalyzes the monoubiquitiylation of

K119H2A. While in fruit flies there are DNA motifs for the recruitment for PRC2, there are

not similar elements in mammals and it is currently unknown what recruits PRC2 to specific

promoters during development. PRC1 and PRC2 also play abnormal roles in cancer.

Members of both complexes, especially BMI1 and EZH2, are often over expressed in

cancers and are involved with aberrant repression of key tumor suppressor genes [Bracken

and Helin 2009].

Recent work has implicated both PRC1 and PRC2 in DNA damage repair mostly at DSBs.

Members of PRC1, including BMI1 and Ring1B, have been localized to sites of DSBs [Pan

et al. 1074; Chou et al. 2010; Ismail et al. 2010; Chagraoui et al. 2011; Ginjala et al. 2011;

Nacerddine et al. 2012]. For an extensive review of this work, see Vissers HA et al [Vissers

et al. 2012]. Interestingly, ubiquitylation of H2A on K119 also occurs at sites of DSB in a

similar manner as its role in chromatin repression during development [Ginjala et al. 2011].

Recruitment of these proteins and ubK119H2A appear to be early events in the DNA

damage repair process as they occur minutes after IR with timing similar to other DNA

damage response factors and their presence is sustained for several hours [Chou et al. 2010;

Ismail et al. 2010; Ginjala et al. 2011]. Although there are many ubiquitylation events

around the sites of DSBs, which cause some discrepancies between the findings of different

groups, it is likely that ubK119H2A is dependent on BMI1 as loss of Ring1B and BMI1

interfere with basal and induced monoubiquitylation at sites of DNA damage [Ginjala et al.

2011]. RNF8-RNF168 are responsible for other ubiquitylation events around DSBs,

specifically in the generation of K63-linked ubiquitin chains [Shanbhag et al. 2010]. The

interaction of these different ubiquitylation events is unclear including which lysine residues

of H2A and H2AX are modified by RNF8-RNF168 and how these ubiquitin chains affect

monoubiquitylation of K119H2A [Vissers et al. 2012]. Recent work using a small molecule

inhibitor of the E3 ubiquitin ligase activity of PRC1, but not RNF8 or RNF168, has

suggested that K119H2A monoubiquitylation is required for subsequent RNF8-RNF168-

mediated polyubiquitylation at sites of DNA damage [Ismail et al. 2013].

PRC2 members have also been found localized to sites of DNA damage, including after UV

light, H2O2, and endonuclease-induced DSBs [Hong et al. 2008; O’Hagan et al. 2008; Chou

et al. 2010; O’Hagan et al. 2011; Seiler et al. 2011; Wu et al. 2011; Campbell et al. 2013].

Localization of these proteins in many cases has correlated with an increase in the

3meK27H3 mark, suggesting recruitment of a functional PRC2 complex. However, the

exact function of PRC2 at sites of DSBs remains unclear. As mentioned, during

development PRC2 recruitment and activity precedes and is necessary for PRC1

recruitment. However, this may not be a requirement at sites of DNA damage. The

recruitment of PRC1 is a very early event in the DNA damage response and some groups

have demonstrated that PRC1 recruitment is not affected by knockdown of PRC2

constituents [Ismail et al. 2010]. If PRC1 does not require the 3meK27H3 mark for its

recruitment to DSBs, then the question remains as to how and why this recruitment is

different from what occurs during development.
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DNA methyltransferases

DNMTs methylate CpG dinucleotides of DNA and play a normal role in the silencing of

developmental genes and repetitive elements. However, in cancer DNMTs are involved in

aberrant silencing of 100s to 1000s of gene promoters [Baylin and Jones 2011]. While all of

these silencing events are likely not drivers of carcinogenesis, silencing of the promoters of

tumor suppressor genes such as MLH1 and p16 play a direct role. DNMT1 is called the

maintenance methyltransferase because it prefers methylating the second strand of

hemimethylated DNA and is located at DNA synthesis forks for this purpose.

While there is some discrepancy as to which or if all DNMTs are involved in DNA damage

repair, it is evident that at least some are. Several groups have demonstrated the presence of

DNMT1 at both endonuclease and laser-induced breaks [Mortusewicz et al. 2005; O’Hagan

et al. 2008; Ha et al. 2010]. DNMT1 is rapidly and transiently recruited to DSBs through its

interaction with proliferating cell nuclear antigen (PCNA) and checkpoint kinase 1 (CHK1)

and loss of DNMT1 appears to modulate the rate of repair [Ha et al. 2010]. Because this

recruitment appears to be early in the repair process, it is thought that DNMT1 may be

functioning in sensing or mobilizing the DNA damage repair response to sites of DNA

damage [Jin and Robertson 2013]. DNMT3B, a de novo DNMT, has also both been found at

endonuclease-induced DSBs [O’Hagan et al. 2008], although it was not found to be

localized to laser-induced breaks [Mortusewicz et al. 2005]. Groups have shown that DNA

damage associated with recruitment of DNMTs results in DNA methylation changes that

occur immediately after DNA damage or persist after DNA damage repair has been

completed [Cuozzo et al. 2007; O’Hagan et al. 2008; O’Hagan et al. 2011]. One possible

role of localization of DNMTs at sites of DNA damage may be that DNMT1 is functioning

as a scaffolding protein for the recruitment of other epigenetic proteins to sites of DNA

damage rather than playing a specific role in methylating DNA. The findings of several

groups support this hypothesis. First, the recruitment of DNMT1 to DSBs does not require

its catalytic activity, secondly, the DNMTs interact as part of large complex induced by

H2O2 treatment, and finally, DNMT1 can play a scaffolding role in silencing genes in cancer

cells [Ha et al. 2010; O’Hagan et al. 2011; Clements et al. 2012]. Further work needs to be

completed to clarify the role of DNMTs during DNA damage repair.

Histone acetylation and deacetylation

Histone acetylation is a mark that is added and removed by histone acetyl transferases

(HATs) and HDACs, respectively. Histone acetylation, unlike some other histone marks,

alters the structure and charge of lysine residues and therefore regulates chromatin structure

and function by modifying histone-DNA and histone-protein interactions, making histone

acetylation directly involved in the regulation of transcription [Gong and Miller 2013]. The

HAT, 60 kDa Tat-interactive protein (Tip60) plays key roles in DSB repair by participating

in chromatin remodeling at DSBs as part of the NuA4 complex and by activating the ATM

kinase [Sun et al. 2010]. The NuA4-Tip60 complex binds to chromatin around sites of DSBs

and, p400, a remodeling ATPase that is part of the NuA4-Tip60 complex, exchanges H2A

for the histone variant H2AZ in nucleosomes at the DSB [Xu et al. 2010; Xu et al. 2012a].

Tip60 then acetylates histones H2AX and H4, which aids in the turnover of H2AX and
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modifies the chromatin architecture at break sites [Ikura et al. 2000; Downs et al. 2004;

Kusch et al. 2004; Murr et al. 2006; Robert et al. 2006; Ikura et al. 2007; Jha et al. 2008].

Interestingly, recently it has been demonstrated that by modulating histone acetylation

TIP60 promotes homologous recombination, while inhibiting nonhomologous end joining

[Hsiao and Mizzen 2013; Tang et al. 2013]. The HATs, GCN5, p300, and CBP have also

been implicated in DNA damage repair of DSBs and UV lesions [Tini et al. 2002; Kim et al.

2009; Vempati et al. 2010; Guo et al. 2011; Ogiwara et al. 2011].

The most studied HDAC in terms of DNA damage repair is sirtuin1 (SIRT1). In yeast, the

SIRT1 homolog relocalizes from telomeres to DSBs and is needed for efficient non-

homologous end joining [Tsukamoto et al. 1997; Martin et al. 1999; McAinsh et al. 1999;

Mills et al. 1999]. SIRT1 also localizes to sites of DNA damage in mammalian cells and has

been implicated in deacetylation of histones at sites of DNA damage as well as deacetylation

of DNA repair proteins and other proteins involved in the DNA damage response [Jeong et

al. 2007; Yuan and Seto 2007; Li et al. 2008; O’Hagan et al. 2008; Fan and Luo 2010]. Such

deacetylation of histones would result in more compacted chromatin, whereas deacetylation

of proteins has been shown to change their activity level. SIRT1 also interacts with Tip60 to

negatively regulate Tip60-mediated acetylation of H2AX [Yamagata and Kitabayashi 2009].

HDAC1 and HDAC2 have also been implicated in DNA damage repair [Miller et al. 2010;

Polo et al. 2010]. HDAC1 and HDAC2 have been shown to associate with many other

epigenetic proteins as part of the NuRD complex and with the DNMTs [Zhang et al. 1999;

Fuks et al. 2000]. Therefore, it is possible that they are being recruited to sites of DNA

damage as part of these complexes. Further studies are required to define how the

deacetylation of histones affects the other functions of these complexes.

Both increases and decreases of histone acetylation have been associated with DNA damage

repair, likely because DNA damage repair is dynamic process that requires both the opening

and closing of chromatin and there are several different histone tail lysines that can be

acetylated [Tamburini and Tyler 2005]. It has been difficult to determine the exact

relationship between the acetylation/deacetylation dynamics at sites of DNA damage

because most studies use chromatin immunoprecipitation (ChIP) assays to look at changes

in histone marks. These assays are only capable of resolving the locations of the modified

histones based on the size of the sonicated DNA fragments (typically 200 to 1000 bp).

Acetylation and deacetylation events may be very specific in terms of the distance to the

break site, with acetylation happening near the break and deacetylation occurring a few

nucleosomes away, or they may differ in timing, with acetylation occurring right after DNA

damage followed by deacetylation when DNA damage repair is completed. Further work

needs to be done to understand the exact relationship between histone acetylation and

deacetylation at sites of DNA damage.

Non-coding RNAs

The newest type of epigenetic modulators to be studied are non-coding RNAs, with

miRNAs being the most studied of this group. miRNAs post-transcriptionally regulate the

expression of target genes, have also been found to be involved in the DNA damage

response, and, as discussed above, their expression can be altered by environmental
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exposures (reviewed in [Chowdhury et al. 2012]). The set of miRNAs that change in

expression in response to DNA damage depends both on the cell type and on the damaging

agent used and can play a role in DNA damage signaling as well as DNA damage repair.

Overall their role in the DNA damage response is still poorly understood, but some

examples are provided. DNA repair and signaling proteins including ATM, H2AX, BRCA1,

and p53 can be directly inhibited by miRNAs [Sharma and Misteli 2013]. Irradiation results

in the downregulation of miR-335, a miRNA that targets CtIP, a protein involved in end

resection during homologous recombination, and therefore influences the selection of

homologous repair for the DNA repair of DSBs [Martin et al. 2013]. miRNA-7 is a negative

regulator of SET8 (SET domain containing 8), a H4K20 monomethyltransferase that plays a

role in DNA repair [Yu et al. 2013]. Loss of miRNA-7 promotes spontaneous DNA damage

and sensitizes cells to induced DNA damage. Recent studies suggest that another class of

small RNAs, called DSB-induced small RNAs (diRNAs), are induced around DSB sites and

promote DNA damage repair [Francia et al. 2012; Wei et al. 2012]. The exact function of

these diRNAs is unclear, however, one theory is that they may help generate either an open

or closed chromatin structure at the break site [Ohsawa et al. 2013]. Because there is no

evidence that changes in miRNA expression alter the chromatin directly at the site of DNA

damage and because little is known at this point about diRNAs, they will have to be a topic

for a future review.

Combination of chromatin-based changes at sites of DNA damage

While above the various chromatin modifying proteins and histone mark changes are

discussed separately, it is likely that they are acting together or sequentially during the repair

of damaged DNA. Several of the proteins are known to interact with each other including

the HDACs interacting with NuRD and DNMT1 as discussed [Zhang et al. 1999; Fuks et al.

2000], PcG members interacting with DNMTs [Vire et al. 2006], and SIRT1 interacting with

DNMTs and PcG proteins [Kuzmichev et al. 2005; Espada et al. 2007; O’Hagan et al. 2011].

Therefore, these proteins may be recruited to sites of DNA damage as part of larger

complexes that are capable of modifying histones and other proteins in several different

ways. Multiple histone modifications have been demonstrated to also occur in the chromatin

surrounding DNA damage and in some cases multiple modifications are required for the

recruitment of proteins involved in the DNA damage repair process. For example, 53BP1, a

chromatin-associated factor that promotes DSB repair by non-homologous end joining,

needs histones to be modified by both methylation and ubiquitylation for its proper binding

to nucleosomes [Fradet-Turcotte et al. 2013].

Inhibition of transcription and DNA damage repair

Both transcription and the DNA damage repair process are intimately involved with

chromatin changes. Certain DNA lesions and/or DNA repair processes, including high levels

of oxidative stress, result in inhibition of transcription on a global level [Berthiaume et al.

2006]. RNA polymerases (RNAPs) are stalled at bulky DNA lesions reducing levels of

transcription and, during transcription coupled DNA damage repair, they become

ubiquitylated and undergo proteasome-mediated degradation [Pankotai et al. 2012]. Stalled

elongating RNAPII provides a recognition signal for chromatin remodeling and recruitment
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of proteins involved in DNA damage repair [Fousteri et al. 2006]. Even though ionizing

radiation does not reduce transcription on a global level, it has been demonstrated that the

induction of DSBs specifically causes a reduction in activity of both RNAPI and RNAPII

and, in the case of RNAPII a reduction of transcription of the associated gene [Kruhlak et al.

2007; Shanbhag et al. 2010; Pankotai et al. 2012]. As DNA damage repair is completed both

global and local transcription return to normal.

The epigenetic proteins and complexes discussed here are all involved in both

transcriptional silencing during development and aberrant silencing in cancer [Baylin and

Jones 2011]. As discussed above, these proteins are also recruited to sites of DNA damage,

which suggests that they may play a role in preventing transcription at sites of DNA

damage, likely to prevent transcription from interfering with the DNA damage repair

process [Chou et al. 2010; Miller et al. 2010; Lukas et al. 2011b; O’Hagan et al. 2011]. In

BMI1 knockout mouse embryonic fibroblasts elongating RNAPII is maintained at DNA

damage foci, where as RNAPII is normally lost from these sites, suggesting that BMI1

recruitment is indeed playing a role in reducing transcription at sites of DNA damage

[Chagraoui et al. 2011]. Unlike epigenetic silencing during development and disease

formation, this DNA damage repair-associated inhibition of transcription is likely a transient

event that resumes once DNA damage repair is completed.

In order to prove these hypotheses, models must be developed to examine both transcription

and DNA damage repair at known locations in the genome over a given time period. One

such system could be one which utilizes the endonuclease assay developed by Shanbhag and

Greenberg [Shanbhag and Greenberg 2013].

DNA damage and heritable epigenetic alterations

The involvement of epigenetic silencing proteins in DNA damage repair is most likely a

normal part of the DNA damage repair process that causes transient changes in chromatin

compaction and transcription, which are restored to normal when DNA damage repair is

completed [Soria et al. 2012]. However, if these epigenetic players are not removed

correctly during the DNA damage repair process or if in the setting of chronic inflammation

or chronic toxicant exposure, there is repetitive DNA damage, these epigenetic changes may

result in aberrant permanent silencing of the gene. Aberrant DNA hypermethylation of CpG

islands, including promoter CpG islands commonly found DNA hypermethylated in cancer,

is observed at sites of chronic inflammation, including chronic biliary tract inflammation,

Barrett’s esophagus, H. pylori infection, and inflammatory bowel disease [Niwa and

Ushijima 2010]. Global DNA hypomethylation and a decrease in DNA methylation at

specific repetitive DNA sequences, similar to what is seen in cancers, have also been

observed in chronically inflamed tissue. Oxidative stress has been shown to induce the

formation of an epigenetic silencing complex that includes the DNMTs, SIRT1 and PRC2

members [O’Hagan et al. 2011]. This complex is enriched at GC-rich areas of the genome,

including CpG islands that become DNA hypermethylated and silenced in cancer. After

oxidative damage, these regions gain repressive histone modifications and have reduced

transcription of the associated genes, and in the case of low basal expression genes, gain

DNA methylation. Similar findings were demonstrated in inflamed tissue using a mouse

O’Hagan Page 12

Environ Mol Mutagen. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



model of colitis [O’Hagan et al. 2011]. This work led to the hypothesis that in settings of

chronic oxidative stress, such changes may persist and become permanent epigenetic

changes. Interestingly, it has been hypothesized that transcription protects gene promoters

from epigenetic silencing, suggesting that even a transient inhibition of transcription during

DNA damage repair may make promoters more susceptible to stable silencing [Thomson et

al. 2010]. However, a direct link between inflammation and stable DNA methylation

changes has not yet been established.

Recent whole-cell based studies suggest that DSBs themselves or chromatin modifications

that are associated with DSBs can at least persist through one cellular generation. DSBs that

occur during mitosis persist through mitosis as indicated by foci of DNA repair proteins and

are passed on symmetrically to daughter cells as 53BP1 (a DNA damage response protein)

nuclear bodies [Giunta et al. 2010; Lukas et al. 2011a]. However, whether successful DNA

damage repair of such DSBs occurs and/or the cells survive needs to be demonstrated.

Furthermore, exposure of mice to protracted low-dose radiation causes persistent 53BP1 foci

in epidermal stem cells that do not colocalize with other DNA repair proteins [Schanz et al.

2012]. The authors suggest that these 53BP1 foci may be permanent chromatin

rearrangements caused by the DNA damage repair of radiation-induced DSBs. While

chromatin changes need to be more closely examined in this system, this work does suggest

that chromatin surrounding a DSB may not always be restored back to normal after DNA

damage repair is completed and the altered chromatin can persist for an undetermined

amount of time.

While there is still not direct evidence that DNA damage can cause heritable epigenetic

changes, several experimental approaches have been utilized to determine if there is a link

between DNA damage and stable epigenetic changes. Cuzzo et al. demonstrated that an

endonuclease-induced DSB that is repaired by homologous recombination results in

sustained DNA methylation and transcriptional silencing of the associated gene [Cuozzo et

al. 2007] and the activity of DNMT1 in this process seems to be regulated by GADD45alpha

[Lee et al. 2012]. Exposure of cells to the ROS, H2O2, results in the redistribution of SIRT1

away from its normal binding sites in the genome to sites of DNA damage, which results in

a derepression of SIRT1-regulated genes that mimics transcriptional changes seen in aging

cells [Oberdoerffer et al. 2008]. In another approach, an endonuclease was used to induce a

DSB in the CpG island of an exogenously introduced copy of the E-cadherin promoter,

which is a promoter that is frequently DNA hypermethylated in epithelial cancers, including

the breast cancer cell line used for these studies, MB-MDA-231. The introduced promoter

drives expression of the herpes simplex virus gene, thymidine kinase (HSVTK), allowing

for negative selection for expression using the drug ganciclovir. Induction of the DSB

causes epigenetic silencing of the promoter without causing DNA mutation in a small

percentage of cells [O’Hagan et al. 2008]. The epigenetic silencing coincides with a gain in

promoter DNA methylation that increases with passage. However, DNA methylation does

not appear necessary for the DNA-damage induced epigenetic silencing as knockdown of

SIRT1 during the acute phase of DNA damage induction does not affect silencing of the

promoter, but does result in a loss of transient enrichment of DNMT3B at the break site and

a loss of DNA methylation in the silenced promoters. These studies suggest that at least in

experimental systems DNA damage can induce epigenetic changes. Further studies are
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required to extend these findings to in vivo settings involving environmental exposures and

disease developmental to establish firmly if there are direct links between exposure, DNA

damage, epigenetic changes, and disease formation.

Conclusions

It is evident that environmental exposures result in stable epigenetic changes. However, the

mechanisms of how exposures result in epigenetic alterations are unclear. It is likely that

exposures induce epigenetic alterations by more than one mechanism, possibly varying with

the specific exposure or tissue being studied. One hypothesis for such a mechanism is driven

by known chromatin changes that occur at sites of DNA damage. Many environmental

exposures cause an increase in DNA damage in cells either directly or through an increase in

ROS. At sites of DNA damage there are many chromatin changes including modifications of

histones and repositioning and/or removal of nucleosomes. Additionally, several proteins

known to be involved in aberrant epigenetic silencing in cancer, including the NuRD

complex, PcG proteins, and the DNMTs, have been localized to sites of DNA damage

(Figure 1). These proteins may play a role in inhibiting transcription during the DNA

damage repair process. Likely these chromatin changes are transient such that the chromatin

is restored back to normal after DNA damage repair is complete. However, at sites of

chronic exposure and/or inflammation repeated DNA damage and chromatin rearrangement

may occasionally result in aberrant restoration of the chromatin and cause stable epigenetic

alterations (Figure 1). If such epigenetic changes result in a survival or proliferative

advantage for the cell, they may persist in the cell population. Such a hypothesis is similar in

thought to the occasional DNA mutation that escapes proper DNA damage repair and results

in activation or repression of an oncogene or tumor suppressor gene, respectively. However,

the potential to reverse epigenetic changes after silencing occurs has raised great interest in

epigenetic-based therapeutics in the cancer field [Helin and Dhanak 2013]. At this point the

published work linking chromatin changes at sites of DNA damage to heritable epigenetic

changes is mostly circumstantial and more work needs to be done to demonstrate a direct

causative link between the two. Additionally, further work needs to be done to determine

other mechanisms by which environmental exposure can induce epigenetic changes.

Understanding the mechanisms behind exposure-induced epigenetic changes will hopefully

result in the development of biomarkers for exposure in order to better protect the health of

our population and possible drug treatments for at-risk populations either undergoing

chronic exposure to environmental pollutants or chronic inflammation.
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Figure 1. Model for how environmental exposure-induced DNA damage may lead to epigenetic
silencing
At sites of environmental exposure, either the exposure itself or increased levels of ROS

caused by exposure cause DNA damage (red star). At the sites of damage histone

modifications occur (green circles) and the chromatin is remodeled. Additionally, epigenetic

silencing proteins are recruited to the site of damage, possibly to prevent transcription from

interfering with the repair process. It is unclear at this time if all of these proteins are being

recruited to all sites of damage and whether or not they are interacting with each other. In

most instances, after completion of DNA repair the chromatin is restored back to normal, the

epigenetic silencing proteins are no longer localized to the area, and transcription resumes.

In cases of chronic exposure, DNA damage and repair cycles can happen repeatedly and, in

rare instances, the chromatin structure may not be returned to normal and binding of the

epigenetic silencing proteins may persist, resulting in stable epigenetic silencing.
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