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Samiha Sarwat 

 

PENALIZED SPLINE MODELING OF THE EX-VIVO ASSAYS DOSE-

RESPONSE CURVES AND THE HIV-INFECTED PATIENTS’ BODYWEIGHT 

CHANGE 

A semi-parametric approach incorporates parametric and nonparametric functions 

in the model and is very useful in situations when a fully parametric model is inadequate. 

The objective of this dissertation is to extend statistical methodology employing the semi-

parametric modeling approach to analyze data in health science research areas. This 

dissertation has three parts. The first part discusses the modeling of the dose-response 

relationship with correlated data by introducing overall drug effects in addition to the 

deviation of each subject-specific curve from the population average. Here, a penalized 

spline regression method that allows modeling of the smooth dose-response relationship is 

applied to data in studies monitoring malaria drug resistance through the ex-vivo assays. 

The second part of the dissertation extends the SiZer map, which is an exploratory and a 

powerful visualization tool, to detect underlying significant features (increase, decrease, or 

no change) of the curve at various smoothing levels.  Here, Penalized Spline Significant 

Zero Crossings of Derivatives (PS-SiZer), using a penalized spline regression, is 

introduced to investigate significant features in correlated data arising from longitudinal 

settings.   The third part of the dissertation applies the proposed PS-SiZer methodology to 

analyze HIV data. The durability of significant weight change over a period is explored 

from the PS-SiZer visualization.  PS-SiZer is a graphical tool for exploring structures in 

curves by mapping areas where rate of change is significantly increasing, decreasing, or 

does not change.  PS-SiZer maps provide information about the significant rate of weigh 

change that occurs in two ART regimens at various level of smoothing.  A penalized spline 
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regression model at an optimum smoothing level is applied to obtain an estimated first-

time point where weight no longer increases for different treatment regimens. 

Jaroslaw Harezlak, Ph.D., Chair 
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 INTRODUCTION 

The objective of this dissertation is to extend statistical methodology employing the 

semi-parametric modeling approach to analyze longitudinal data in health science research 

areas. Various parametric and non-parametric models and statistical tools has been 

developed to analyze longitudinal data. The parametric models assume a predefined 

parametric relationship between the response variables and its covariates which may lead 

to modeling biases when such relationship is not known. On the other hand non-parametric 

models are too flexible to make concise conclusion compared to parametric models. Semi-

parametric models are good compromises with good features from both parametric and 

non-parametric model. Semi-parametric models are useful when the functional form of the 

parametric model is unknown or in a situation when a fully non-parametric model may not 

perform well. 

Penalized spline regression models are popular semi-parametric statistical tools for 

curve fitting, because of their flexibility and computational efficiency, but not widely used 

by researchers in disciplines outside of statistical sciences. The goal of my dissertation 

papers is to extend statistical models for correlated observations arising from longitudinal 

settings by utilizing penalized spline regression approach, specifically, in the field of dose-

response analysis and in the epidemiologic studies of Human Immunodeficiency Virus 

(HIV). 

Overview of semi-parametric regression method: penalized spline regression  

In this chapter, a brief overview of semi-parametric regression is presented in a 

concise and modular fashion. 
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1.1 Penalized Spline Regression modeling to Analyze Dose-Response Functions and its 

Application to Monitoring Malaria Drug Resistance in Drug Assays 

Dose-response assays describe the effect of changes in an organism growth caused 

by exposure to increasing drug concentration. The analysis of such experiments frequently 

relies on parametric sigmoidal (logistic) models. However, dose-response data often do not 

follow the pre-specified shape. Therefore, we need flexible modeling approaches. We 

propose an application of a penalized spline regression method that allows modeling of the 

smooth dose response relationship with correlated data. We call our model, Penalized 

Spline Dose-Response (PSDR) method. We use the PSDR method to analyze data arising 

in the studies monitoring malaria drug resistance through ex vivo assays. Our objectives of 

this research are: (i) to model dose-response relationship with correlated data by 

introducing overall drug effects in addition to the analysis based on each biological 

replicate. (ii) to estimate the quantities of interest, e.g. half-maximal inhibitory 

concentration (IC50) and obtain their properties (standard errors – SE and confidence 

intervals - CI). (iii) to develop a user friendly R-function for the analysis of the PSDR 

models. 

1.2 Penalized Spline Significant Zero Crossings of Derivatives (PS-SiZer): A Visual 

Tool to Investigate Significant Features in Longitudinal data 

We propose an extension of the Significant Zero Crossings of Derivatives (SiZer) as 

an exploratory graphical tool to analyze longitudinal data.  The standard implementation 

of SiZer is based on the local linear smoother with kernel-type smoothing method for curve 

estimation problems. In longitudinal studies, data are often correlated and it is necessary to 

account for the within-subject correlation. In this work, we propose an extension of the 
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SiZer methodology for correlated observations arising from longitudinal settings by 

utilizing penalized spline regression model. The proposed approach is an extension of the 

SiZer map for correlated observations arising from longitudinal settings and enhancement 

of the SiZer analysis using computationally efficient smoothing method, penalized spline 

regression model. We apply our PS-SiZer methodology to analyze the differential pattern 

of weight change over time among the HIV patients, data from the International 

Epidemiologic Database to Evaluate AIDS (IeDEA) collaboration.  

1.3 Application of PS-SiZer map to investigate significant features of the rate of 

change of body-weight profile for HIV infected patients in IeDEA study 

This work involves standardized data collected on HIV-positive patients initiating 

antiretroviral therapy (ART) in five regions of the International Epidemiologic Databases 

to Evaluate AIDS (IeDEA) collaboration. The key objective is to understand the pattern of 

body-weight change in HIV patients initiating stavudine (d4T) containing first-line 

regimens versus non-d4T-containing regimens.  PS-SiZer is a unique visualization tool to 

investigate significant features which can handle longitudinally collected data, such as 

body-weight change in HIV patients. PS-SiZer map used to explore the structure in curves 

by mapping areas where weight change is significantly increasing, decreasing or does not 

change. The PS-SiZer map together with a fitted smoothed curve at an optimum level of 

smoothing provided valuable insight and used for statistical comparison of  the durability 

of weight gain in patients received ART regimens containing and not containing d4T. 

This dissertation is organized as follows. In Chapter 2, we present an overview of 

semi-parametric regression models. In Chapter 3, we present penalized spline regression 

modeling to analyze dose-response functions and its application to monitoring malaria drug 
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resistance in ex-vivo drug assays. We present, PS-SiZer: a visual tool to investigate 

significant features in longitudinal data in Chapter 4. In Chapter 5, we present application 

of PS-SiZer to investigate significant features of the body-weight profile for HIV infected 

patients in IeDEA study. 
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CHAPTER 2. AN OVERVIEW OF THE SEMI-PARAMTERIC REGRESSION 

METHOD: PENALIZED REGRESSION SPLINE 

2.1 Semi-parametric regression analysis 

Semi-parametric regression for mean modeling for independent data have been well 

developed over more than two decades (Green & Silverman, 1994). Such regression 

models combine parametric functions of a subset of the covariates and non-parametric 

functions of other covariates to model the mean of an outcome variable. Semi-parametric 

models are useful when the functional form of the parametric model is unknown or in a 

situation when a fully non-parametric model may not perform well. Non-parametric or 

semi-parametric regression methods can be broadly classified into kernel methods and 

splines. A book authored by Wand and Jones (1995) is an excellent source of kernel 

methodology which was expanded upon by Fan and Gijbel (1996) based on the local 

likelihood approach. Spline or smoothing spline is another attractive semi-parametric 

technique that has gained popularity in the last 20 years. Spline techniques include 

smoothing spline [Green & Silverman (1994); Wahba (1990)], regression spline (Stone, 

Hansen, Kooperberg, & Truong, 1997) and penalized spline [Eilers & Marx (1996); 

Ruppert, Wand, & Carroll (2003)]. Spline techniques offer more flexibility than traditional 

parametric polynomial regression for fitting non-linear and non-polynomial relationship. 

Some definitions and related literature are provided in the following subsections. 

Smoothing splines 

The term ‘spline’ describes the process of fitting a piecewise polynomial function 

to data points. A smoothing spline estimates the regression function with all the observed 

covariate values used as knots using a piecewise polynomial function. A knot is defined as 
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the point at which piecewise polynomials are joined together. For example, the most 

commonly used smoothing spline is the natural cubic smoothing spline which assumes the 

piecewise cubic function as the smoothing function and is continuous and twice 

differentiable at the knots. 

Regression spline. 

A regression spline is a spline that considers a small number of knots and proceeds 

with a parametric regression using bases. For example, 𝛽0 + 𝛽1𝑥 is a linear combination 

of the basis function 1 and 𝑥. Thus, {1, 𝑥} is a basis for the vector space of all linear 

polynomials in 𝑥. Basis functions, such as B-spline and truncated polynomial basis, and 

radial basis are some examples of basis functions used in practice. 

In a regression spline, one needs to select the number and location of the knots as 

well as a set of basis function. Fitting of such a model tends to depend quite strongly on 

the number and locations chosen for the knots. Smooth curves can be parametrically 

modeled using a regression spline basis. However, sometimes a low-dimensional basis is 

difficult to select. An alternative to controlling smoothness is to select a high-dimensional 

basis but, then, penalizing the estimated coefficients by adding a ‘wiggliness’ penalty to 

the least squares fitting objective. This approach leads to a simple and flexible spline based 

regression model known as a penalized spline regression. 

Penalized spline regression  

Eilers and Marx (1996) proposed the technique of penalized splines, a method of 

fitting a smoothing spline using penalties to constrain the roughness of the fit. Penalized 

spline regression is a combination of a regression spline and smoothing spline 

(Fitzmaurice, Davidian, Verbeke, & Molenberghs, 2008). Moreover, penalized spline has 
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close ties with ridge regression and mixed models, ties that were discovered by researchers 

working on smoothing splines. These ties allow techniques from mixed models, for 

example, Restricted Maximum Likelihood estimation (REML), likelihood ratio tests, to be 

added to penalized spline methodology. 

The general definition of penalized spline regression as described in Ruppert et al. 

(2003) required two basic choices: 

(1) The spline model – that is, the degree and knot locations and whether 

to impose constraints such as a boundary constraints and 

 

(2) The penalty – or, more explicitly, the form of the penalty up to a 

nonnegative smoothing parameter. 

 

Once these two choices have been made, two secondary choices follow: 

(3) The basis function – for example, truncated power function or B-

spline to represent the model matrix and 

 

(4)  The basis function used in the computation.  

The later choices do not affect the fitted curve with exception of the effects of 

numerical error. Once the penalty and the basis function have been determined, then the 

penalty matrix is automatically determined. 

The various types of penalized splines can be tied together with a broader concept. 

Given a scatter plot data ( 𝑥𝑖 ,  𝑦𝑖), 𝑖 = 1, … 𝑛, let 𝐵(𝑥) = [𝐵1(𝑥), … , 𝐵𝑁(𝑥)] 𝑇 be the vector 

of spline basis functions, so that the 𝑖𝑡ℎ row of X is 𝐵𝑖(𝑥)𝑇. The general definition of a 

penalized spline is 𝛽̂𝑇𝐵(𝑥), where 𝛽̂ is the minimizer of  

∑  {𝑦𝑖 − 𝛽𝑇𝐵(𝑥)}2 +  𝜆 𝛽𝑇𝐷𝛽

𝑛

𝑖=1

 

for some symmetric positive semidefinite matrix D and the scalar 𝜆 > 0 . 
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Two basis functions represented by truncated power functions or B-splines to characterize 

the smoothing model are briefly discussed in the following sub-sections.  

Penalized spline model using truncated basis function 

Ruppert, Wand & Carroll (2003) simplified the spline mathematics by using a 

truncated line basis function. The truncated line basis function is represented as, 

(𝑥 − 𝑘𝑚)+ = {
(𝑥 − 𝑘𝑚), 𝑥 >  𝑘𝑚

0, 𝑥 ≤  𝑘𝑚
  

𝑘𝑚 is the mth knot. The spline model can be written as, 

 𝑦𝑖 =  𝛽0 +  𝛽1( 𝑥𝑖) +  ∑ 𝛽1𝑘 ( 𝑥𝑖 − 𝑘𝑘)+ + 𝜀𝑖
𝐾
𝑘=1 , 

where  β = [𝛽0   𝛽1 𝛽11   … 𝛽1𝐾]𝑇 are the coefficients of the polynomial functions and 

truncated line functions. The design matrix is represented as, 

𝑋 = [1  𝑥𝑖 (𝑥𝑖 − 𝑘𝑘)+ ]1≤𝑖≤𝑛 

The Penalized spline fitting criteria is  

minimize  ‖𝑦 − 𝑋β‖2 +  λ 𝛽𝑇Dβ 

where 𝐷 is a symmetric positive semi-definite penalty matrix such that 𝐷 =

 diag(0,0,1, ⋯  1), and λ is a smoothing parameter which controls the amount of 

smoothing. Then the solution for the regression coefficients is 𝛽̂ = (𝑋𝑇𝑋 + 𝜆 𝐷)−1 and the 

fitted value for a penalized regression spline are then given by, 

𝑦̂ = 𝑋(𝑋𝑇𝑋 + 𝜆 𝐷)−1𝑋𝑇𝑦 

 

Mixed model representation of penalized spline using truncated basis function 

The book “Semiparametric Regression” authored by Ruppert, Wand, & Carroll 

(2003) provided details connection of the solution to the penalized spline criterion as a 
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BLUP in a mixed model framework. This is very useful because it allows smoothing to be 

done using mixed model methodology and existing statistical software.  The connection 

between spline and mixed model arises from the similarity of the penalized spline fitting 

criterion to the minimization problem that yields the mixed model equations and solutions. 

Ruppert, Wand, & Carroll’s (2003) approach makes splines much more accessible since it 

relies on the well understood mixed model theory.  

This connection is made explicit in the Ngo & Wand (2004) paper. The authors provided 

S-PLUS and SAS code that illustrates the use of mixed model software to do smoothing 

for several penalized spline models. 

It is useful to rewrite the function 𝑓(. ) as a mixed effect model. Let the linear spline model 

for 𝑓 be  

𝑓(𝑥𝑖) = 𝛽0 +  𝛽1(𝑥𝑖) +  ∑ 𝑢𝑘  (𝑥𝑖 − 𝑘𝑘)+

𝐾

𝑘=1

 

Let β = [𝛽0 𝛽1]𝑇 and 𝑢 = [𝑢1 𝑢2 … 𝑢𝐾]𝑇. The design matrices are defined as: 

𝑋 = [1  𝑥𝑖 ]1≤𝑖≤𝑛 and 𝑍 = [(𝑥𝑖 − 𝑘𝑘)+]1≤𝑖≤𝑛,1≤𝑘≤𝐾 .We can rewrite the objective function 

dividing by 𝜎𝜀
2 as: 

1

𝜎𝜀
2

 ‖𝑦 − 𝑋β − Zu‖2 +  
λ

𝜎𝜀
2

 ‖u‖2 

This objective function is equivalent to the BLUP criteria by treating 𝑢 as a set of 

random coefficients with 𝐶𝑜𝑣(𝑢) =  𝜎𝑢
2𝐼 and 𝜎𝑢

2 =
𝜎𝜀

2

𝜆
. Putting all this together, the 

mixed model representation of the penalized spline regression is obtained as below: 

𝑦 = 𝑋β + Zu + ε,  𝐶𝑜𝑣 [
𝑢
𝜀

] =  [𝜎𝑢
2𝐼   

0  
 

0
𝜎𝜀

2𝐼
] 
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The estimation of the fitted smoothing model is obtained using existing mixed 

model software. The vector of parameters β and the random coefficient vector 𝑢 can be 

determined using best prediction. Conditional on the REML estimates of the smoothing 

parameters and other variance components, the estimates of the splines are simply 

empirical best linear unbiased predictions (EBLUPs). 

Penalized spline regression using P-spline bases 

P-spline (Eilers & Marx, 1996) is defined as a combination of B-spline bases and 

difference penalties. P-splines are smoothing splines based on B-spline basis function. P-

splines expand the method of using a penalty to control the smoothing, where the penalty 

is based on the difference of the coefficients of adjacent B-splines. Here, B-splines are 

constructed from polynomial pieces and joined at equally spaced knots. Once the knots are 

defined, B-splines are computed recursively for any defined degree of the polynomial (De 

Boor, 1978). Let 𝐵𝑚(𝑥𝑖𝑗; 𝑝) denote B spline basis of degree 𝑝 with m' equal intervals of 

𝑚′ +  1 knots. Hence the number of B-spline in the regression is 𝑀 =  𝑚′ +  𝑝. The 

algorithm to compute B-spline basis of any degree was detailed in the book by De Boor 

(1978).  

The recursive formula adopted by Eilers and Marx (1996) is shown as follow: 

𝐵𝑗(𝑥; 𝑝) =
𝑥−𝑥𝑗 

𝑥𝑗+𝑝+1−𝑥𝑗
𝐵𝑗(𝑥; 𝑝 − 1) + 

𝑥𝑗+𝑝+2−𝑥 

𝑥𝑗+𝑝+2−𝑥𝑗+1
𝐵𝑗+1(𝑥; 𝑝 − 1) 

𝐵𝑗(𝑥; −1) = {
 1,   𝑥𝑗  ≤  x <  𝑥𝑗+1

  0,   otherwise            
 

where 𝐵𝑗(𝑥; 𝑝) is the basis function evaluated at 𝑥𝑗 ,  and p is the order of the basis function 

being calculated. Consider the regression of n data points (  𝑥𝑖  ,   𝑦𝑖) on a set of M B-Splines 

𝐵𝑗(. ). The least square objective function to minimize is then taking a form as below: 
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∑   { 𝑦𝑖

𝑛

𝑖=1

− ∑ 𝑎𝑗

𝑀

𝑗=1

𝐵𝑗(𝑥𝑖) }2 

where 𝑎𝑗 is the vector of coefficients.  Eilers and Marx (1996) proposed a finite difference 

penalty to construct the P-Spline model for example, difference penalty with order 𝑑 can 

be written as: 𝑎𝑇𝐷𝑑
𝑇 𝐷𝑑  𝑎, where 𝐷𝑑 is the dth order finite difference penalty matrix, and 

𝐷𝑑𝑎  is the vector of 𝑑𝑡ℎdifference of 𝑎. 

Hence, the penalized objective functions take the form below: 

‖𝒚 − 𝑩𝒂‖𝟐 + 𝝀 ‖𝑫𝒅𝒂‖𝟐 

The parameter 𝜆 is the smoothing parameter to control the wiggliness of the fit. This 

approach reduces the dimensionality of the problem to M, the number of B-splines, instead 

of n, the total number of observations.  

Mixed model representation of P-spline 

Similar to the penalized spline with truncated polynomial basis, P-spline can be 

represented in a mixed model framework. The minimization problem is handled using the 

mixed model framework by treating the smoothing component as a random component of 

the mixed model (Currie & Durban, 2001). Hence, the mixed model representation is: 

 𝑌 = 𝑋𝛽 + 𝑍𝑎 + 𝜀, where, 𝑋 is the fixed effect part of the model with 𝛽 to be estimated, 

and 𝑍 is the model matrix from smoothing component with 𝑎~𝑁(0,  𝜎𝜀
2(𝜆 𝐷𝑑

𝑇𝐷𝑑)−) and 

𝜀  the vector of error variance with  𝜀~𝑁(0,  𝜎𝜀
2). Here 𝑎 is treated as a random vector but 

𝑎 has an improper distribution. The improper distribution for 𝑎 does not fit easily into 

standard linear mixed modeling approaches (Pinheiro & Bates, 2000). Some re-

parameterization is needed. So that the new parameters are divided into a set with a proper 
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distribution, to be treated as random effects, and a set with improper uniform distribution, 

to be treated as fixed effects (Wood S. N., 2006b).  

2.2 Penalized spline regression in longitudinal studies  

In the last 15 years, significant developments have taken place in semi-parametric 

regression methods for longitudinal data. In longitudinal studies, measurements are 

frequently collected for several subjects, and data are subject to within-subject variability. 

Extension of kernel and spline smoothing methods for longitudinal data is challenging due 

to the presence of within-subject correlation among repeated measurements over time.  

There have been several substantial research studies done in developing non-

parametric estimation procedures under the setting of clustered or longitudinal data. Lin 

and Carroll (2001) proposed kernel Generalized Estimation Equations (GEE) and showed 

that the kernel GEE works the best without incorporating within-subject correlation. 

Classical local-likelihood based kernel methods fail to effectively account for the within-

subject correlation. Wang (2003) proposed Seemingly Unrelated (SUR) kernel estimator 

using an iterative algorithm. Linton et al. (2004) proposed an estimator using different 

pseudo-observations that is more efficient than kernel GEE but less efficient than the SUR 

kernel in presence of within-subject correlation. 

A smoothing spline estimates the non-parametric regression function using 

piecewise polynomial function with all the observed covariate values used as knots, where 

smoothness constraints are assumed at the knots. The presence of the within-subject 

correlation among repeated measurements over time presents a major challenge in spline 

smoothing for longitudinal data. Extension of spline smoothing to longitudinal data 

requires explicitly accounting for the within-subject correlation in the likelihood function. 
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Lin et al. (2004) showed smoothing spline estimator is asymptotically equivalent to the 

SUR kernel estimator. Smoothing spline method provides several attractive features 

compared to kernel smoothing. A smoothing spline estimator has a close connection with 

the linear mixed model and can be obtained by fitting the linear mixed model. One can 

treat a smoothing parameter as an extra variance component in addition to variance 

components in the model and can simultaneously estimate by using restricted maximum 

likelihood (RELM) under the linear mixed model.   

Since a smoothing spline uses all data points as knots, large data computation can 

become cumbersome. A penalized spline regression detailed by Eilers & Marx (1996) and 

Ruppert, Wand, & Carroll (2003), among others is an attractive alternative. Penalized 

spline regression uses a moderate number of knots, and the penalty approach controls the 

wiggliness of the smoothing function. The estimates of the regression coefficients are 

obtained via the penalized likelihood approach.  

The mixed model representation of the penalized spline regression model allows for 

mixed model estimation techniques, and computation can be done by using existing 

statistical software. The mixed model representation of penalized splines allows for a 

seamless fusion between parametric mixed models and smoothing. For large data, 

computation is less expensive than smoothing spline and kernel based methods. 
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CHAPTER 3. PENALIZED REGRESSION SPLINE MODELING OF DOSE-

RESPONSE FUNCTIONS AND APPLICATION TO MONITORING MALARIA 

DRUG RESISTANCE IN DRUG ASSAYS  

Summary 

Dose-response assays describe the effect of changes in the growth of an organism 

caused by exposure to increasing drug concentration. The analysis of such experiments 

frequently relies on parametric sigmoidal (logistic) models. However, dose-response data 

often do not follow a pre-specified shape, and more flexible modeling approaches are 

necessary. We propose a penalized spline dose-response (PSDR) method, a particular semi-

parametric case of penalized regression splines that allow modeling of the smooth dose-

response relationship with correlated data via linear mixed model representation. The 

PSDR method preserves the hierarchy of the technical and biological replicates while 

letting the data guide the model estimates. We used the PSDR method to analyze data 

arising from a study that monitored malaria drug resistance through ex vivo assays and 

obtained the quantities of interest (e.g. half-maximal inhibitory concentration (IC50) and 

their associated properties). 

KEY WORDS: Dose response; Penalized spline regression; Semi-parametric. 
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3.1 Introduction 

Dose-response curves are used in several stages of drug development. First, they may 

be used to identify drug targets in drug screening assays. Second, in Phase II studies, they 

are used to support decisions about effective and safe doses of a drug. Finally, they may be 

used to monitor development of drug resistance through drug sensitivity assays. Various 

study designs and statistical analysis methods have been developed to analyze dose-

response data, such as model-based approaches that assume a functional relationship 

between the dose and response. Model-based approaches can be parametric regression with 

several functional forms, including the popular non-linear sigmoidal curves. One special 

case is the log-logistic curve; these curves with four or five parameters have direct 

biological interpretation which has made them increasingly popular.  

However, it may be difficult to find a parametric model that fits data from the 

majority of dose-response experiments which leads to an inadequate fit. While analyzing 

ex vivo drug sensitivity assays used to monitor decreases in drug sensitivity by the malaria 

parasite, we found several cases in which the observed relationships between drug and 

response did not fit a single parametric model. Motivated by the necessity to obtain 

adequate estimates of drug sensitivity in these assays, we propose a semi-parametric 

approach to estimate dose-response curves and summary measures of drug sensitivity that 

could be used in any dose-response analysis, particularly in drug sensitivity assays. The 

proposed approach can also be extended to estimate dose-response curves when searching 

for the drug targets or effective and safe doses of a drug. 

Traditionally, statistical analysis of dose-finding studies were developed using the 

multiple comparison procedure (MCP) (Bretz, Pinheiro, & Branson, 2005). The primary 
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goal of MCP is often to identify the minimum effective dose (MED) which considers dose 

as a qualitative factor and makes very few assumptions about the underlying dose- response 

model. In addition, the parametric model-based approach gained popularity in recent dose-

response literature. The model-based approach assumes a functional relationship between 

the response and dose, according to a pre-specified parametric model. The fitted model is 

then used to represent the dose–response relationship and, subsequently, estimate an 

adequate dose to achieve a desired response. 

Steenland and Deddens (2004) discussed model-based methods using a categorical 

approach, regression-splines, and simple parametric models to evaluate dose-response 

relationships with real data examples and mentioned their corresponding estimation and 

prediction issues. In their paper, Steenland and Deddens (2004) summarized their findings 

with examples that the best fitting model such as a pre-specified parametric model might 

not necessarily be the best model for risk assessment in dose-response studies. Further, 

Bretz et al. (2005) discussed a strategy to combine two major dose-response analysis 

approaches: MCP and model-based analysis. Their proposed approach assumed that there 

are several parametric models available and that the multiple comparison technique would 

be used to choose the best model for the underlying dose-response data. Several problems 

with this method can be noted. For example, a set of suitable parametric models needs to 

exist. There is no consideration for the correlation, repeated measurements, or the 

sensitivity of the choice of initial values for the standardized models. Another possible 

solution to fit dose-response data with a non-parametric method such as kernel regression 

or local linear regression which was first introduced by Cleveland (1979) followed by Fan 

and Gijbels (1992). 
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To quantify non-linear exposure-response associations, the most common models 

used in practice are Emax, log-logistic, exponential decay and quadratic (Bretz, Pinheiro, 

& Branson, 2005). The Emax model represents the percentage of the maximum change 

from the basal effect (dose=0) associated with dose d. The exponential decay with three 

parameters (EXP3) model intends to capture a sub-linear or a convex dose-response 

relationship. The log-logistic with four parameters (LL4) corresponds to four components: 

a basal effect, maximum effect from basal, the dose that gives half of the maximum change 

in effect and finally a parameter controlling the rate of change with dose in the effect. A 

quadratic (QUAD) model intends to capture a possible non-monotonic dose-response curve 

in either a concave or a convex shape. The functional form and the pre-specified shape of 

the 3-candidate models (LL4, EXD3, and QUAD) in dose-response analysis are presented 

in Table 3-1. On the other hand, to avoid parametric constraints on the shape of the 

exposure-response curve, a variety of smoothing techniques have been applied by 

epidemiologists (Greenland, 1995), (Govindarajulu, Malloy, Ganguli, Spiegelman, & 

Eisen, 2009). Some recent dose-response analysis is presented by fitting quadratic and 

cubic functions such as the restricted cubic splines (Desquilbet & Mariotti, 2010) or 

applying fractional polynomials (Govindarajulu, Malloy, Ganguli, Spiegelman, & Eisen, 

2009). Desquilbet and Mariotti (2010) discussed restricted cubic spline (RCS) functions as 

a useful tool to analyze dose-response relationships where continuous exposure and the 

response have a non-linear association. But, the basic disadvantage of RCS functions is 

that the shape of the dose-response association generally depends on the location and the 

number of knots. 
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As discussed in the literatures above, no single parametric model may be appropriate 

for all subjects, and the widely used sigmoidal models such as LL4 or EXD3 do not provide 

an adequate fit for the data. To better understand this situation, consider the data from the 

malaria assay (described in Figure 3-1 and Section 3.2) of two subjects. For the first subject 

(Figure 3-1 (a)), comparison of observed and fitted curves suggest that none of the 

parametric models (LL4, EXD3, and QUAD) fit the observed data well. The poor fit of the 

parametric models suggest that a semi-parametric procedure could be more appropriate. In 

the case of the second subject (although a fitted LL4 curve seemed to overlap the observed 

data (Figure 3-1 (b)), the estimated IC50 was incorrectly estimated and is unrealistic with a 

negative estimated dose (-0.45; SE = 3.98). Even with the fitted EXD3 model, the estimated 

IC50 was high (1.78; SE = 0.39). Achieving a good model-fit but implausible target 

summary measurements, such as risk assessment in dose-response analysis, has been 

previously noted by Steenland & Deddens (2004), who showed various examples of data 

well fitted with  parametric models (log-log, log-linear) yielding biologically implausible 

(rapid increase) results. In summary, we observed that estimates based on the standard 

sigmoidal model were sensitive to the specific choice of the parametric non-linear model. 

The estimated dose-response curves may be incompetent and fail to fit the observed data, 

and even if a non-linear parametric model fits the data well, the model may fail to estimate 

the IC50 correctly. 
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(a) 

 

(b) 

 
 

Figure 3-1 Fitted curves by LL4, EXD3 and QUAD parametric models and 

corresponding estimated IC50 with SD using malaria data. (a) Poor fit of the parametric 

models (b) parametric models fitted the data satisfactorily but the estimate of IC50 is 

unrealistic with large SD. IC50 values are in nM. 
 

Although sigmoidal dose-response curves are biologically plausible to represent 

data from drug assays, we often encountered problems when analyzing several assays. For 

example, observed curves of more than 10% subjects clearly and visually did not fit the 

sigmoidal shape. Several mechanisms may contribute to obtaining curves with diverse 

shapes. For instance, subject parasites may present widely unanticipated variable 

sensitivity to the drug, and the doses used in the assay may cover only parts of the curve 

presented by the different subject parasite. Therefore, although the underlying true curve 

of dose-response is sigmoidal, only a fraction of this curve may be observed for some 

subjects. Ex vivo drug sensitivity assays are not only commonly used in malaria but also in 

other infectious diseases and cancer.  

This paper focuses on the use of the penalized spline regression in the health 

sciences in the dose-response analysis. In our research, we applied a semi-parametric 

approach to remedy an inadequate parametric model by incorporating parametric and 
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nonparametric functions in the model. The book “Semiparametric Regression” authored 

by Ruppert, Wand, & Carroll (2003) is an excellent reference for nonparametric and semi-

parametric regression models based upon penalized-splines. The book illustrates 

methodical approach of a mixed model representation with truncated polynomial bases, as 

almost immediate from the form of the basis and the penalty function. Eilers and Marx 

(1996) proposed a technique of penalized splines, a method of fitting a smoothing spline 

using knots and simple penalties. Ngo and Wand (2004) demonstrated a method using 

existing mixed model software by using the shrinkage property of mixed models instead 

of an externally defined penalty. Durb`an et.al (2005) proposed a penalized spline 

regression approach to model the deviation of each subject curve from the population 

average. 

Our proposed semi-parametric model is called penalized spline dose-response 

(PSDR), an application of Durb`an et.al (2005) in the setting of dose-response analysis. 

This method preserves the hierarchy of the technical and biological replicates while letting 

the potentially correlated data guide the mean model estimates.  

Our objectives for this undertaking were as follows (1) to allow the modeling of the dose-

response relationship with correlated data by introducing overall drug effects in addition 

to the analysis based on each biological replicates (2) to estimate the quantities of interest 

(e.g. half maximal inhibitory concentration (IC50) and obtain their properties (standard 

deviation (SD), confidence limits (CL)), and (3) to develop a user-friendly R-function for 

the analysis of the dose-response relationship using the PSDR models. 

This paper is organized as follows. In Section 3.2, we present data on monitoring 

drug sensitivity in malaria. Penalized regression splines method and its usefulness in dose-
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response area are presented in section 3.3. In Section 3.4, simulation studies are presented 

to compare standard dose-response models with PSDR models. We apply our method to 

analyze a study from malaria data for screening compounds through an ex vivo experiment 

in Section 3.5, and concluding remarks are found in Section 3.6. 

3.2 Motivating example – monitoring malaria drug resistance  

Rising concerns with resistance to the whole malaria drug arsenal has led to 

widespread implementation of ex vivo assays to monitor sensitivity to several drugs in 

malaria point of point-of-care units in endemic regions of Africa, South America, and Asia. 

Upon seeking care to treat malaria where drug sensitivity is monitored, patients have 

venous blood drawn and subsequently receive treatment. Ex vivo assays are conducted with 

fresh blood taken directly from the patient and added to assay plates (generally 96 wells in 

8 x 12 matrices) in which several sets of wells contain decreased concentrations of 

alternative drugs. The patient blood is left to interact with the drug in the plate for a pre-

determined duration, and then parasite density is indirectly recorded using some type of 

marker, such as quantification of an antibody against the parasite or parasite DNA. A dose-

response curve is fit for each patient and summarized through IC50 that is defined as the 

drug concentration causing fifty-percent inhibition of the desired activity. 

In our research, we analyzed data from an ex-vivo a 4',6-diamidino-2-phenylindole 

(DAPI)  malaria drug assay including three drugs, Amodiaquine (AMQ), Chloroquine 

(CQ), and Mefloquine (MEF) and 12 doses, carried out in 106 subjects in a Senegalese 

clinic in 2008 (Ndiaye, et al., 2010). The arrangement of the collected data is presented in 

Table 3-1 for the drug AMQ as an illustration. The assay outcome was based on parasite 

load quantified through the fluorescence emitted by the DAPI dye that adhered to parasite 
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genetic material. The response of interest was the percentage of fluorescent decline 

(surrogate of percent decline in parasite density). 

Table 3-1 An ex-vivo assays of Malaria drug resistance 

Dr

ug 

Biological 

Replicates

-Subjects 

12 Doses (log 10) Technical 

Replicates 

A 106 0.00,0.47,0.69,0.95,1.22,1.51,1.80,2.10,2.40,2.70,3.00

,3.30 

2 

 

3.3 Dose-response modeling and semi-parametric approach 

In practice, the functional form of the dose-response curve represented 

parametrically, such that the response of efficacy or safety variable is denoted by Y, which 

is observed for a given set of doses, d. The general framework is then defined as below:  

        𝑌𝑖𝑗 =  𝜇𝑑𝑖 +  𝜀𝑖𝑗 ,   𝜀𝑖𝑗    ~ 𝑁(0, 𝜎𝜀
2)                      (3.1) 

Where 𝑌𝑖𝑗  = percent of parasitemia response of ith subject at jth dose, 𝑗 = 1, …  𝑛𝑖  and 𝑖 =

1, … , 𝑛. The mean response at dose 𝑑𝑖 can be represented as 𝜇𝑑𝑖 = 𝑓(. ) for a dose-response 

model and may be a linear or nonlinear function of the model parameters. 
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Table 3-2  Selected candidate models used in the analysis of dose-response 

relationships 

Models* 

Functional representation 

Graphical representation 

Log- Logistic with 4-

parameters (LL4). 

Exponential decay with 3-

parameters (EXD3). 

Quadratic (QUAD). 

𝒇𝑳𝑳𝟒(𝒙)∗∗

= 𝒄

+   
(𝒖 − 𝒍)

𝟏 + 𝒆𝒙𝒑[𝒃(𝒍𝒐𝒈(𝒙) − 𝒍𝒐𝒈(𝒆))]
 

𝒇𝑬𝑿𝑫𝟑(𝒙) 

= 𝒍 +  (𝒖 − 𝒍)(𝒆𝒙𝒑(−𝒙/𝒆)) 

𝒇𝑸𝒖𝒂𝒅(𝒙) 

= 𝜷𝟎  + 𝜷𝟏 𝒙 +  𝜷𝟐 𝒙𝟐 

 

 

 

 

 

 

Note: *Model fitted for individual subjects. ** l = lower limit, u = upper limit, b = slope, 

e=dose giving % of response, x=dose-level. 

 

We propose to use penalized spline regression model to estimate dose-response 

curves and curve features and name it penalized spline dose response (PSDR) model.  

The major motivation of this paper was to describe and account for the overall population 

or drug effect in the analysis of a dose-response relationship. We wanted to account for the 

overall drug effect as well as the deviation of each subject specific effect from the overall 

drug effect. Additionally, we wanted to consider the subject specific correlation in the dose-

response model. In the following subsections we briefly present two PSDR models PS-

POP and PS. The PS-POP model was developed to incorporate the population curve as 
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well as the deviation of each subject curve from the population average in the dose-

response analysis and described in details in Section 3.3.1. PS-model was developed for 

individual subject-specific curve to follow the standard practice in dose-response analysis 

and described in Section 3.3.2. 

3.3.1 PSDR-PS-POP model for overall drug and subject-specific effect  

The PS-POP model is the application version of the semi-parametric modeling 

approach for dose-response settings originally proposed in Durb`an et.al (2005) for fitting 

subject-specific curves for longitudinal data. 

Consider the dose-response standard model (equation 3.1), the penalized splines regression 

model version of the dose-response curve is formulated as 

   𝑌𝑖𝑗 =  𝑓𝑑𝑟𝑢𝑔(𝑥𝑖𝑗) +   𝑔𝑖 (𝑥𝑖𝑗) +  𝜀𝑖𝑗;    𝜀𝑖𝑗    ~ 𝑁(0, 𝜎𝜀
2)   (3.2) 

where  𝑌𝑖𝑗  is the percent of parasitemia responses of ith subject at dose 𝑥𝑖𝑗, for i= 1,……, n 

and j=1,…..,  𝑛𝑖 , 𝑓𝑑𝑟𝑢𝑔(𝑥𝑖𝑗)  is the population or overall drug effect, and 𝑔𝑖 (𝑥𝑖𝑗) is the 

deviation or departure of the ith subject from the overall drug effect. So, there are two parts: 

the overall drug effect 𝑓𝑑𝑟𝑢𝑔(𝑥𝑖𝑗 ) and the subject-specific effect  𝑔𝑖(𝑥𝑖𝑗). 

A smooth function is assigned to measure the overall drug effect, 𝑓𝑑𝑟𝑢𝑔(𝑥𝑖𝑗). Similarly, a 

random smooth function is assigned to measure the subject specific effects 𝑔𝑖 (𝑥𝑖𝑗). There 

are various approaches for modeling 𝑓𝑑𝑟𝑢𝑔(𝑥𝑖𝑗) and 𝑔𝑖 (𝑥𝑖𝑗) with associated penalties. In 

particular, we use penalties on truncated quadratic-polynomial bases to construct 

𝑓𝑑𝑟𝑢𝑔(𝑥𝑖𝑗) and 𝑔𝑖 (𝑥𝑖𝑗).  

 



 

25 

 

Population or overall drug effect:  

To formulate the PS-POP model we consider  𝑓𝑑𝑟𝑢𝑔(𝑥𝑖𝑗 ) as a smooth function 

which reflects the overall trend of dose and responses for the overall drug effect and is 

estimated by a penalized spline with quadratic truncated polynomial basis. Let  𝑘1, 𝑘2, … 𝑘𝐾  

be a set of distinct knots in the range of 𝑥𝑖𝑗  𝑎𝑛𝑑  𝑥+= maximum (0, x). The number of knots 

K is fixed and large enough to ensure the flexibility of the curve. The knots are chosen as 

quantile of 𝑥 with probability 1/(𝐾 + 1) , . . … . , 𝐾/(𝐾 + 1). Therefore, the functional 

presentation of   𝑓𝑑𝑟𝑢𝑔(𝑥𝑖𝑗 ) can be written as: 

𝑓𝑑𝑟𝑢𝑔(𝑥𝑖𝑗 ) =  𝛽0 + 𝛽1 𝑥𝑖𝑗 +  𝛽2𝑥𝑖𝑗
2 +  ∑ 𝑢𝑘(𝑥𝑖𝑗−𝑘𝑘)

+

2𝐾
𝑘=1               (3.3a) 

Subject-specific Biological replicate effect  

A more flexible and more adaptable approach to model the subject-specific 

differences is the use of penalized regression semi-parametric technique. For a subject 

specific effect, the problem of smoothness is handled by applying truncated line bases 

(Durb`an, Harezlak, Wand, & Carroll, 2005).  Here each subject-specific curve has a linear 

and a non-linear component to allow for more flexibility. We express  𝑔𝑖(𝑥𝑖𝑗)   in terms of 

truncated quadratic-polynomials assuming 𝑔𝑖 as a smooth function estimated by penalized 

splines and specify number of knots. For simplicity we use same number of knots=K as in 

the overall drug-effect curve and the formulation is as follows: 

                        𝑔𝑖(𝑥𝑖𝑗) =  𝑎𝑖1 + 𝑎𝑖2 𝑥𝑖𝑗 +   𝑎𝑖3 𝑥𝑖𝑗
2 + ∑ 𝑣𝑖𝑘(𝑥𝑖𝑗−𝑘𝑘)

+

2𝐾
𝑘=1                   (3.3b) 
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Where (𝑎𝑖1 ,𝑎𝑖2 , 𝑎𝑖3 ) ~𝑁(0,  𝛴) and  𝛴 is an unstructured 3𝑋3 matrix. Here the linear part 

is 𝑎𝑖1 + 𝑎𝑖2 𝑥𝑖𝑗 +   𝑎𝑖3 𝑥𝑖𝑗
2 and the non-linear part is; ∑ 𝒗𝒊𝒌(𝒙𝒊𝒋−𝒌𝒌)

+

𝟐𝑲
𝒌=𝟏 . Finally the PS-

POP model is presented as in equation (3.4) below: 

𝑌𝑖𝑗 = 𝛽0 + 𝛽1 𝑥𝑖𝑗 +  𝛽2𝑥𝑖𝑗
2 +  ∑ 𝑢𝑘(𝑥𝑖𝑗−𝑘𝑘)

+

2𝐾
𝑘=1  +   𝑎𝑖1 + 𝑎𝑖2 𝑥𝑖𝑗 +   𝑎𝑖3 𝑥𝑖𝑗

2 +

∑ 𝑣𝑖𝑘(𝑥𝑖𝑗−𝑘𝑘)
+

2𝐾
𝑘=1 + 𝜀𝑖𝑗                                                               (3.4) 

where (𝑎𝑖1 ,𝑎𝑖2 , 𝑎𝑖3 ) ~𝑁(0,  𝛴) ; 𝜀𝑖𝑗    ~ 𝑁(0, 𝜎𝜀
2) 

In penalized spline regression model specification the smoothness of the population 

and subject-specific effect usually obtained by applying ridge penalty on 𝑢𝑘 and 𝑣𝑖𝑘 to 

constrain their influence. The penalized spline smoother corresponds to the optimal 

predictor in a mixed model framework assuming 𝑢𝑘~𝑁(0,  𝜎𝑢
2) and 𝑣𝑖𝑘~𝑁(0,  𝜎𝑣

2). So, 

both components are considered as random and can easily be described in the mixed model 

framework.  Brumback et.al (1999), Currie and Durban (2002), and Wand (2003) among 

others discussed the mixed model representation of penalized splines. 

Our next step is to describe the model in the mixed model formulation according to 

Ruppert, Wand, & Carroll (2003) and Durb`an, Harezlak, Wand, & Carroll (2005). As 

described in Ruppert, Wand, & Carroll (2003), the connection between the penalized spline 

smoother and mixed model allows flexible modeling with correlated repeated data with 

smooth curves. In addition, with truncated polynomial bases, a mixed model representation 

is almost immediate from the form of the bases and the penalty function. The model 3.4 

can be presented in the mixed model framework by the following matrix notations:  

𝑌 = 𝑋𝛽 + 𝑍𝑢 + 𝜀     



 

27 

 

where,  𝑌 = [

𝑦11

⋮
𝑦𝑛𝑛𝑖

] , 𝑋 = [
𝑋1

⋮
𝑋𝑛

] , 𝑋𝑖 = [

1 𝑥𝑖1 𝑥𝑖1
2

⋮ ⋮ ⋮
1 𝑥𝑖𝑛𝑖

𝑥𝑖𝑛𝑖

2
]  

𝑍 = [

𝑍1

𝑍2

⋮
𝑍𝑛

   

𝑋1

0
⋮
0

    

0
𝑋2

⋮
0

   

⋯
⋯
⋱
⋯

   

0
0
⋮

𝑋𝑛

   

𝑍1

0
⋮
0

   

0
𝑍2

⋮
0

   

⋯
⋯
⋱
⋯

   

0
0
⋮

𝑍𝑛

] , 𝑍𝑖 = [

(𝑥𝑖1 − 𝑘1)+
2 ⋯ (𝑥𝑖1 − 𝑘𝐾)+

2

⋮ ⋱ ⋮

(𝑥𝑖𝑛𝑖
− 𝑘1)

+

2
⋯ (𝑥𝑖𝑛𝑖

− 𝑘𝐾)
+

2
] 

𝛽 = (𝛽0, 𝛽1, 𝛽2)𝑇,  𝑢 = [𝑢1, ⋯ , 𝑢𝑘 , 𝑎11, 𝑎12, 𝑎13, ⋯ , 𝑎𝑛1, 𝑎𝑛2, 𝑎𝑛3, 𝑣11, ⋯ , 𝑣𝑛𝐾]𝑇 

𝐺 = 𝐶𝑜𝑣(𝑢) = [

𝜎𝑢
2𝐼 0 0
0 blockdiaonal

1≤𝑖≤𝑛
Σ 0

0 0 𝜎𝑣
2𝐼

] 

The existing software for mixed model analyses makes it possible to implement the 

complicated penalized spline regression models in a simple mixed model representation 

and allows us to fit the above semi-parametric mixed model using the R-package ‘nlme’ 

(Pinheiro, Bates, DebRoy, & Sarkar, 2009). 

  A standard estimation criterion for variance component Restricted Maximum 

Likelihood (REML) is used to estimate model parameters. For model in 3.5 

𝑙𝑅 (𝜎𝑢
2, 𝜎𝑣

2, 𝜎𝜀
2) =

1

2
log|𝑉| −

1

2
log|𝑋𝑇𝑉−1𝑋| −

1

2
 𝑦𝑇(𝑉−1 − 𝑉−1𝑋(𝑋𝑇𝑉−1𝑋)−1𝑋𝑇𝑉−1)𝑦 

where 𝑉 = 𝑍𝐺𝑍𝑇 + 𝜎𝜀
2𝐼 and 𝐺 is defined above. The vector of parameters 𝛽 and the 

random coefficients vector 𝑢 can be determined using the prediction: 

𝛽̂ = (𝑋𝑇𝑉−1𝑋)−1𝑋𝑇𝑉−1𝑦 

𝑢̂ = 𝐺̂ 𝑍𝑇𝑉̂−1(𝑦 − 𝑋𝛽̂) 

According to Ruppert, Wand, & Carroll (2003) variance calculation should be done 

with respect to the conditional distribution 𝑦|𝑢. Originally, Ruppert, Wand, & Carroll 
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(2003) derived the standard deviation of { 𝑓(𝑥)|𝑢 }. We follow the same formulation for 

our PS-POP model as below: 

𝑆𝐷̂{𝑓(𝑥)|𝑢} =  𝜎𝜖̂  √𝐶𝑥(𝐶𝑇𝐶 +  
𝜎̂𝜀

2

𝜎̂𝑢
2

 𝐷)−1  𝐶𝑇𝐶 (𝐶𝑇𝐶 +  
𝜎̂𝜀

2

𝜎̂𝑢
2

 𝐷)−1 𝐶𝑥
𝑇 

where 𝐶𝑥 = [𝑋𝑥 𝑍𝑥], D is some symmetric positive semi definite matrix associated with 

the penalty, and 𝐶 = [𝐶𝑥𝑖]1≤𝑖≤𝑛, and the corresponding 100(1-α)% confidence limit (CL) 

is as follows: 

𝑓(𝑥) ± 𝑧 (1 −
𝛼

2
) 𝑆𝐷̂{𝑓(𝑥)|𝑢} 

3.3.2 PSDR-PS- model for individual subject curves:  

To formulate the PS model for individual subject-specific curves, we considered 

standard penalized model for individual ith subject. The knots and penalty are defined as in 

Section 3.3.1. Since we are considering truncated lines as the basis for our penalized spline 

regression the mathematical form of the PS model can be represented for an individual ith 

subject: 

Y𝑖𝑗 = 𝑓(𝑥𝑖𝑗) + 𝜀𝑖𝑗 = 𝛽0 + 𝛽1 𝑥𝑖𝑗 +  𝛽2𝑥𝑖𝑗
2 +  ∑ 𝑢𝑘(𝑥𝑖𝑗 − 𝑘𝑘)

+

2𝐾
𝑘=1 + 𝜀𝑖𝑗                 (3.5) 

where 𝜀𝑖𝑗~𝑁(0,  𝜎𝜀
2). Here equation (3.5) is a smooth function which is estimated by a 

penalized spline regression model. This model assumes the individual subject curve has 

two components. One is linear (here, we are considering quadratic form), 𝛽0 +

𝛽1 𝑥𝑖𝑗 +  𝛽2𝑥𝑖𝑗
2 and the other part is non-linear presented as  ∑ 𝑢𝑘(𝑥𝑖𝑗−𝑘𝑘)

+

2𝐾
𝑘=1 . For this 

simple penalized spline regression model, we will briefly show the penalized spline 

regression fit and then the representation of the mixed model framework. Here 𝑓(𝑥) is our 
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smooth function and we apply a quadratic penalty on the basis coefficients to control model 

smoothness and 𝜆 is the associated smoothing parameter. Then the roughness penalty term 

is, 𝜆𝛽𝑇𝐷 𝛽, where D is a (𝐾 + 3) × (𝐾 + 3) matrix. The estimates of 𝛽 = (𝛽0, 𝛽1, 𝛽2) and 

u = (𝑢1, . . 𝑢𝑘) are obtained by minimizing the penalized least squares which can be written 

as: 

∑  {𝑌𝑖𝑗 − 

𝑛𝑖

𝑗=1

(𝛽0 + 𝛽1 𝑥𝑖𝑗 +  𝛽2𝑥𝑖𝑗
2 +  ∑ 𝑢𝑘(𝑥𝑖𝑗 − 𝑘𝑘)

+

2
𝐾

𝑘=1

 ) }2 +  𝜆𝛽𝑇𝐷 𝛽 

The minimization criteria can easily be described in the mixed model representation where 

penalized spline smoother correspond to the optimal predictor in a mixed model framework 

assuming  𝑢𝑘~𝑁(0,  𝜎𝑢
2) and 𝝀 =

𝜎𝜀
2

𝜎𝑢
2 . 

Let 

𝛽 = [

𝛽0

𝛽1

𝛽2

]  and   𝑢 = [
𝑢1

⋮
𝑢𝐾

] 

be the coefficients of the polynomial functions and truncated line functions, respectively. 

The corresponding vectors can be defined for ith  subject: 

𝑋 = [
1 𝑥1 𝑥1

2

⋮ ⋮ ⋮
1 𝑥𝑛𝑖

𝑥𝑛𝑖

2
];  𝑍 = [

(𝑥1 − 𝑘1)+
2 ⋯ (𝑥1 − 𝑘𝐾)+

2

⋮ ⋱ ⋮

(𝑥𝑛𝑖
− 𝑘1)

+

2
⋯ (𝑥𝑛𝑖

− 𝑘𝐾)
+

2
 ] 

The penalized spline fitting criteria become, 

‖𝑦 − 𝑋𝛽 − 𝑍𝑢‖2 + 𝝀  ‖𝑢‖2 

Treating 𝑢 as a set of random coefficients with  𝑐𝑜𝑣(𝑢) = 𝜎𝑢
2𝐼  where 𝜎𝑢

2=𝜎𝜀
2/ 𝜆 

The mixed model representation is:  
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            𝑦 = 𝑋𝛽 + 𝑍𝑢 + ɛ;      𝑐𝑜𝑣 [
𝑢
𝜀

] = [
𝜎𝑢

2𝐼 0

0 𝜎𝜀
2𝐼 

] 

Fitted values:   𝑓(𝑥) = 𝐶(𝐶𝑇𝐶 + 𝜆𝐷)−1𝐶𝑇𝑦   

where 𝐶 = [𝑋   𝑍];  𝐷 =  𝑑𝑖𝑎𝑔 (0,0,0,1,1, ⋯ ,1);  𝜆 = 𝜎𝜀
2/𝜎𝑢

2 . 

The standard deviation of { 𝑓(𝑥)|𝑢 } for individual ith subject is 

𝑆𝐷̂{𝑓(𝑥)|𝑢} =  𝜎𝜖̂  √𝐶𝑥(𝐶𝑇𝐶 +  
𝜎̂𝜀

2

𝜎̂𝑢
2

 𝐷)−1  𝐶𝑇𝐶 (𝐶𝑇𝐶 +  
𝜎̂𝜀

2

𝜎̂𝑢
2

 𝐷)−1 𝐶𝑥
𝑇 

with 𝐶𝑥 = [𝑋𝑥 𝑍𝑥] and 𝐶 = [𝐶𝑥𝑖]1≤𝑖≤𝑛, and the corresponding 100(1-α)% confidence 

limit (CL) is as follows: 

𝑓(𝑥) ± 𝑧 (1 −
𝛼

2
) 𝑆𝐷̂{𝑓(𝑥)|𝑢} 

3.3.3 Algorithm to calculate relative IC50 from the PS-POP and PS model 

The next step in our PSDR dose-response analysis is to obtain the quantities of 

interest, half-maximal inhibitory concentration (IC50) and their associated properties. 

Commonly used models in dose-response analysis are those generating from sigmoidal 

functions (for example, LL4, EXD3 (Table 3-2)), and one clear advantage of the LL4 and 

EXD3 model is that one of the model parameter is defined as the dose which gives the 

percent of response( for example, IC50 ). Once the dose-response curve is fitted with the 

sigmoidal model, the IC50 and the SD of the IC50 is obtained from the estimated parameter 

of interest.  

For PSDR models, we estimated dose response curves with CL using mixed model 

formulation. The respective summary measures of dose response curves, such as IC50 and 

SD of IC50, needs to be numerically estimated from the fitted response. We present an 
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algorithm to estimate relative IC50 and SD of IC50 from the fitted PSDR model. Originally, 

the algorithm was developed to estimate relative IC50 which is the concentration required 

bringing the curve down to point half way between the top and bottom plateaus of the 

curve. This algorithm can be used for any quantile of interest (for example, 90th percentile). 

The relative IC50 algorithm starts with estimating the fitted responses from the 

PSDR model and involves the following steps: 

1) Fit the PSDR model using mixed model representation, and obtain the fitted 

responses. 

2) Estimate the mid value from the fitted responses: mid-value= (maximum of fitted-

value – minimum of fitted-value)/2. 

3) Specify the function for which a root is needed. Here, the function is the fitted 

PSDR minus the mid-value which is estimated in Step 2. 

4) Specify the lower and upper end points of the interval to search for a root (i.e., zero) 

of the function in Step 3. The upper endpoint must be strictly larger than the lower 

endpoint and the function values at the endpoints must be of opposite signs (or 

zero). 

5) The root of the equation is searched by the method based on the algorithms given 

by Brent (1973). The algorithm assumes a continuous function (which then is 

known to have at least one root in the interval). 

6) Convergence is declared either if 𝑓(𝑥)  =  0 or the change in 𝑥 for one step of the 

algorithm is less than tolerance. 

The estimated IC50 is obtained from the above algorithm and we calculate the SD 

of estimated IC50 utilizing the ”Delta Method" (Oehlert, 1992) in Equation (3.6). 
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𝑉𝑎𝑟(𝐼𝐶50) = 𝑉𝑎𝑟 (𝑓(𝐼𝐶50) × { 𝑓′(𝐼𝐶50)}−2                            (3.6) 

Where 𝑓′(𝐼𝐶50) is the 1st derivative of the estimated responses at 𝑥 = 𝐼𝐶50. 

3.4 Simulation studies 

The key objective of the simulation study was to fit dose-response curves, estimate 

IC50 and compare four (LL4, EXD3, QUAD and PS) candidate parametric models with the 

PS-POP model.  Two hundred samples, each with fifty subjects, were generated and 

evaluated to 12 dose levels. The parameters and 12-point dose levels used in simulation 

studies were designed to mimic the observed values from the malaria drug study (Section 

3.5). The proposed PSDR models (PS and PS-POP), described in Section 3.3, were fitted 

for each simulation study, and relative IC50 were estimated using the algorithm in Section 

3.3.3.  

The performance of the PS-POP model was investigated with regards to:  

1) fitted-MSE (fitted-mean squared error ={fitted response-true response}2) from the 

candidate models and  

2) IC50-MSE (IC50-mean squared error = {estimated IC50-true IC50}
2). 

The MSE were estimated for each simulated data and then averaged across the 200 

simulated data to obtain fitted-MSE and, similarly, IC50-MSE.  In the simulation studies, 

we first explore generating data with a single dose-response function, LL4, presented here 

as “Sim-LL4”. Next, we explored the data generated with a mixture of functions which 

could arise from a subject that carries two populations of infectious agents with different 

levels of sensitivity to the drug. For simplicity, we simulated mixtures of two functional 
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forms. Let f1(x) denote the density associated with the function D1 and f2(x) denote the 

density associated with the function D2.  

The overall mixture density function is given by  

𝑓𝑀𝑖𝑥(𝑥)  =  𝑝  𝑓1(𝑥)  +  (1 –  𝑝)  𝑓2(𝑥) 

where, p (mixing percentages) is the contamination percentage (expressed as a fraction, so 

p = 0.50 corresponds to 50% /50% mixture). We chose to generate 𝑓𝑖(𝑥) 𝑖 = 1,2 with the 

functions presented in Table 3-2 with fifty-percent QUAD and fifty-percent EXD3 

functions (“Mix-Quad-EXD3”). Additionally, we chose to generate data with 50% samples 

from LL4 function and 50% samples from the EXD3 (“Fifty/Fifty-LL4-EXD3”). Figure 3-

2 represents a boxplot summary of the results from simulated data generated through three 

different scenarios: Sim-LL4, Mix-QUAD-EXD3, and Fifty/Fifty-LL4-EXD3.  

Using the above simulated data, the proposed PS-POP model was compared with 

four candidate models: LL4, EXD3, QUAD and PS. Curves fitted through the PS-POP 

model demonstrated reduced fitted-MSE among the five candidate models (Figure 3-2: a1, 

b1, c1) and reduced IC50-MSE (Figure 3-2: a2, b2, c2). For example, the simulation study 

(Figure 3-2: b2) generated from “Mix-Quad-EXD3” showed that the ratio of the IC50-MSE 

of the proposed PS-POP model over LL4 is 0.68 (similarly, EXD3= 0.53; QUAD= 0.12; 

PS= 0.61). Therefore, the reduction of the IC50-MSE, measured by (1-ratio)*100, by the 

proposed PS-POP model over LL4, EXD3, QUAD, and PS are 68%, 56%, 83% and 61%, 

respectively. From the same simulation study (Figure 3-2: b1), the reduction of Fitted-MSE 

by PS-POP model over LL4 is 32% (EXD3=46%, QUAD=88% and PS=39%), which 

suggests efficiency gain of estimating IC50 as well as the fitted curve by properly 
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accounting for the correlation and overall population effect by the proposed PS-POP 

model. 
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Figure 3-2 Boxplot summaries of the three simulation studies. Left-panels represent ‘fitted-

MSE’ from all five candidate models from the three simulation studies. Right-panels represent 

‘IC50-MSE’ from three simulation studies. Top-row: Box plot summaries from the simulation study 

“Sim-LL4”, where (a1) represents fitted-MSE and (a2) represents IC50-MSE. Similarly, second-

row (b1-b2) study “Mix-QUAD-EXD3” and Bottom-row (c1-c2) study “Fifty/Fifty-LL4-EXD3”. 

Five candidate models: LL4, EXD3, QUAD, PS and PS-POP. 

(a1) (a2) 

(b1) 
(b2) 

(c1) (c2) 

             LL4          EXD3                  QUAD             PS             PS-POP 
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Additionally, the PS-POP model gained efficiency over the four candidate models 

in estimating IC50 when data was generated from “Fifty/Fifty-LL4-EXD3” (Figure 3-2: c2) 

and also gained efficiency over the EXD3, QUAD and PS models when data was generated 

from “Sim-LL4” (Figure 3-2: a2). Analysis through the well-known dose-response model- 

LL4 fitted the data well but could not achieve efficiency in estimating IC50, especially when 

the source of the data did not follow a sigmoidal shape (Figure 3-2: b2, c2).  

Similarly, the PS model which accounted for within-subject correlation, also 

resulted in smaller IC50-MSE over LL4 and QUAD in estimating IC50.  

Based on the simulation study results, the PS-POP model offers an improved, flexible 

method of dose-response analysis which uses a data-driven approach, accounts for overall 

population effect, and considers subject-specific correlation. 

3.5 PSDR model: application to malaria data 

We re-analyzed data from the malaria ex vivo drug sensitivity assay used for 

surveillance of resistance to drugs AMQ, CQ and MEF as described in Section 3.2. 

A total of 106 patients enrolled in this study with a median age of 23 (IQR: 18- 28). For 

each individual drug, dose-response curves were fitted with confidence intervals, and the 

corresponding IC50 with SD were estimated using the proposed PS-POP model. In addition, 

LL4, EXD3, QUAD, and PS models were fitted for 106 individual subjects and related 

IC50 were estimated for each drug separately. Figure 3-3 (a-d) represents results from 

malaria data analysis. When analyzing AMQ data with the PS-POP model, the estimated 

median IC50 is 1.06 nM with IQR: 0.95-1.15. The variability of estimated IC50 obtained 

from the proposed PS-POP model was the smallest among the four fitted models: LL4, 

EXD3, QUAD, and PS. In addition, the proposed PS model also performed better in 
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estimating IC50 (median 1.0 nM with IQR: 0.74-1.19) with less variability compared to 

LL4, EXD3 and QUAD, model (Figure 3-3 a). The estimated dose-response curves 

showed a strong uphill linear pattern between the five candidate models (Figure 3-3 b). 

Furthermore, the PS and PS-POP model appropriately fitted the dose-response curve for 

the second subject discussed in the introduction section (Figure 3-3 d) and precisely 

estimated IC50 (PS: 1.0 ±0.14 nM; PS-POP: 1.26 ±0.04 nM) with a small SD. 

The standard sigmoidal model fits the dose-response curves well when the pre-

specified assumptions of the functions are fulfilled. The key conditions are that the 

sigmoidal function is monotonic, symmetric about the IC50, and the dose and IC50 are easily 

estimable from the model parameter. The pattern of the observed dose-response 

relationship of the malaria data we examined in our example did not fulfill the assumptions 

of the sigmoidal functions. For example, some samples were asymmetric or non-

monotonic. As a consequence, our preliminary analysis with sigmoidal models like LL4 

yielded either a poor fitting or unreliable estimated IC50. Thus, the appropriate estimation 

of IC50 and unbiased fitting of malaria ex vivo drug sensitivity assay with PS-POP models 

performed efficiently when the observed pattern of the dose-response curve was 

asymmetric or non-monotonic. Moreover, when the observed data were symmetric and 

monotonic, PS-POP models yielded curve fitting and estimated IC50 comparable to 

parametric sigmoidal models.  
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Figure 3-3 Summary results from the data in AMQ (a) Boxplot Summary of estimated IC50 

by five candidate models (b) Scatter plot of correlation of the fitted curves among the five candidate 

models (c) Plot of an example fitted curve with 95% CL obtained from the PS-POP model and (d) 

Plot of an example individual: observed data and fitted curves from five candidate models. Five 

candidate models: LL4, EXD3, QUAD, PS and PS-POP. 

 

It is evident that the robust PSDR modeling strategy appropriately estimated the 

observed pattern of the real dose-response relationship whether or not sigmoidal model 

(c) 

  

 

   

       

 

   

 

    LL4       EXD3         QUAD             PS            PS-POP 
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(b) 

(d) 
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fulfilled the underlying conditions or even the dose-response function didn’t work due to 

the restriction of the model assumptions. In addition, PS-POP models estimated IC50 with 

the smallest variability compared to the candidate models. 

3.6 Conclusion and Discussion  

Estimating dose-response curves or IC50 with sigmoidal models may produce 

inaccurate results if the data does not follow a specific parametric shape. Those inaccurate 

results may be significant enough to result in incorrect decisions on the target dose of a 

drug. The PSDR models show promise as a method that can be used alongside the 

parametric analysis of dose-response data and as a tool for curve fitting and effective dose 

estimation when the sigmoidal model is inadequate. Based on the results from the 

simulation studies, the PSDR model offers an improved, flexible method of dose-response 

analysis which uses a data-driven procedure and considers subject-specific correlation. 

In practice, if the observed data is asymmetric or non-monotonic or does not meet 

the model assumptions, then those data are deleted in order to generate the fitted curves. In 

this process, some important information might be lost by deleting these atypical 

observations. Since PSDR models use all data points as much as possible, it reduces the 

uncertainties and identifies the areas where data gaps exist.  

In summary, we conclude that PSDR method provides a robust modeling approach to that 

of LL4, EXD3, and QUAD. Moreover, the estimation of IC50 is precise and is able to 

produce expected estimates with minimum SD. The PSDR model shows an advantage over 

the well-liked LL4 or EXD3 models in several ways: 

1) Overall drug effect can be estimated in addition to the subject-specific estimate  

2) Fits monotonic data as well as asymmetric and non-monotonic data 
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3) Important dose-response features will not be omitted 

4) Adequately estimates effective dose ( i.e. IC50 with minimum SD). 

Since the results we obtained are based on a large sample theory, a potential 

limitation of our proposed PSDR model is that a reasonable sample size may be needed. 

Also, in our research we did not apply testing the monotonicity of the dose-response curves 

which are of practical interest when the observed samples are non-monotonic. Our future 

goal is to develop a monotonicity test before applying the PSDR model. 

The PSDR method can also be used for other dose-response modeling scenarios. 

Our semi-parametric model is better suited than traditional sigmoidal models to fit other 

nonparametric curves such as J-shaped and U-shaped curves frequently observed in 

toxicology and epidemiology studies. 

Our approach for estimating IC50 can also be used to estimate the half-maximal 

EC50 (effective concentration) and the LD50 (lethal dose 50%) or the LC50 (lethal 

concentration) and time of a toxic substance or dose needed for radiation to kill half the 

tested population. 
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CHAPTER 4. PS-SIZER: A VISUAL TOOL TO INVESTIGATE SIGNIFICANT 

FEATURES IN LONGITUDINAL DATA 

Summary 

We propose Penalized Spline Significant Zero Crossings of Derivatives (PS-SiZer), 

an extension of SiZer (Chaudhuri & Marron, 1999) as a graphical tool for the exploratory 

analysis of the longitudinal data.  The standard implementation of SiZer is based on the 

local linear smoother with a kernel-type smoothing method for curve estimation problems. 

In longitudinal studies data are often correlated, and it is necessary to account for the 

within-subject correlation. In our research, we propose an extension of the SiZer 

methodology for correlated observations arising from longitudinal settings by using a 

computationally efficient smoothing method, a penalized spline regression model. We 

apply our PS-SiZer methodology to analyze differential pattern of body weight change over 

time among HIV patients using data from the International Epidemiologic Database to 

Evaluate AIDS (IeDEA) collaboration. 

4.1 Introduction 

In various clinical and epidemiological studies, longitudinal data are frequently 

collected over time for several subjects. Such data are often large in size and are subject to 

within-subject correlation among repeated measurements from the same subject over time. 

An important first step before performing any kind of statistical analysis is to familiarize 

oneself with the data at hand (this is often called exploratory data analysis). This usually 

involves graphing the variables in various distributional displays. The most common way 

of visualizing longitudinal data is via cross-sectional summaries or spaghetti plots. 
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While working on the large HIV data arising from IeDEA collaboration, the 

exploratory data analysis could be useful to explore the data for comprehensive 

visualization so that we could understand the pattern of weight change among patients 

receiving antiretroviral therapy (ART). The research data consists of more than 185,000 

HIV patients with more than 2 million observations collected over a 4-year follow-up 

period. Commonly available data visualization graphical tools were used to investigate 

weight trajectories over time. For example, only 1% of HIV data was extracted to generate 

a sample scatter plot, spaghetti plot, and observed median plot over time (Figure 4-1 a-c). 

The graphs depicted observed weight measurements against weeks since the start of ART. 

Although these tools are useful for fewer subjects, the weight trajectory or features of the 

data become obscured for large number of patients and/or measurements collected over a 

4-year follow-up period. The scatter plot and spaghetti plot become too busy, the median 

plot did not reveal any specific pattern of weight change over time. In absence of proper 

understanding of the pattern of the response over time via exploratory visualization, 

modeling of the mean response curve has become a challenge. 

In recent years, modeling longitudinal trajectories utilizing smoothing methods has 

gained a lot of attention. Smoothing methods are known for their flexibility and can be 

used to detect the pattern of change in responses over time (Figure 4-1 d). A large number 

of research studies describing various approaches of smoothing techniques is available in 

recent literature. A few examples include Green & Silverman (1994), Wahba (1991), 

Brumback & Rice (1998), Eubank (2000), Ruppert, Wand & Carroll (2003) and the 

references therein. 



 

46 

 

As noted in Marron (1996), a hurdle in the application of the smoothing method is 

the selection of the smoothing parameter. The question is: “what is the ‘best’ estimate of 

the smoothing parameter to reveal the true structure or feature of the underlying curves?” 

Marron (1996) mentioned that the statistical inference is challenging at a single smoothing 

level because interesting features that are present in the data may appear at some levels of 

smoothing, whereas some features may disappear by over-smoothing or under- smoothing. 

Especially when data is large, finding an estimate of optimum or best smoothing parameter 

become more difficult. SiZer map (Chaudhuri & Marron, 1999) was proposed to address 

these issues as an exploratory data analysis tool to reveal various features in the data at 

various levels of smoothing. SiZer map has gained popularity by different extensions such 

as Robust SiZer  (Hannig & Lee, 2006), Quantile SiZer (Park, Lee, & Hannig, 2010), and 

various SiZer in time series data (Hannig, Lee, & Park, 2012).  

The application of SiZer map is not common in biomedical research, especially in 

longitudinal settings. In our research, we advocate for the use of SiZer map as an alternative 

and complementary visual exploratory tool for large longitudinal data settings. We propose 

an extension of SiZer methodology to account for the within-subject variability that arises 

in repeated measurements. The SiZer map combines statistical inferences to reveal which 

features are really present with a color-coded graphical map that makes the tool more 

appealing and makes the tool quickly comprehensible and accessible.  

The Significant Zero Crossings of Derivatives (SiZer) (Chaudhuri & Marron, 1999) 

is a useful visualization tool for understanding the significant features of smoothing curves. 

The standard implementation of SiZer (Chaudhuri & Marron, 1999) is based on the local 

linear smoother with a kernel-type smoothing method for bivariate data. SiZer 
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simultaneously studies a family of smooth curves under a wide range of smoothing 

parameters (bandwidths in kernel smoothing setting), and the inference is focused on a 

smoothed version of the underlying curve viewed at varying levels of bandwidths. The 

statistical inference is based on the derivatives (slope) of the smooth curve by constructing 

a confidence limit (CL) at each location and also at each level of the smoothing parameter. 

The SiZer map represent the structures of the curves at various level of smoothing by using 

a two-dimensional plot where the horizontal axis represents the location (i.e., time), while 

the vertical axis represents the scale (various level of smooth).  The SiZer map classifies 

every point along the horizontal axis into one of the three states: the estimated slope is 

positive (i.e., the CL of the first derivative contains only positive values), negative (the CL 

contains only negative values), or possible zero (the CL contains zero).  

A number of advancements have already taken place in the development of SiZer. 

Hannig & Marron (2006) put forward an advanced distribution theory for SiZer to make 

inference better by substituting the appropriate quantile for the confidence interval to 

account for the multiplicity issue. Another important SiZer tool was proposed by Park & 

Kang (2008) and is capable of comparing numerous curves on the basis of their 

dissimilarities of smoothness in independently observed data. Park, Marron, & Rondonotti 

(2004) recommended a dependent SiZer. This particular dependent SiZer extends the 

methodology into the area of the time series and employs an implicit auto-covariance 

function when applying goodness of fit tests. Rondonotti, Marron, & Park (2007) extended 

the SiZer to time series and formed a technique that is more supple and capable in 

accounting for the dependence structure existing in the data so as to notice considerable 

features by not presuming, but instead approximating, the auto-covariance function. 
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Recently, a more improved version of SiZer was developed by Park, Hannig, & Kang 

(2009) for time series by adding the extreme value hypothesis which was put forward by 

Hannig & Marron (2006). The method proposed in the paper (Park, Hannig, & Kang, 2009) 

was to obtain a quantile that decreases the number of unwanted false pixels. They also 

suggested a new auto-covariance estimator by means of a varied time series. This improved 

model also does not depend on pilot residuals and bandwidths from an approximation like 

in Rondonotti, Marron, & Park (2007).  

The existing SiZer based methods including the time series extensions do not account 

for the subject-specific variability arising from repeated measurements in a longitudinal 

setting. Therefore, application of standard SiZer and its extensions in longitudinal studies 

may be limited or misleading.  

Lately semi-parametric approaches have emerged as a flexible means to model 

longitudinal data. The time course is often too complex to model parametrically; hence, in 

recent years, semi-parametric analysis of longitudinal data has gained traction. The 

parametric model may have limitations in detecting fine features, whereas semi-parametric 

regression, such as penalized spline regression applied to longitudinal data allows for 

exploration of the unknown shape of the mean curve and detects subject-specific deviation 

from the mean curve (Staniswalis & Lee, 1998). 

Penalized spline regression possess computational advantages over non-parametric 

kernel smoothing or regression spline or smoothing spline methods. For large data, 

penalized spline regression is computationally less expensive than smoothing spline and 

kernel based method. In addition the mixed model representation of penalized spline allows 

for a seamless fusion between parametric mixed model and smoothing. Such models are 
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flexible to incorporate within subject correlation arises from repeated measure as a random 

component.  Therefore, penalized spline regression models are good candidates for 

incorporating in the SiZer map to account for subject specific correlation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1 Upper-left panel represents  scatter plot; Upper-right panel represents 

spaghetti plot; Lower-left panel represent median weight (kg) over time; Lower-right 

panel represents smoothing curve at 3 different smoothing level. Data is from 1% of HIV 

patients from IeDEA (2,000 patients, 12,000 observations). 
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The motivation of this research work is to analyze HIV data arising from the IeDEA 

study (details in Section 4.4). The body weight of HIV patients was collected as a repeated 

measurement for each patient in IeDEA. The clinical interest is to describe the pattern of 

body weight changes among patients receiving ART and to assess the impact of the ART 

regimens as a surrogate for the treatment effectiveness in HIV patients. Since weight 

measurements are the longitudinally collected markers, it is important to opt for a pertinent 

weight trajectory. The observed HIV weight change data is curvilinear; therefore, we want 

to detect the fine features (i.e. bumps and valleys) in the function in order to explore the 

features of the change of weight over time. In order to explore the HIV data precisely, our 

research aims to extend the SiZer tool allowing for subject-specific correlation in the 

model. The proposed extension, named Penalized Spline SiZer (PS-SiZer), utilizes the 

penalized spline regression method. The proposed approach achieves the following: (1) 

extends SiZer to investigate significant features in mean regression function arising from 

longitudinal data accounting for correlation in the analysis and (2) enhances the underlying 

smoothing model used in standard SiZer by a computationally efficient smoothing model 

for correlated data. 

The paper is organized as follows. In Section 4.2, we give a brief overview of the 

core ideas of the SiZer methodology proposed by Chaudhuri & Marron (1999) and the 

spline SiZer of Marron & Zhang (2005). In Section 4.3, we provide the development of the 

proposed PS-SiZer map procedure for longitudinal data. Simulation studies are presented 

in Section 4.4. The analysis of the IeDEA data is summarized in Section 4.5. We conclude 

in Section 4.6 with a brief discussion of our results. 
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4.2 SiZer method 

In this section, we provide core ideas of the SiZer methodology originally proposed 

by Chaudhuri & Marron (1999). For a given set of observed data { (𝑥𝑖 , 𝑦𝑖 )=1
𝑛  } and a 

smoothing function 𝑔(𝑥), we can consider a non-parametric regression model as below: 

𝑦𝑖 = 𝑔(𝑥𝑖) +  𝜖𝑖, 𝑖 = 1, … 𝑛, 𝜖𝑖 ~  𝑁(0, 𝜎𝜀
2),  

where 𝑔(𝑥) is some ‘smooth’ regression function that needs to be estimated from the set 

of observed data (𝑥𝑖 , 𝑦𝑖) , and 𝜖𝑖 is the random error component with variance 𝜎𝜀
2. 

Using the above modeling framework, we briefly present two variants of SiZer: the 

standard SiZer based on local linear smoother by Chaudhuri & Marron (1999) and extended 

with advanced theory by Hannig & Marron (2006) and the spline SiZer by Marron & Zhang 

(2005). In this paper, the standard SiZer map (Chaudhuri & Marron, 1999) based on a local 

linear smoother is named as LL-SiZer, and the smoothing spline SiZer (Hannig & Marron, 

2006) is referred to as SS-SiZer. Brief details are in the following subsections.  

4.2.1 LL-SiZer  

The smooth function, 𝑔(𝑥), is estimated using a non-parametric regression method 

 with smoothing parameter (bandwidth) 𝜆 and it is denoted by 𝑔̂𝜆(𝑥). The LL-SiZer applies 

the local linear regression (Fan & Gijbels, 1996) to estimate 𝑔(𝑥) and its derivative, 

 𝑔′(𝑥).Local linear smoother estimate of g(x)  at a smoothing level 𝜆 at each location of 𝑥 

𝑔̂𝜆(𝑥)  given by  

𝑔̂𝜆(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑[ 𝑦𝑖

𝑛

𝑖=1

− {𝑎0 + 𝑎1(𝑥𝑖 − 𝑥)}]2  ×  𝐾𝜆(𝑥 − 𝑥𝑖) 

where 𝑎𝑟𝑔𝑚𝑖𝑛 means minimizing jointly over regression coefficients, 𝑎0 and 𝑎1 at each 

point “x”. A line is fitted to the data for each 𝑥 using 𝐾𝜆 weighted least-squares. Here 𝐾(. ) 
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is a kernel taken as the standard normal density function and denoted by𝐾𝜆 = 𝐾(./𝜆 )/𝜆. 

Let 𝑔𝜆(𝑥) = 𝐾𝜆 ∗ 𝑔(𝑥) and 𝑔𝜆
′  (𝑥) =  𝐾𝜆

′ ∗ 𝑔(𝑥). Then the estimates of 𝑔𝜆(𝑥) and 𝑔𝜆
′  (𝑥) 

are given as 𝑔̂𝜆(𝑥) = 𝑎̂0 and 𝑔̂𝜆
′  (𝑥) = 𝑎̂1, respectively. Therefore we can construct a 

family of smooth with estimated regression functions at different levels of 𝜆 values.  

The LL-SiZer model specification (Chaudhuri & Marron, 1999) considered a 

family of smooths with the smoothing parameter  𝜆: {𝑔̂𝜆 (𝑥): 𝜆 ∈ [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥]}The LL-

SiZer (Chaudhuri & Marron, 1999) considered 𝜆𝑚𝑖𝑛to be the smallest bandwidth for which 

there is no substantial distortion in construction of the binned implementation of the 

smothers, such that, 𝜆𝑚𝑖𝑛 = 2 ∗ (𝑏𝑖𝑛𝑤𝑖𝑑𝑡ℎ)  and 𝜆𝑚𝑎𝑥 is the range of the data.  

A SiZer map is constructed by summarizing the results of a sequence of hypothesis tests 

for each pair of (𝑥, 𝜆). The test is performed by constructing confidence limit (CL) 

for 𝑔𝜆
′  (𝑥). The confidence limits are obtained as follows: 

𝑔̂𝜆
′  (𝑥) ± 𝑞1−𝛼(𝜆) ∗ 𝑠𝑑̂(𝑔̂𝜆

′  (𝑥)) }                                                           

where, 𝑔̂𝜆
′  (𝑥)  ≡ 𝑑[ (𝑔̂𝜆 (𝑥))] 𝑑𝑥⁄ , 𝑠𝑑̂(𝑔̂𝜆

′  (𝑥)) is the estimated standard error of 𝑔̂𝜆
′  , and 

𝑞1−𝛼(𝜆) is defined as an appropriate quantile, 𝛼 say 5% significance limit.  

A SiZer map is a two dimensional plot, where the horizontal axis of the map 

represents the location 𝑥 and the vertical axis represents the bandwidth λ. Then 

significance feature can be obtained from every point along the axis with three possible 

outcomes: the estimated slope is positive (i.e., the CL of the first derivative contains only 

positive values), or negative (the CL contain only negative values), or possible zero (the 

CL contains zero). The SiZer map considers all reasonable bandwidth values and exploits 

the notion that various values provide different information about the data. Thus SiZer 



 

53 

 

map displays this information in one image. While SiZer map is constructed by 

simultaneously fitting a family of smooths, a reasonable statistical inference accounting 

for multiple comparison testing was addressed by Hannig & Marron (2006) with the 

advanced distribution theory for SiZer. In this paper, the appropriate quantile q(λ) was 

used for the multiple testing adjustment (Hannig & Marron, 2006). The LL-SiZer map is 

generated using r-package “SiZer” (Sonderegger, 2012) which considers the appropriate 

‘row-wise adjustment’ (Hannig & Marron, 2006) to compute the critical value of 𝑞(𝜆) in 

the construction of the CL. For details about other implementation, see Hannig & Marron 

(2006). 

4.2.2 SS-SiZer  

The SS-SiZer (Marron & Zhang, 2005) is based on  the smoothing spline 

estimation. SS-SiZer incorporates the smoothing spline model and estimates the regression 

function by minimizing over functions 𝑔. 

{ 𝑦𝑖 − 𝑔(𝑥𝑖)}2 +  𝜆 ∫{𝑔′′(𝑥)}2  𝑑𝑥 

where 𝜆 is the smoothing spline parameter that determines the smoothness of the regression 

estimate 𝑔̂𝜆(𝑥) and ∫{𝑔′′(𝑥)}2  𝑑𝑥 represents the roughness of the underlying 

function 𝑔(𝑥). According to Green & Silverman (1994), that the solution of the minimizing 

𝑔̂𝜆(𝑥) is a natural cubic spline with knots at the data locations 𝑥1 … 𝑥𝑛. 

Smoothing spline SiZer (Marron & Zhang, 2005)  uses the ‘independent block’ idea 

to construct point wise CL to produce the map. In our research, we apply the simultaneous 

CL to the SS-SiZer model to address the multiplicity comparison issue (same approach as 

PS-SiZer in Section 4.3.3). The interpretation of a SS-SiZer map remains the same as in 
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Marron & Zhang (2005). For other implementation details, such as the expression of first 

derivative estimate, and its standard error, see Marron & Zhang (2005). 

4.3 PS-SiZer method  

In this section, we propose an extension of the SiZer map in order to handle data that 

arise in a longitudinal setting. In the proposed method, we consider subject-specific 

correlation that is inherent from repeated measurement data. In the underlying PS-SiZer 

model, we consider an approach similar to the standard SiZer model in which a family of 

smooth functions is used at various levels of smoothing parameters. In our research, we 

applied penalized spline regression (PSR) as the underlying model as the computationally 

efficient smoothing model for the following reasons. First of all, SiZer is a powerful 

exploratory data analysis tool to explore the large HIV data to find the underlying features 

of weight trajectory. Second, for the large HIV data with more than 2 million observations, 

PSR model serves as a computationally efficient smoothing method. Third, the PSR model 

can deal with the subject specific correlation arises from the longitudinal setting. In the 

development of the PS-SiZer map, we applied the simultaneous CL to resolve the 

multiplicity comparison issue.  The proposed PS- SiZer extends the SiZer as follows: 

1) Addition of a random intercept component to consider the subject-specific 

correlation 

2) Application of P-spline (Eilers & Marx, 1996) as the underlying smoothing 

function 

3) Construction of simultaneous 95% CL addressing the multiple comparison issue 

PS-SiZer model specification 

In this paper, we define our underlying model with three components 
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1) A random component 

2) A smooth function  

3) An error term 

Let 𝑦𝑖𝑗 be the outcome measurement on subject 𝑖, 𝑖 = 1, 2, … 𝑛 at time 𝑥𝑖𝑗, 𝑗 =

1,2. . . , 𝑛𝑖. A model for these data is represented as  

𝑦𝑖𝑗 = 𝑔(𝑥𝑖𝑗) + 𝑏𝑖 + 𝜀𝑖𝑗;    𝜀𝑖𝑗    ~ 𝑁(0, 𝜎𝜀
2) ; 𝑏𝑖~𝑁(0, 𝜎𝑏

2)            (4.1) 

where 𝑔(. ) is a penalized spline regression (PSR) model. The random component 𝑏𝑖 is a 

random intercept with variance 𝜎𝑏
2, such that 𝑏𝑖~𝑁(0, 𝜎𝑏

2) and 𝜀𝑖𝑗 are random errors with 

variance 𝜎𝜖
2 and 𝜀𝑖𝑗~𝑁(0, 𝜎𝜖

2) and the 𝑏𝑖’s and 𝜀𝑖𝑗’s are mututally independent. 

In this paper, we utilize the P-spline method of Eilers & Marx ( (1996), to estimate 

the underlying population regression function 𝑔(𝑥𝑖𝑗).  The P-spline model specification 

considers B-spline as the basis function. Furthermore, P-spline uses evenly spaced knots 

with the difference penalty applied directly to the parameters to control the ‘wiggliness’ of 

the function. Let 𝐵𝑚(𝑥𝑖𝑗; 𝑝) denote B-spline basis of degree 𝑝 with k' equal intervals of 

𝑘′ +  1 knots. Hence, the number of B-spline in the regression is 𝑀 =  𝑘′ + 1 +  𝑝. The 

B-spline smooth function is as follows: 

𝐵(𝑥) = ∑ 𝑎𝑚 𝐵𝑚(

𝑀

𝑚=1

𝑥; 𝑝) 

 where {𝑎𝑚}, 𝑚 = 1, … , 𝑀 is a vector of coefficients, and 𝐵𝑚(𝑥; 𝑝) is the B-spline basis 

function of degree 𝑝.  
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For penalty, P-Spline (Eilers & Marx, 1996) uses base penalty on higher order finite 

differences, ∆𝑑
𝑇∆𝑑.  Therefore, the difference penalty matrix with order 𝑑 can be written 

as, 𝑎𝑇 ∆𝑑
𝑇

∆𝑑 𝑎. 

Here, ∆𝑑 is a matrix such that ∆𝑑 constructs the vector of 𝑑𝑡ℎ difference of 𝑎  i.e., 

∆𝑎𝑚 = 𝑎𝑚 − 𝑎𝑚−1; ∆2𝑎𝑚 = 𝑎𝑚 − 2𝑎𝑚−1 +  𝑎𝑚−2 and so on). For example, the 

difference matrix of the second order ∆2 for 5 coefficients “a1… a5” has the form 

∆2=  (
1

0
0

−2

1
0

1

−2
1

0

1
−2

 
0

0
 1

) 

The second component of the model (4.1) is the subject-specific random 

effect 𝑏𝑖~𝑁(0, 𝜎𝑏
2) . 

Therefore, the penalized least square objective function minimizes  

‖𝑦 − 𝐵𝑎 − 𝑍𝑏‖2 + 𝜆 𝑎𝑇 ∆𝑑
𝑇

∆𝑑 𝑎 + (𝜎𝜀
2/𝜎𝑏

2) 𝑏𝑇𝑏                            (4.2) 

where 𝑍 = (
11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1𝑛

) and 1𝑖 =  [
1
⋮
1

]

𝑛𝑖𝑥1

 

The above minimization problem can be handled using the mixed model 

framework. Equation (4.2) can be turned into a regular mixed model by making use of the 

mixed effect model framework discussed in details in Brumback et al.  (1999), Ruppert et 

al. (2003), Durban et al. (2005), and Wood (2006b) among others. In this case the 

minimization of penalized least squares criterion with the associated penalty, is equivalent 

to maximizing the log- likelihood which arises from 𝑎 and 𝑏𝑖. Here 𝑎 and 𝑏𝑖 are treated as 

a pair of independent random vectors but 𝑎 has an improper distribution. The improper 

distribution for 𝑎 does not fit easily into standard linear mixed modeling approaches 
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(Pinheiro & Bates, 2000). Some re-parameterization is needed. So that the new parameters 

are divided into a set with a proper distribution, to be treated as random effects, and a set 

with improper uniform distribution, to be treated as fixed effects (Wood S. N., 2006b). We 

discuss a mixed model approach for (4.2) in the next section. 

Mixed model representation 

Let us first consider the difference matrix  𝛥𝑑 that has the dimensions (𝑘′ + 1 +

 𝑝) × (𝑘′ + 1 +  𝑝 − 𝑑). The penalty matrix 𝛥𝑑
𝑇  𝛥𝑑 is singular, and has the rank 𝑘′ + 1 +

 𝑝 − 𝑑. An eigen value decomposition of 𝛥𝑑
𝑇  𝛥𝑑 leads to 𝛥𝑑

𝑇  𝛥𝑑 = 𝑈 𝑑𝑖𝑎𝑔(𝛬)𝑈 
𝑇
with 𝑈 as 

the eigenvectors and 𝛬 is the diagonal matrix of eigenvalues in non-increasing order. 

Therefore, 𝑘′ + 1 + 𝑝 − 𝑑 eigenvalues are strictly positive and the remaining 𝑑 are zeros.  

Hence, U and 𝛬 can be represented as, 𝑈 = [𝑈+,  𝑈0]  and = (𝛬+
𝑇 ,  0𝑑

𝑇) 
𝑇
. The dimension of 

𝑈+ is now (𝑘′ + 1 + 𝑝) × (𝑘′ + 1 + 𝑝 − 𝑑) with corresponding non-zero elements of 

vector 𝛬. 

Hence, we can rewrite 𝐵𝑎 as  

 𝐵𝑎 = 𝐵𝑈𝑈𝑇𝑎 = 𝐵 [𝑈0𝑈0
𝑇𝑎 + 𝑈+𝑑𝑖𝑎𝑔 (𝛬+

−
1

2) 𝑑𝑖𝑎𝑔 (𝛬+

1

2 ) 𝑈+
𝑇𝑎] 

             = :      𝐵 [𝑈0𝛽 + 𝑈+𝑑𝑖𝑎𝑔 (𝛬+

−
1
2) u] = :     X𝛽 + 𝑍𝐵𝑢 

and,  𝑎𝑇𝛥𝑑
𝑇  𝛥𝑑𝑎 = 𝑎𝑇𝑈 𝑑𝑖𝑎𝑔(𝛬)𝑈 

𝑇
𝑎 = 𝑎𝑇𝑈0𝑑𝑖𝑎𝑔(0𝑞)𝑈0

𝑇𝑎 +

 𝑎𝑇𝑈+𝑑𝑖𝑎𝑔(𝛬+)𝑈+
𝑇𝑎 = 𝑢𝑇𝑢 

The mixed model representation of the smooth function is: 

𝑋𝛽 + 𝑍𝐵𝑢    where    𝑢~𝑁(0,  𝜎𝑢
2𝐼𝑘+1+𝑝−𝑑) 
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And our final model including random intercept takes the form, 

𝑌 = 𝑋𝛽 + 𝑍𝐵𝑢 + 𝑏𝑖 + 𝜀 

where   𝑢~𝑁(0,  𝜎𝑢
2𝐼𝑘+1+𝑝−𝑑); 𝑏𝑖~𝑁(0, 𝜎𝑏

2);  𝜀~𝑁 (0,  𝜎
𝜀 

2𝐼𝑛)                                     (4.3) 

Therefore, the model predictor is made up of three components. The first 

component 𝑋𝛽 represents the fixed overall effect. The second component, 𝑍𝐵𝑢 is the 

smoothing function and the third or random component, 𝑏𝑖, measures the random departure 

of the subjects from the overall effect. The estimates of parameters and random coefficients 

are obtained as the BLUP from mixed model using the REML criteria for variance 

components. Equation (4.3) can be solved using any standard mixed model software. In 

our research, we utilized R-package mgcv::gam (Wood S. , 2010) to take the computational 

advantages in fitting equation (4.3). We obtained the estimate of 𝑔(𝑥),  the mean 

population curve at 𝑥 and the quantities of interest to generate the PS-SiZer map. The most 

crucial component in the PS-SiZer map is to estimate the first derivatives of the fitted 

functions   𝑔̂𝜆(𝑥)  (i.e.  𝑔𝜆̂
′(𝑥) and the variance of  𝑔𝜆̂

′(𝑥)  and associated confidence 

bands). 

4.3.1 Inference  

In the previous sections the point estimate for the smoothing model parameters were 

discussed, yet we are interested in finding the confidence intervals for the smoothing 

parameters and quantities derived from them, such as estimate of smooth 

function, 𝑔̂𝜆(𝑥)and the  first derivatives of the smooth function,  𝑔𝜆̂
′(𝑥). Simon N. Wood 

(2006b) detailed the formulation of the covariance matrix for the smoothing parameters. In 

this paper, we discuss how we follow the estimate of the covariance matrix for the 
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smoothing parameters specified by Simon N. Wood (2006b). Let Φ = [𝛽
𝑢

] contain all the 

fixed effects and the random effects from the smooth term only and let 𝐶 = [𝑋 𝑍𝐵] be 

the corresponding model matrix. Let 𝑍 be the random effect model matrix excluding the 

columns related to smooth terms and 𝜎𝑏
2 be the corresponding random effects covariance. 

So, the covariance matrix is 𝑉 =  𝜎𝑏
2𝑍𝑍𝑇 +  𝜎𝜖

2𝐼. Therefore, the estimated covariance 

matrix (Σ) for the parameters: 

Σ = 𝑐𝑜𝑣(Φ) = (𝐶𝑇 𝑉−1𝐶 + 𝐷̆)−1 

where 𝐷̆ is the positive semi-definite matrix of the coefficients for the smooth terms.   

The standard deviation of the smooth function at point “x”, 𝑆𝐷̂(𝑔̂𝜆(𝑥)) =  √𝐶𝑥(Σ) 𝐶𝑥
𝑇  

with 𝐶𝑥 = [𝑋𝑥 𝑍𝐵𝑥] . 

4.3.2 Estimate and variability bands of the derivatives 

The derivatives of the smooth function are obtained by defining  𝐶′
𝑥 = [𝑋𝑥

′ 𝑍𝐵𝑥
′  ] . Here, 

𝑋𝑥
′ =

𝑑

𝑑𝑥
(𝑋) and 𝑍𝐵𝑥

′ =
𝑑

𝑑𝑥
(𝑍𝑥). The estimated first derivative is: 

 𝑔𝜆̂
′(𝑥) =  𝐶′

𝑥Φ 

The estimated standard deviation  is,  𝑆𝐷̂ ( 𝑔𝜆̂
′(𝑥)) ≅   √ 𝐶′

𝑥(∑) 𝐶́𝑥
𝑇  

4.3.3 Confidence band 

The construction of the PS-SiZer map involves a family of smooths based on the 

confidence bands of the derivatives 𝑔𝜆̂
′(𝑥). We generated 100 levels of smoothing 

parameters to construct a PS-SiZer map. The range of the smoothing parameters 𝜆𝑚𝑖𝑛 , 

𝜆𝑚𝑎𝑥 is defined such that ( 𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥)  = [(𝑙𝑜𝑔10(𝜆𝑅𝐸𝑀𝐿) − 2, 𝑙𝑜𝑔10(𝜆𝑅𝐸𝑀𝐿) + 2].The 

number 2 is arbitrary, but we chose it to get a reasonable wide range of smoothing 
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parameter, and we obtained the 𝜆𝑅𝐸𝑀𝐿 from the REML estimate of smoothing parameter 

using the same P-spline smoothing function.  

PS-SiZer can be viewed as a collective summary of a large number of hypothesis 

testing, and a reasonable statistical inference is necessary for the multiple testing issue.  

Likewise, Ruppert, Wand, & Carroll (2003) stated that penalized spline has a fairly 

straightforward simulation based simultaneous confidence bands which can be used in 

situations when multiplicity testing is carried out. Suppose we want a simultaneous 

confidence band for 𝑔(.) on a grid of x-values, 𝑥𝑔𝑟𝑖𝑑 =  (𝑥1, ⋯ , 𝑥𝑟) and define  

𝑔(𝑥𝑔𝑟𝑖𝑑) =  [
𝑔(𝑥1)

⋮
𝑔(𝑥𝑟)

] 

A 100 (1 − 𝛼)% simultaneous confidence band for 𝑔𝜆(𝑥𝑔𝑟𝑖𝑑)is 

𝑔̂𝜆(𝑥𝑔𝑟𝑖𝑑) ± 𝑞1−𝛼(𝜆) [
𝑆𝐷̂{𝑔̂𝜆(𝑥1) − 𝑔(𝑥1)}

⋮
𝑆𝐷̂{𝑔̂𝜆(𝑥𝑟) − 𝑔(𝑥𝑟)}

] 

where 𝑔̂𝜆(𝑥𝑔𝑟𝑖𝑑) be the corresponding EBLUP obtained from mixed model framework. 

Here, 𝑞1−𝛼(𝜆) is the (1 − 𝛼)quantile of the random variable at a smoothing level 𝜆, 

sup
𝑥∈𝒳

|
𝑔̂𝜆(𝑥)−𝑔(𝑥)

𝑆𝐷̂{𝑔̂𝜆(𝑥)−𝑔(𝑥)}
|                                                      (4.4) 

which is the supremum or least upper bound on the set {𝑔(𝑥𝑔𝑟𝑖𝑑): 𝑥 ∈ 𝒳}. 

The quantile  𝑞1−𝛼(𝜆) was approximated using N=10,000 simulations. The N simulated 

values are sorted from smallest to largest, and the one with rank (1 − 𝛼)N is used 

as 𝑞1−𝛼(𝜆).  
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For a PS-SiZer map, we obtained the 95% quantile of equation (4.4) based on a 

simulation of size N at each level of smoothing parameter 𝜆.  

Therefore, the confidence limits (CL) are obtained as below: 

𝑔̂𝜆
′  (𝑥) ± 𝑞1−𝛼(𝜆) ∗ 𝑠𝑑̂(𝑔̂𝜆

′  (𝑥)) }                                                  (4.5) 

4.3.4 Construction of color coded PS-SiZer map  

The PS-SiZer map provides the characteristics (i.e. curve increasing, decreasing, or neither) 

of the estimated curve in the form of a color-coded map. The vertical axis of the PS-SiZer 

map corresponds to the level of smoothing λ, and the horizontal axis of the PS-SiZer map 

represents time.  At each time-point, PS-SiZer uses a color that indicates inference about 

the estimated function by means of their corresponding first derivatives (slope): 

1) The blue color indicates that the smooth function is significantly increasing 

corresponding to the 95% CL of the slope fully above zero.  

2) The red color appears in the PS-SiZer map when the smooth function is 

significantly decreasing corresponding to the 95% CL of the slope fully below zero.  

3) The purple color is used when there is no significant change corresponding to the 

95% CL of the slope containing zero. 

4.4 Simulation study 

In practice, the fundamental function of a SiZer map is to detect the underlying 

features of the underlying curve from which the data are generated. For this reason, it is 

natural to compare the different versions of the SiZer maps with respect to the correct 

number of underlying features detected. 
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We have conducted Monte Carlo simulation studies to evaluate the performance of 

PS-SiZer map under various scenarios. The key objective of this simulation study was to 

compare the PS-SiZer with the LL-SiZer and SS-SiZer. But in a sense, comparing the 

curves between methods is not straightforward, because each curve is parameterized 

differently. Kernel regression (LL-SiZer) would give us an error curve over the bandwidth; 

smoothing splines (SS-SiZer) or penalized smoothing spline (PS-SiZer) would give us an 

error curve over the smoothing parameter. So to compare the three SiZer maps, the notion 

of degrees of freedom gives us a way of precisely making this comparison. The degrees of 

freedom of a fitting procedure describes the effective number of parameters used by this 

procedure, and hence provides a quantitative measure of estimator complexity. For this 

reason all three SiZer maps (PS-SiZer with LL-SiZer and SS-SiZer) were generated with 

the same range of EDF. 

Our simulation study was designed to mimic the HIV data. Using the simulated data, 

the performance of the SiZer maps were evaluated using the following approaches:  

1) Each SiZer map was compared at a similar level of “Effective Degrees of Freedom” 

(EDF).  

2) The performance of the three SiZer maps was compared according to which flags 

correct number of features (increasing, decreasing or stable) of a curve.  

3) The performance of the three SiZer maps was compared according to which is most 

sensitive to detect the time point where a curve reaches the maximum. 

In this research, performance of the PS-SiZer maps is presented in two different simulation 

studies: ‘Simulation Study One’ and ‘Simulation Study Two’.  
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4.4.1 Simulation study-one 

The data presented in Figure 4-2 (a) were simulated with the observation times 𝑥𝑖 

chosen to be equally spaced in [0, 1] with    

𝑔(𝑥𝑖𝑗) = 65 + 25𝑒−2.0∗𝑥𝑖𝑗 ∗ 𝑠𝑖𝑛 (5𝜋 (𝑥𝑖𝑗 + 5)) + 𝑏𝑖 + 𝜀𝑖𝑗 

𝜀𝑖𝑗~𝑁(0, 𝜎𝜀
2); 𝑏𝑖 ~𝑁(0, 𝜎𝑏

2) 

Here, 𝒙𝒊𝒋 denote the time of measurement, 𝜺𝒊𝒋 ~𝑁(0, 𝜎𝜀
2) is a random noise, 𝑏𝑖 is a random 

intercept,  𝑏𝑖~ 𝑁(0, 𝜎𝑏
2) and the errors are mutually independent. 𝑠𝑖𝑛 (5𝜋 (𝑥 + 5)) is a 

periodic function which has five features. Here, we defined features of a curve when a 

curve changes its status (increasing, decreasing or stable) from one to another. The 

quantity, 25𝑒−2.0𝑥 is a function to control the spread of the periodic function. In addition, 

subject-specific data were generated by adding the coefficients in model with a random 

quantity 𝑏𝑖 

We investigated three SiZer maps through the various levels of combination of 

error variance and subject specific variance, such as the ratio 𝜎𝜀
2: 𝜎𝑏

2 =

(2: 5), (5: 2), and (5: 15), respectively. 

For each scenario of different variance combination, 50 trials were generated. Each 

of the trials consisted of N=100 subjects and the number of observations per subject 

was 𝑛𝑖 = 10 for 𝑖 = 1, … 𝑁. For each simulated trial three different SiZer maps were 

generated at 100 levels of EDF. In Figure 4-2 (b, c, d), we present example SiZer maps 

from a randomly chosen trial from the 50 trials generated in the simulation scenario 

with 𝜎𝜀
2: 𝜎𝑏

2 = (5: 15). We present the SiZer maps with the time depicted on the x-axis and 

EDF on the y-axis for a better demonstration of the comparisons of the three maps. 
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Comparison of feature detection:  

We present the average proportions of the features detected in Table 4-1 based on 

the 50 simulated data sets at various levels of   𝜎𝜀
2 𝑎𝑛𝑑  𝜎𝑢

2. The true curve has five features. 

The first three features (increasing to decreasing to increasing) were prominent features 

and were detected by the three maps most of the time. We were mainly interested if the 

PS-SiZer can detect the fourth and the fifth feature of the true curve and compare its 

performance to LL-SiZer and SS-SiZer.  When subject-specific variation is small (𝜎𝑏
2 =

2). PS-SiZer detected five features 51% of the time, whereas SS-SiZer and LL-SiZer were 

able to detect it 2% and 14% of the time, respectively. Four features were detected by the 

PS-SiZer, SS-SiZer and LL-SiZer 88%, 47% and 34% of the time, respectively. Thus, PS-

SiZer detected four features in most cases   while the SS-SiZer and LL-SiZer maps results 

show that fourth feature has been missed for over half of the considered EDFs. When the 

subject specific variation is 𝜎𝑏
2 = 15, PS-SiZer was still able to detect the four features 

almost 68% of the time compared to 40% by SS-SiZer and only 24% by LL-SiZer. 

Interestingly, the fifth feature was not detected by LL-SiZer at all in this scenario compared 

to 8% by PS-SiZer and 5% by SS-SiZer. Similar results were seen in studies with  𝜎𝜀
2 = 2 

and 𝜎𝑏
2 = 5 (Table 4-1). 
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Table 4-1 Finding Features: Simulation study-1 with varying variability 

Variability (𝜎𝜀
2 : 𝜎𝑏

2) 
Features 

Detected 
Proportion by SiZer Maps 

  LL-SiZer SS-SiZer PS-SiZer 

5.0 : 2.0 

Five 14% 2% 51% 

Four 34% 47% 88%  

2.0 : 5.0 

Five 4% 10% 30% 

Four 32% 62% 85% 

5.0 : 15.0 

Five 0% 5% 8% 

Four 24% 40% 68% 

Note: proportions are estimated based on the 50 simulated data sets. 

We examined the three example SiZer maps from the simulation data (Figure 4-2). 

Three maps, PS-SiZer, SS-SiZer and LL-SiZer, were able to clearly flag the large two 

features (blue and then red) in the underlying curve. However, LL-SiZer could not flag 

most of the periodic region (i.e. the 3rd or 4th features as being statistically significant as 

expected at half of the time). In fact, the small increasing (blue) fifth feature was not 

detected by LL-SiZer at all at any level of EDF. LL-SiZer could not detect the small jumps 

at most of the cases in our simulation study. The three SiZer maps are compared at the 

same EDF level, for example at 𝐸𝐷𝐹 = 5 in Figure 4-2. LL- SiZer map was able to identify 

first three features, increasing to decreasing and to increasing (blue/red/blue) at a level 

where model EDF was 50. But at the same level of EDF, SS-SiZer was only able to detect 

the first two features, increasing to decreasing, whereas PS-SiZer map was able to detect 

all five features that existed in the true function. Similarly, we can compare the three maps 

at a higher or lower level of EDF. At lower level of EDF (i.e. higher level of smoothing), 
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SS- SiZer performed better than the LL-SiZer. On the other hand, PS-SiZer performed 

similarly or better than both LL-SiZer and SS-SiZer at any level.  

Therefore, it showed that the first two or three prominent features were detected at 

wide range of EDF levels by all three approaches. Both of the smoothing spline models 

(SS-SiZer and PS-SiZer) were somewhat sensitive to the small jumps or features compared 

to the local linear regression (LL-SiZer) approach.  The simulation studies demonstrated 

that, at a wide range of EDF levels, PS-SiZer was sensitive to even small features at a trivial 

bump. 

We conclude here that the maps from LL-SiZer and SS-SiZer performed similarly 

and one is not better than the other for all the scenarios considered. The model performance, 

as well as flagging more underlying features, revealed that the PS-SiZer map is an 

improved addition to the SiZer map family, especially in longitudinal data analysis. 
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Figure 4-2 Simulation study-one. Upper-left panel:  True function where the vertical axis 

represents responses, and the horizontal axis represents the time; Upper-right panel:  LL-

SiZer map. Lower-left panel: A SS-SiZer map. Lower-right panel: A PS-SiZer map. For 

the SiZer map presentation, the vertical axis represents the 100 levels of EDF, and the 

horizontal axis represents the time. 

 

4.4.2 Simulation study-two 

In this simulation study, our aim was to illustrate how sensitive PS-SiZer map is 

compared to LL-SiZer and SS-SiZer in detecting the point where an increasing function 



 

68 

 

reaches its maximum. The true curve and the first derivative of the curve are presented in 

the top left panel of Figure 4.3. The data were generated as 𝑥𝑖 equally spaced in [1:20) with 

𝑔(𝑥𝑖𝑗) = 85 −
𝑥𝑖𝑗

4
− 𝑒(−𝑥𝑖𝑗+4.5) + 𝑏𝑖 + 𝜀𝑖𝑗 

where 

𝑥𝑖𝑗 = Time measurement 

𝜀𝑖𝑗 = Independent random noise such that 𝜀~𝑁(0, 𝜎𝜀
2𝐼)  

𝑏𝑖 = Subject-specific random intercept with 𝑏 ~𝑁(0, 𝜎𝑏
2) 

Similar to simulation study-one, we generated 50 data sets, each with 𝑁 =  100 

subjects and 10 equally spaced time points, (i.e. 𝑛𝑖 = 10, 𝑖 =  1, 2 , … … 𝑁). The study 

presented in this paper considered the simulation scenario with the error variance, 𝜎𝜀
2 =

10, and subject-specific variance,  𝜎𝑏
2 = 5. For each simulated dataset, three SiZer maps 

were generated at 100 levels of EDF.  

This simulation study helped to identify the sensitivity of the SiZer map to detect 

the point where the increasing curve reaches its maximum. The function used in this 

example had its maximum at 𝑥 = 4.5 − ln (
1

4
) ~5.89. The sensitivity of the SiZer maps 

was calculated at each level of EDF by following: 

1) For all three SiZer maps, the first time point, where map moves from blue region 

to purple region, has been calculated at each level of EDF. The process has been 

repeated for 50 simulation trials. The summary of the time point where the 

maximum of the increasing curve was detected by the three SiZer maps is presented 

in a boxplot (Figure 4-3). 
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The boxplot summary shows that PS-SiZer map is the most sensitive and detects 

the time point where curve reaches its maximum (𝑥 ~5.89). We presented three example 

SiZer maps, LL-SiZer, SS-SiZer and PS-SiZer, from a random simulation in Figure 4-4. 

Three maps were able to detect the pattern of the curve by moving from the blue region to 

the purple region at all levels of EDF. However, LL-SiZer and SS-SiZer had more blue 

area on the left than the PS-SiZer map, indicating the maximum of the curve is obtained at 

a time greater than 6. 

Simulation study-two provided a robust indication that the PS-SiZer map not only 

detects the significant change of the true curve, but also is sensitive enough to detect the 

true time point where the curve reaches its maximum. Even though all three SiZer maps 

were able to detect the pattern of the true curve, (that is, the trajectory of the curve from 

significantly increasing (blue area) to non-significant (purple area) change at almost all 

levels of the EDF) the LL-SiZer and SS-SiZer were less sensitive in locating the true time 

point where the curve reaches its maximum compared to PS-SiZer map. If the research 

interest is to find the time point where the changes occur, then PS-SiZer map will be more 

sensitive to detect the time of true change competently. 
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Figure 4-3 Boxplot-Summary of three SiZer maps: Time to detect maximum value. 
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Figure 4-4 Simulation study-two. Upper-left panel: True function and the first 

derivatives where the vertical axis represents responses, and the horizontal axis represents 

the time Upper-right panel: A LL-SiZer map. Lower-left panel: A SS-SiZer map. Lower-

right panel: A PS-SiZer map. For the SiZer map presentation, the vertical axis represents 

the 100 level of EDF and the horizontal axis represents the time. 
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4.5 Application of PS-SiZer map 

Statistical analyses were performed using SAS Software 9.3 and R software (2.13.2).  

SAS was used to create the analysis datasets for each of the five IeDEA regions. The user 

defined R-functions and the R package SiZer (Sonderegger, 2012) was used to generate 

LL-SiZer maps. To generate SS-SiZer and PS-SiZer maps, user defined R-functions and 

the R package mgcv::gam (Wood S. , 2010) was used. 

IeDEA study 

In this study, patients received care in a number of regions taking part in the 

International Epidemiologic Databases to assess AIDS (IeDEA), a worldwide 

collaboration of HIV clinical cohorts in five world regions. Namely, the regions are the 

East-Africa, Southern-Africa, Central-Africa, West-Africa, and Asia-Pacific regions 

(Egger et al., 2012). Individuals included in this analysis were at least 18 years old at ART-

initiation and had at least one weight observation at ART initiation (baseline) and post-

ART observation within the first four years of treatment.  Body weight was measured in 

patients participating in the stavudine (d4T) containing regimen as well as in the non-d4T 

regimen after their initiation. 

4.5.1 Results from PS-SiZer 

The PS-SiZer maps provided a family of smoothed curves considering the subject-

specific correlation. PS-SiZer maps were generated for IeDEA regions whose data were 

analyzed in the present study. PS-SiZer maps generated based on the data collected in the 

East Africa IeDEA region are illustrated in Figure 4-5, for d4T-containing (a1) and non-

d4T-containing first-line ART regimens (a2). 



 

73 

 

The vertical axis represents the level of smoothing, and the horizontal axis 

represents the time in weeks since the start of ART. For example, for the d4T regimen, the 

rate of body weight change shows a significant increase around 50 weeks at most of the 

scale (-2, 1) because of the blue area on the left of the map. The “purple” on the right 

indicates there is no more significant increase or decrease after around weeks 50. There is 

a fairly wide range of scale (-1, 1) where the red area indicates a significant weight decrease 

between 60 weeks to ~90 weeks. The blue area in the map from weeks 150 and beyond 

indicate a significant increase at a fairly wide range of scale (-1.5 to 0.5). Similarly, at the 

very high scale (>1.0), the entire region over time is blue, mostly because of over-

smoothing.  

(a) 

 

(b) 

 

Figure 4-5 PS-SiZer map from East Africa region. (a) Left panel represents SiZer map 

of rate of body-weight changes over time (weeks since ART start) for patients initiated 

with d4T-treatment regimen. (b) Right panel represents SiZer map of rate of body-weight 

changes for patients initiated with non-d4T-treatment regimen. The vertical axis represents 

the level of smoothing, 𝝀 and expressed as 𝒍𝒐𝒈𝟏𝟎 (𝝀 ), and the horizontal axis represents 

the weeks since the start of ART treatment. 
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On the other hand, the PS-SiZer map of rate of bodyweight change for HIV patients 

initiated with the non-d4T regimen from the same region illustrates relatively consistent 

significant increases until about week 90. This indicates that for non-d4T treated patients, 

the rate of bodyweight significantly increases almost up to 2 years, but there is a trend to 

have significant decreasing weight after 2 years on treatment. PS-SiZer analyses were 

generated for each of the remaining four IeDEA regions and are added in Chapter 5. 

4.6 Discussion and conclusion 

From a technical perspective, the standard LL-SiZer and SS-SiZer methods do not 

consider the correlation induced by repeated measurements obtained in the same patient, 

which invariably arise in longitudinal settings. Our proposed PS-SiZer model was 

developed by keeping that limitation in mind. Our key efforts were centered on developing 

SiZer maps for correlated data with appropriate and computationally efficient smoothing 

methods and resolving this correlation problem.  

In simulation studies, the PS-SiZer map outperformed both LL-SiZer and SS-SiZer 

in the analysis of data arising from a longitudinal setting. The fundamental motivation of a 

SiZer map is to detect the underlying features in the data. Therefore, the key goal of this 

research was to show which SiZer map could detect correct number of features in 

longitudinal settings. From the simulation results, it was evident that both standard LL-

SiZer and SS-SiZer methods clearly flag the large features in the data. However, LL-SiZer 

could not flag most of the periodic region as being statistically significant as expected most 

of the time. Similarly, SS-SiZer, which uses a smoothing spline estimate without 

consideration of correlation, was somewhat less sensitive to the small jumps or features. 

The prominent jumps were detected by SS-SiZer at small to large EDF levels, but it could 
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not detect some features at larger EDF levels compared to LL-SiZer. Marron & Zhang 

(2005) also attempted to compare these two maps with various simulations studies. The 

authors concluded that the original local linear version (here, LL-SiZer) of SiZer and 

smoothing spline SiZer (here, SS-SiZer) often performed similarly, but they could not 

conclude that one is always better than the other. Similar findings were observed in our 

simulation studies. 

The PS-SiZer maps from the proposed approach flagged more underlying features in 

the simulation data. At a wide range of EDF (low to high), PS-SiZer consistently detected 

underlying features better than other two SiZer maps. The simulation studies demonstrated 

that at a moderate range of EDF levels, PS-SiZer was sensitive to small features, even for 

a trivial bump. In summary, PS- SiZer deserves the merit to be a new addition to the 

existing family of SiZer maps to enhance the analysis of data from longitudinal settings. 

The main idea of SiZer maps is to detect significant changes by mapping areas where 

the 95% confidence intervals of the first derivative is above zero (significantly increasing), 

below zero (significantly decreasing), or contains zero (no significant change). For this 

reason, the precise estimation of 95% confidence intervals of the first derivative is 

important and will enhance the detection capability of features in SiZer analysis. The use 

of the PSR model with random intercepts in PS-SiZer map results in narrower confidence 

intervals, which, in turn, result in a more accurate detection of features compared to 

standard SiZer maps. The proposed PS-SiZer maps considered the estimation of the 

variability that was inherent from the study design and, thus, detected features precisely. 
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CHAPTER 5. AN APPLICATION OF PS-SIZER MAP TO INVESTIGATE 

SIGNIFICANT FEATURES OF THE RATE OF CHANGE OF BODY-WEIGHT 

PROFILE FOR HIV INFECTED PATIENTS IN IEDEA STUDY 

Abstract 

Objectives: Our work involves standardized data collected on HIV-positive patients 

initiating antiretroviral therapy (ART) in five regions of the International Epidemiologic 

Databases to Evaluate AIDS (IeDEA) collaboration. The key objective is to understand the 

pattern of body weight change in HIV patients initiating stavudine (d4T) containing first-

line regimens versus non-d4T-containing regimens. This methodology can be adapted to 

address questions for the evolution of longitudinally collected biomarkers in similar 

contexts. 

Methods: Penalized Spline Significant Zero Crossings of Derivatives (PS-SiZer) is a 

powerful graphical tool for exploring structures in curves by mapping areas where rate of 

change is significantly increasing, decreasing, or does not change. In our research, we 

applied PS-SiZer, an extension of SiZer (Chaudhuri & Marron, 1999) to take into account 

the within-subject correlation. In the present context, PS-SiZer maps provide information 

about the significant rate of weight change that occurs in two ART regimens at various 

level of smoothing. Final conclusions are assessed based on the optimal level of the 

smoothing parameter, chosen automatically via Restricted Maximum Likelihood (REML) 

using mixed model representation of the penalized spline regression model.  By doing so, 

we compared the durability of weight gain in patients who received ART regimens 

containing and not containing d4T. Patients with at least one baseline and follow-up body 

weight measurement within four years after initiation of ART were included in the analysis. 
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Results: Statistical analyses included 185,010 patients from five IeDEA regions, consisting 

of Southern Africa (65.6% of the cohort), East Africa (21.9%), West Africa (8.3%), Central 

Africa (3.2%), and Asia-Pacific (0.9%). We compared patients initiating ART with a d4T 

(53.1%) versus a non-d4T (46.9%) containing regimen within each region. The largest 

difference in the durability of weight gain was observed in Southern Africa where the 

durability of weight gain in patients treated with d4T-containing regimens lasted 59.9 

weeks compared to 133.8 weeks for patients starting ART with non-d4T-containing 

regimens. Results were similar for the other regions, albeit attenuated.  The difference 

between the durability of weight gain for d4T vs. non-d4T containing regimens was around 

49 weeks in West Africa, 32 weeks in East Africa, and 16 weeks in Asia-specific. The 

durability of weight gain in Central Africa was comparatively similar (difference was -1 

week).  Overall, d4T-containing regimens were associated with a shorter durability of 

weight gain, lasting between 39-62 weeks versus 55-134 weeks in patients receiving non-

d4T-containing regimens. 

Discussion: Results from PS-SiZer maps and the smoothing model at the optimum level 

showed that patients starting ART with d4T-containing regimens experienced weight gains 

for shorter periods compared to patients receiving non-d4T-containing regimens. 

5.1 Introduction 

Rates of those suffering from HIV/AIDS are especially high in low and middle-

income countries (LMIC). For example, despite constituting only 11% of the total Earth's 

population, the sub-Saharan Africa region is the among the world's epicenters of 

HIV/AIDS. The numbers are daunting. In 2012, it was estimated that over 35 million 

individuals were living with HIV with the majority of those in sub-Saharan Africa (>25 
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million) and approximately four million in Southeast Asia (UNAIDS).  Nearly 10 million 

individuals were receiving ART in LMIC) at the end of 2012 (Boulle, et al., 2014). Because 

of limited resources in LMIC, many areas in these countries do not have lab facilities to 

support monitoring of HIV treatment. Therefore, researchers must rely on clinical 

parameters such as weight. 

In LMIC, where therapeutic options are limited, it is important to assess the 

effectiveness of different combinations of ART regimens, particularly those constituting 

the first-line treatment options provided to patients.  Until 2010, a common antiretroviral 

medication was provided as part of first-line ART was stavudine (d4T), a nuclease reverse 

transcriptase inhibitor which was in the World Health Organization’s (WHO) list of 

essential medicines (WHO, 2013). Stavudine is no longer part of the WHO 2013 guidelines 

for first-line regimens due to a number of adverse side effects; however, it is still widely 

used in the LMIC setting. In particular, regimens containing stavudine (d4T) were widely 

prescribed medication as part of a first-line ART regimen in a number of LMIC (Rosen, 

Long, Fox, & Sanne, 2008). Stavudine has played a critical role in the scaling up of 

combination ART therapy in LMIC. The World Health Organization notes that in 2009, 

approximately 56% of HIV regimens in LMIC contained d4T. 

Despite its wide use, stavudine has been associated with a number of toxicities 

including serious neurological (Subbaraman, Chaguturu, Mayer, Flanigan, & 

Kumarasamy, 2007) and metabolic toxicities such as lipodystrophy and lipoatrophy (Joly 

et al., 2002; Gallant, Staszewski, & Pozniak, 2004); (Gallant, Staszewski, & Pozniak, 

2004) both reflecting distribution of fat in the body. Van Griensven (2007) also 

demonstrated the development of lipoatrophy and subsequent weight loss after initiation 
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of an ART regimen containing d4T versus zidovudine (AZT)-containing regimen. Another 

study was conducted by Van Griensven et al. (2010) conducted in which 609 adults were 

given stavudine for a period of one year in order to assess the weight manifestation after 

one year of treatment. In about 62% of the patients, weight loss was observed after the first 

year while no weight gain occurred in any of the participants. It was also concluded that 

weight loss that was constant and progressive was suggestive of the development of 

lipoatrophy.  Stavudine has also been associated with long-term weight loss compared to 

regimens containing Tenofovir in a randomized study (Gallant, Staszewski, & Pozniak, 

2004) . They compared Tenofovir DF and d4T regimen in a 3-year randomized trial which 

showed patients in both treatment groups gained weight during the first 24 weeks. 

Thereafter, patients who received the d4T regimen progressively lost weight and returned 

to baseline by week 144 compared to the Tenofovir DF group who showed a stable increase 

in weight. The overall mitochondrial toxicity was also significantly more among patients 

receiving d4T regimen.  

In programs in LMIC where laboratory access is limited, an ideal way to monitor 

patients’ responses to ART is by measuring clinical parameters such as weight. For 

example, in developing countries where mortality within the first year of ART is high, early 

detection of patients with suboptimal ART response (such as weight loss) is crucial. Madec 

et al. (2009) showed that short-term weight gain is an indicator of treatment success, 

whereas long-term weight loss is associated with an increased risk of death and other 

adverse clinical outcomes.  Therefore, the durability of weight gain over time can be used 

as an indicator of the efficacy of the ART treatment in HIV-infected patients (Grinspoon 

& Mulligan, 2003). Results from a number of studies have shown that weight loss greater 
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than 10% from ART initiation or the previous visit was significantly associated with a four 

to six-fold increase in mortality compared with stable or increasing weight (Biadgilign, 

Reda, & Digafe (2012), Madec, et al. (2009)).  

Understanding the prognosis and evolution of HIV disease is important for patient 

management and assessing the efficacy of the treatment programs. However, which 

biomarkers to measure remains a challenge, particularly with limited resources in LMIC 

countries where simple-to-obtain measurements are needed. One attractive option is 

measuring the body weight of patients with HIV as a follow-up measure (Madec, et al., 

2009). Body weight loss is a frequent outcome of infected HIV patients; conversely, weight 

gain has been seen with the initiation of ART (Wools-Kaloustian, et al., 2006). Increase in 

weight is an important factor associated with patient survival (Biadgilign, Reda, & Digafe, 

2012). WHO guidelines (2003) recommend looking at a body-weight gain of at least 10% 

at six months from start of antiretroviral therapy to evaluate ART programs. Therefore, the 

durability of weight gain over time can be used as an indicator of both the efficacy of the 

ART treatment in HIV-infected patients as well as the efficiency of the treatment program. 

The primary objective of our research is motivated by these two, yet still not fully 

answered, questions: (1) “How does one compare durability of body weight for patients in 

a d4T regimen vs. a non-d4T regimen in LMIC?” and (2) “How does one assess durability 

of weight at the time point where weight no longer increases in HIV patients in a d4T 

regimen vs. a non-d4T in LMIC?”. 

To provide a global view of the weight changes after ART initiation (i.e. weight 

increasing or decreasing), a technique named Penalized Spline Significant Zero Crossings 

of Derivatives (PS-SiZer), an extension of SiZer (Chaudhuri & Marron, 1999), was 
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applied. The application of this method to longitudinally collected weight measurements 

in HIV patients to investigate significant features is novel. An algorithm has been used to 

estimate the time point where weight no longer increases in HIV-infected patients starting 

a first-line ART regimen. The algorithm was based on the REML estimate of an optimum 

level of smoothing using a mixed model representation of the penalized spline regression 

model (Section 5.2.2). The details of the statistical method of PS-SiZer are presented in 

Chapter 4, PS-SiZer: A Visual Tool to Investigate Significant Features in Longitudinal 

data. 

5.2 Methods  

5.2.1 Population  

For this study, records from patients receiving care at sites participating in the 

International Epidemiologic Databases to Evaluate AIDS (IeDEA), a collaboration of HIV 

clinical cohorts representing seven regions of the world, were included in this analysis. The 

IeDEA Collaboration (Egger, et al., 2012) collects demographic, clinical, and laboratory 

data extracted from information obtained from patients as part of routine clinical care. The 

data collected within IeDEA include demographic measures (such as age, sex, graphical 

region); clinical measures (such as weight, height, medication, morbidity and pregnancy), 

and biological measures (such as CD4 count, viral load etc.). 

The present study includes data on adult HIV-infected patients from five of the seven 

IeDEA regions representing 140 sites.  They include Southern-Africa (87 sites), East-

Africa (10 sites), West-Africa (15 sites), Central-Africa (10 sites), and Asia-Pacific regions 

(18 sites). Individuals included in this analysis were at least 18 years old at ART-initiation 
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and had at least one weight observation at ART initiation (baseline) and post-ART 

observation within the first four years of treatment.  

5.2.2 Statistical analysis 

As the longitudinal trajectory of body weight can be rather variable, parametric 

models may have limitations in detecting features of the regression curve (Jaroslaw, Elena, 

& Nan, 2007). Therefore, the smoothing curve might be useful for extracting meaningful 

features in the data. In order to explore the features of the weight trajectory, we advocated 

using smoothing curve techniques. In our research, we apply PS-SiZer (Chapter 4), the 

newly developed extension of SiZer methodology for a visual presentation of the overall 

illustration of the rate of weight changes in HIV-infected patients initiating ART. PS-SiZer 

is an extension designed to handle correlated data arising from longitudinal settings and an 

enhancement using computationally the efficient smoothing model. While PS-SiZer map 

is constructed by simultaneously considering a family of smooth, the ultimate goal is to 

understand the relationship of the ART treatment regimen (particularly whether the 

regimen contained d4T or not) and the rate of change of bodyweight over time. 

Finally, conclusions were based on the optimum level of the smoothing parameter 

to obtain the estimated first time point where weight no longer increased for patients in the 

d4T regimen vs. the non-d4T regimen. Here, we used an algorithm to determine the first 

time point at which weight gain stops increasing. In the following subsections, the PS-

SiZer method and the algorithm are presented briefly. 

5.2.3 PS-SiZer Maps 

PS-SiZer is a visualization tool to investigate significant features in longitudinal 

data accounting for correlation in the analysis. The details of this method of PS-SiZer are 
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described in Chapter 4. The underlying smoothing model used in PS-SiZer is a penalized 

spline regression model (PSR) called P-spline proposed by Eilers & Marx (1996). P-spline 

is a computationally efficient smoothing model for correlated data.  

The PS-SiZer map includes a number of levels of the smoothing parameters. In the 

present application, we used a range between 𝑙𝑜𝑔10 (𝜆𝑅𝐸𝑀𝐿) ± 2 , where 𝜆𝑅𝐸𝑀𝐿 is the 

estimated smoothing parameter obtained via the REML approach using mixed model 

representation of the PSR model. One hundred smoothing levels (represented as log10 λ in 

the map) were used in this analysis to produce the PS-SiZer maps. The PS-SiZer maps 

focused on the rate of weight change (first derivative) of the curve by smoothing the 

trajectory of the weight measurements over time. By smoothing the curve, critical patterns 

in its evolution can be discerned. The significant feature is obtained from the confidence 

limits (CL) of the first derivatives of the fitted curve at each level of the smoothing 

parameter. At a specific time point, if the lower limit of CL of the first derivative is above 

zero, then weight is significantly increasing. When the upper limit of the CL is below zero, 

the weight is significantly decreasing. The weight is not changing significantly when the 

CL contains zero.  Thus, identifying this point of the derivative crossing zero is critical in 

estimating the durability of weight increase. 

The PS-SiZer analysis explores these characteristics in the form of a color-coded map. 

Each row of the PS-SiZer map corresponds to a different level of smoothing, and each 

column represents the weeks from ART initiation.  At each time-point, PS-SiZer uses a 

color that indicates the behavior of the first derivative of the underlying curve: 
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1) The blue color means that the rate of change is significantly positive (i.e., the 

underlying curve of weight measurements is increasing). In statistical terms, this 

means that the 95% CL of the rate of change lies completely above zero.  

2) The red color implies that the rate of change is significantly negative (i.e., the 

underlying curve of weight measurements is decreasing). This means that the 95% 

CL of the rate of change is entirely below zero. 

3) The purple color is used when the CL of the rate of change contains zero, i.e., when 

there is no significant increase or decrease in the underlying weight measurements 

over time. 

PS-SiZer Maps for each IeDEA region were generated for each treatment group, i.e., 

one map each for the groups of patients initiating ART with a regimen containing or not 

containing d4T. 

By presenting the features of the underlying weight change at various levels of 

smoothing, the PS-SiZer map provides an overall visual representation of the weight 

change after the start of ART.  However, to reach a conclusion on the durability of weight 

increases after ART start, we need to decide on a single optimum level of smoothing. In 

the below section, an algorithm using a single optimum level from REML estimate is 

briefly described. 

5.2.4 Algorithm to detect first time point (week) at which weight gain stops increasing at 

an optimum smoothing level 

Our algorithm does not depend on a specific smoothing technique. However, here we 

have used P-spline (Eilers & Marx, 1996) PSR model for its computational efficiency and 

flexibility for correlated data.  In addition, we took the advantages of re-expressing the 
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PSR model as a linear mixed effect model (Brumback, Ruppert, & Wand, 1999) .The 

REML estimate of the mixed model is used to obtain the optimum smoothing parameter. 

Here, the P-spline model includes a subject-specific random intercept to account for 

correlation arose from repeated weight measures over time. It provides precise estimates 

of variability and improves the inferences. We used the first derivative of the smooth 

function to estimate the rate of weight change and the corresponding CL to determine the 

significant changes over time. Finally, we detect the first-time point of weight change with 

a 95% CL at an optimum level of smoothing. The steps involved to obtain the first-time 

point at which weight gain stops increasing at an optimum level of the smoothing are 

presented below. 

1) First fit the P-spline model using mixed model representation and obtain the fitted 

mean regression function and their subject specific deviation at the REML estimated 

optimum level of smoothing parameter.  

2) Obtain the estimate of the variance parameters,  

3) Estimate the first derivatives and their corresponding CL. 

4) Find the significance feature of the curve from the CL of the estimated first 

derivatives. 

5) At each time point, determine if the weight change is significantly increasing if the 

lower limit of the 95% CL is above zero. Or, determine if the weight change is 

significantly decreasing if the upper limit of the CL is below zero. It is non-

significant if the CL contains zero. 

6) Find the time point (week) at which the estimated curve stops increasing for the first 

time. 
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7) Estimate the variance of the first time point using delta method. 

Statistical analyses were performed using SAS Software 9.3 and R software (2.13.2) ( 

(2008).  SAS was used to create the analysis data sets for each of the five IeDEA regions. 

The user defined R-functions along with the R package mgcv::gam (Wood, 2010) was used 

to generate PS-SiZer maps and to conduct the analysis at the optimum level of smoothing. 

5.3 Results 

5.3.1 Baseline characteristics 

The present study includes data on 185,010 adult HIV-infected patients from five 

of the seven IeDEA regions: Southern Africa (65.6% of the cohort), East Africa (21.9%), 

West Africa (8.3%), Central Africa (3.2%), and Asia Pacific (0.9%). Total observations at 

the 4-year follow-up used in the analysis were about 2,161,515. Baseline demographic data 

of IeDEA patients identified by region and by d4t-containing and non-d4T-containing 

regimen are shown in Table 5-1. 
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Table 5-1 Summary of baseline characteristics- IeDEA study by d4T and non-d4T 

containing regimen 

 

 

 

Asia 

Pacific 

Central 

Africa 

East 

Africa 

Southern 

Africa 

West 

Africa 

Total 

 

 

 

d4T Treatment Regimen 

 

N 963 2839 30990 55192 8176 98160 

 

Female 

(%) 

410  (43) 2008  

(70) 

20017  

(78) 

36227 

(49) 

5490 (55) 64152 

(65) 

 

Age 

(years) 

35  

(29-40) 

37  

(31-44) 

37 

 (31-43) 

35  

(30-42) 

39 

 (32-42) 

36  

(30-42) 

 

Baseline 

Body 

weight 

(kg) 

51  

(45-58) 

56  

(49-65) 

54  

(48-61) 

55  

(48-62) 

55  

(48-64) 

55  

(48-62) 

 

 

Baseline 

Cd4 count 

(cell/µL) 

 

66  

(25-153) 

127 

 (57-197) 

103 

(41-175) 

121  

(58-190) 

138  

(58-223) 

144  

(76-211) 

 

Non-d4T Treatment Regimen 

 

N 751 3045 9571 66295 7188 86850 

Female 

(%) 

 

181 (24) 2118 (51) 5758 (22) 38137 

(51) 

4488 (45) 50682 

(58) 

Age 

(years) 

34  

(29-42) 

37  

(31-44) 

37  

(31-43) 

35  

(30-42) 

41  

(37-42) 

36  

(30-42) 

 

Baseline 

Body 

weight 

(kg) 

 

58  

(50-56) 

56  

(50-65) 

55  

(49-62) 

55  

(49-62) 

57  

(50-65) 

55  

(49-62) 

Baseline 

Cd4 count 

(cell/µL) 

 

149  

(46-221) 

150  

(77-223) 

109  

(44-180) 

146  

(80-213) 

146  

(69-224) 

144  

(76-211) 
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Note: Summaries are median (IQR) or n (%) 
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In this research paper, we present in detail results from the Southern Africa IeDEA 

region. Results from the remaining four regions are presented in less detail as they were, 

in general, consistent with the results obtained in the Southern-Africa region.  When this 

is not the case, we devote more time to presenting those results. 

5.3.2 Exploratory data analysis 

To clarify what happens to body weight after the initiation of ART, we present, in 

Figure 5-1 (left-panel), a plot of the individual patient bodyweight measurements over time 

since the initiation of ART start, with a PSR smoothed curve superimposed to represent 

the average weight change over time.  A random sample of data in 300 patients, taken from 

the Southern Africa IeDEA region, was used to generate this Figure 5-1. This initial crude 

representation of the data, nevertheless, points to a sustained increase in weight after ART 

initiation (with the possibility of a period of weight stagnation or decrease at the rightmost 

extreme period after ART initiation).  To gain some familiarity with these data, we 

produced a smoothed PSR curve for the weight measurements over time in HIV-infected 

patients starting ART with d4T versus non-d4T-containing regimens. Data from the 

Southern African IeDEA region are shown in Figure 5-1 (right panel). From the observed 

data, it is evident that the pattern of body weight changes among patients treated with the 

two types of regimens is markedly different. 
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Figure 5-1 Example from the Southern Africa IeDEA region. Left panel: A spaghetti 

plot of observed weight and P-spline fit over time (weeks). (b)  Fitted curves of weight 

over time by ART treatment regimen using P-spline model. 

 

5.3.3 PS-SiZer maps and durability of weight gain at optimum smoothing  

PS-SiZer analyses were generated for each of the five IeDEA regions whose data 

were analyzed in the present study. These are presented in Figures 5-2 to Figure 5-6.  Each 

Figure is consists of four panels. The smoothed trajectories of weight after ART initiation 

at the optimum level of smoothing for the two types of regimens are shown in top row: left 

panel, while the smoothed first derivative of the weight change over time is the two types 

of regimens is shown in the right panel. The PS-SiZer maps are shown in panels’ (bottom 

row: in the left and right panels) for d4T-containing (left-panel) and non-d4T-containing 

first-line ART regimens (right-panel).  

PS-SiZer maps generated from data in the Southern Africa IeDEA region are 

illustrated in Figure 5-2. The vertical axis represents the level of smoothing, and the 
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horizontal axis represents the time, in weeks, since the start of ART as described in the 

Methods section. For example, for d4T-containing regimens, at a medium level of 

smoothing (0.5-1.0), body weight increases for about 50 weeks and is reflected by the blue 

color on the left of the PS-SiZer map. The area to the right of the blue region is colored 

purple, indicating that no more significant increases in body weight are evident after about 

50 weeks from the start of ART. There are some red and blue regions in the map at the 

lowest smoothing levels (i.e. for values below 0.5), indicating possible weight decreases 

and increases, respectively. These disappear at higher levels of smoothing. Similarly, at 

very high smoothing levels, (i.e., for values of the smoothing parameter𝜆 > 1.0), the entire 

map is blue, indicating steady weight increases for the entire follow-up period. The PS-

SiZer map of bodyweight changes among HIV-infected patients initiating ART with a non-

d4T-containing regimen in the Southern African IeDEA region shows that, at lower 

smoothing levels, there are some blue and purple areas.  This suggests an intermittent 

weight increase. Otherwise, the map consists of mostly blue areas (indicating weight 

increases) for medium and higher levels of smoothing for up to about 100 weeks after ART 

initiation.  This indicates that patients starting ART with a non-d4T-containing regimen 

experience sustained bodyweight increases for a period possibly double that of patients 

treated with d4T-containing regimens. 
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Figure 5-2  Top-row: left panel represents the estimated weight change with CL, and 

the right panel represents the estimated first derivatives with CL over time by d4T and non-

d4T regimens at the REML optimum level. Bottom- row: left panel represents the PS-SiZer 

map for d4T-regimen, and the right panel represents the PS-SiZer map for non-d4T-

regimen. The vertical axis represents the level of smoothing expressed in 𝒍𝒐𝒈𝟏𝟎 𝛌 and the 

horizontal axis represents the time in weeks since the start of ART. Data is from Southern 

Africa. 
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To reach a conclusion about the comparison of the durability of weight changes in 

the d4T-containing versus not-d4T containing regimens, we chose the optimum level of 

smoothing for the Southern Africa IeDEA region (Figure 5-2: top-row left panel). This 

analysis showed that weight in patients treated with d4T-containing ART regimens 

increased rapidly after ART initiation and flattened out afterwards.  Consulting the first 

derivative (Figure 5-2: top-row, right panel), we observed that the 95% CI of the curve 

includes zero after 59.92 weeks in the group of patients who received a d4T-containing 

regimen compared to 133.82 weeks for patients treated with non-d4T-containing regimens 

(panel b2).  A numerical summary of these results is also shown in the first row of Table 

5-2.  

Table 5-2 Estimated weeks at which HIV-Patients experienced non-increasing weight 

IeDEA Region d4T regimen 

Estimated Weeks (CI) 

Non- d4T regimen 

Estimated weeks (CI) 

Southern Africa 59.92 (57.56, 62.27) 133.82 (131.08, 136.56) 

East Africa 52.92(50.76, 55.08) 84.88 (80.57, 89.19) 

West Africa 43.94 (39.43, 48.45) 92.87 (86.59, 99.14) 

Asia-Pacific 38.94 (34.45, 43.43)   54.92 (46.69, 63.15) 

Central Africa 61.92 (54.86, 68.98) 60.92 (53.23, 68.37) 

Note: Estimates and CI are from PSR model 

Similar analyses are presented in Figure 5-3 to Figure 5-6, where the results of the 

PS-SiZer analysis are presented for the East-Africa, West Africa, Central-Africa, and Asia-

Pacific IeDEA regions, respectively. The PS-SiZer maps corresponding to the East and 

West Africa regions are very similar. For d4T-containing regimens (panel a1 in Figure 5-

3 and Figure 5-4), blue areas are followed by purple areas after about 50-60 weeks for most 
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levels of smoothing, indicating significantly increasing weight during this period. After 

this point, weight gain diminishes.  By contrast, the blue areas in the PS-SiZer maps 

corresponding to the non-d4T-containing regimens (panels’ a2 in Figure 5-3 and Figure 5-

4) extend past week 60, indicating that weight continues to increase past 60 weeks after 

initiation of ART.  

Analyses at the optimum smoothing level produced the estimated curves of weight 

measurements shown in panels’ b1 and b2 of Figure 5-3 and Figure 5-4 and in Table 5-2 

(rows 2 and 3).  

For East Africa, results at the optimal smoothing levels showed that the weight in 

patients treated with d4T-containing regimens did not significantly increase after 52.9 

weeks compared to 84.9 weeks for patients treated with non-d4T-containing regimens.  For 

West Africa, the results are similar, patients treated with d4T-containing regimens 

estimated to weight gain for 43.9 weeks versus 92.9 weeks for the non-d4T-containing 

regimens 

Analyses of data from the Central Africa IeDEA region are shown in Figure 5-5 

(panels b1 and b2) and in Table 5-2 (row 4). The estimated duration of weight increases in 

the Central Africa region was 61.9 weeks for d4T-containing regimens versus 60.9 weeks 

for non-d4T-containing regimens. Results from the analyses of data in the Asia Pacific 

IeDEA region are presented in Figure 5-6 and Table 5-2 (row 5).  The estimated duration 

of weight gain in d4T-containing regimens was 38.9 weeks versus 54.9 weeks in non-d4T-

containign regimens.  
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5.4 Discussion and Conclusions  

This study is the largest of its kind ever performed in this context involves data from 

about 185,010 patients with more than two million clinic visits during the four years of 

follow-up after initiation of ART treatment.  PS-SiZer Maps were presented for Southern 

Africa, East-Africa, West Africa, Central-Africa, and Asia-Pacific for the IeDEA cohorts. 

The major finding was that adult HIV-infected patients starting ART with  d4T-containing  

regimens experienced weight gains whose durability was significantly shorter (small blue 

areas followed by purple areas)  than patients who started ART with regimens that did not 

contain d4T.  

The final analysis to detect the duration of significant weight gain at an optimum 

level shows that weight plateaued after 59.92 weeks (95% CI: 57.56, 62.27) in d4t-treated 

patients compared to 133.82 weeks (95% CI: 131.08, 136.56) in non-d4T treated patients 

in Southern Africa region. The difference between the two treatment regimens is significant 

as the 95% CI did not overlap with each other. The durability of weight gains was 

significantly shorter for patients treated with regimens containing d4T than patients who 

started treatment containing a non-d4T regimen for East Africa [(d4T: 52.92 (50.76, 55.08) 

versus non-d4T: 84.88 (80.57, 89.19)]; West Africa [d4T: 43.94 (39.43, 48.45) versus non-

d4T: 92.87 (86.59, 99.14)]; Asia Pacific [d4T: 38.94 (34.45, 43.43) versus non-d4T: 54.92 

(46.69, 63.15)]. The weight increase lasted for 61.92 weeks (54.86, 68.98) for d4T-treated 

vs. 60.92 weeks (53.23, 68.37)   for non-d4T treated patients in Central Africa region. 

Our analysis showed an unequivocal difference in the pattern of weight changes after 

ART initiation about whether the first-line regimen included the drug d4T or not.  While 

increases in weight may have been faster in the d4T group, the long-term durability of 
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weight gain seen in adult HIV-infected patients initiating ART with d4T-containing versus 

non-d4T containing regimens was much shorter depending on the geographical region.   It 

may be argued that weight is only a partial marker of ART effectiveness, and, further, that 

focusing on d4T use is not as relevant given recent treatment guidelines. However, d4T is 

still a mainstay drug in many parts of the world, and weight is a relevant biomarker that is 

both associated with clinical outcome and is correlated to other biomarkers that are more 

difficult or expensive to obtain. Regardless, the PS-SiZer methodology presented here is 

applicable to many other settings and biomarkers collected longitudinally in order to assess 

the clinical state of patients and the effectiveness of the antiretroviral therapy provided to 

them. 

In conclusion, we detected a relatively shorter durability of weight gain for patients 

who were treated with d4t-containing regimen consistently among the cohort of patients in 

all five regions in IeDEA. The change of body weight for HIV-infected patients needs to 

be monitored closely after initiation of ART treatment, specifically for those containing 

d4T regimens. After the detection of initial weight loss, a caregiver should consider 

alternative treatment options.  Early detection of weight loss or non-increasing weight after 

initiation of ART may prevent long-term complicacy or death for HIV-infected patients. 

Hence, the overall patient management and assessment of the efficacy of the treatment 

programs become more effective in resource-limited countries. 

5.5 Limitations 

Along with the important observations presented above, the present study has a 

number of limitations that need to be considered carefully. 
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A characteristic of the current analysis is that changes in ART regimens were not 

taken into consideration. For example, changes from d4T-containing to d4T-non-

containing regimens during the follow-up period (dropouts) or vice versa (drop-ins) were 

not considered.  It is unclear whether the former change is more frequent compared to the 

latter. When the changes from a d4T to a non-d4T-containing regimen are more common, 

then the induced bias generated by ignoring regimen changes after baseline will tend to 

attenuate the differences between the two groups. In that case, the difference in weight 

gains seen between d4T-containing versus non-d4T-containing regimens will be 

underestimated. The same bias would result from switching to second-line therapy. 

However, the median time to change a regimen (analysis not shown) was one year and 

involved an exceedingly small number of patients, so its impact on our analysis is expected 

to have been minimal. 

The effect of high rates of loss to follow-up in the two groups may be considered as 

another limitation of the study. In particular, if toxicity from d4T-containing regimens 

leads to patients abandoning care altogether, then their weight will not be measured 

resulting in an upward bias when estimating the overall weight changes in this group. This 

bias will have an attenuating effect on the comparison of weight gains between the two 

groups. However, this does not appear to be the problem in this analysis, as the rates of 

patient loss to follow-up are not markedly different between the two groups (analysis not 

shown). 

5.6 Strengths 

Along with these limitations, the study has considerable strengths. The size of the 

data alone makes this a definitive study for the period ending just prior to the inception of 
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the WHO 2013 treatment guidelines. Thus, it provides a useful baseline reference of 

historical data for future studies assessing the effect the changing guidelines had on patient 

outcomes.  In addition, the use of the PS-SiZer methodology provides a useful visual 

summary of the change over time in important biomarkers, and the smoothing underlying 

the method provides a strong assurance for the detection of important features in the 

longitudinal trajectories of these markers. Further, one strength of the study lies in about 

the extremely large number of participants. Data used in the present study were based on 

more than 185,000 adult HIV-infected patients recruited from five regions around the 

world, providing well over two million longitudinal weight measurements.  
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Appendix 5A: PS-SiZer maps for East, West and Central Africa, and Asia Pacific. 

 

 

 

 

 

 

 

 

Figure 5-3 Top-row: left panel represents estimated the weight change with CL, and 

the right panel represents the estimated first derivatives with CL over time by d4T and non-

d4T regimens at the REML optimum level. Bottom- row: left panel represents the PS-SiZer 

map for d4T-regimen, and the right panel represents the PS-SiZer map for non-d4T-

regimen. The vertical axis represents the level of smoothing expressed in 10 λ , and the 

horizontal axis represents the time in weeks since the start of ART. Data is from East Africa 

region. 
 



 

103 

 

 

 

 

 

 

 

 

Figure 5-4 Top-row: left panel represents the estimated weight change with CL, and 

the right panel represents the estimated first derivatives with CL over time by d4T and non-

d4T regimens at the REML optimum level. Bottom-row: left panel represents the PS-SiZer 

map for d4T-regimen, and the right panel represents the PS-SiZer map for non-d4T-

regimen. The vertical axis represents the level of smoothing expressed in 10 λ , and the 

horizontal axis represents the time in weeks since the start of ART. Data is from West 

Africa. 
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Figure 5-5 Top-row: left panel represents the estimated weight change with CL, and 

the right panel represents the estimated first derivatives with CL over time by d4t and non-

d4T regimens at the REML optimum level. Bottom- row: left panel represents PS-SiZer 

map for d4T-regimen, and the right panel represents the PS-SiZer map for non-d4T-

regimen. The vertical axis represents the level of smoothing, expressed in 10 λ , and the 

horizontal axis represents the time in weeks since the start of ART. Data is from Central 

Africa region. 
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Figure 5-6 Top-row: left panel represents the estimated weight change with CL, and 

the right panel represents the estimated first derivatives with CL over time by d4T and non-

d4T regimens at the REML optimum level. Bottom- row: left panel represents the PS-SiZer 

map for d4T-regimen, and the right panel represents the PS-SiZer map for non-d4T-

regimen. The vertical axis represents the level of smoothing expressed in 10 λ , and the 

horizontal axis represents the time in weeks since the start of ART.  Data is from Asia 

Pacific region.  
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