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MULTIVARIATE FINITE MIXTURE LATENT TRAJECTORY MODELS WITH 

APPLICATION TO DEMENTIA STUDIES 

Dementia studies often collect multiple longitudinal neuropsychological measures 

in order to examine patients’ decline across a number of cognitive domains. Dementia 

patients have shown considerable heterogeneities in individual trajectories of cognitive 

decline, with some patients showing rapid decline following diagnoses while others 

exhibiting slower decline or remain stable for several years. In the first part of this 

dissertation, a multivariate finite mixture latent trajectory model was proposed to identify 

longitudinal patterns of cognitive decline in multiple cognitive domains with multiple 

tests within each domain. The expectation-maximization (EM) algorithm was 

implemented for parameter estimation and posterior probabilities were estimated based 

on the model to predict latent class membership. Simulation studies demonstrated 

satisfactory performance of the proposed approach. In the second part, a simulation study 

was performed to compare the performance of information-based criteria on the selection 

of the number of latent classes.  Commonly used model selection criteria including the 

Akaike information criterion (AIC), Bayesian information criterion (BIC), as well as 

consistent AIC (CAIC), sample adjusted BIC (SABIC) and the integrated classification 

likelihood criteria (ICLBIC) were included in the comparison. SABIC performed 

uniformly better in all simulation scenarios and hence was the preferred criterion for our 

proposed model.  In the third part of the dissertation, the multivariate finite mixture latent 

trajectory model was extended to situations where the true latent class membership was 

known for a subset of patients. The proposed models were used to analyze data from the 
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Uniform Data Set (UDS) collected from Alzheimer’s Disease Centers across the country 

to identify various cognitive decline patterns among patients with dementia.  
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CHAPTER 1. INTRODUCTION 

Dementia is common in the elderly population and is characterized by the 

progressive decline of cognitive function leading to impairment in the ability to perform 

daily activities and eventually loss of independence. The leading cause of dementia is 

Alzheimer’s disease (AD), followed by other disorders such as vascular dementia (VD), 

frontotemporal dementia (FTD), and Lewy body dementia (LBD). Many patients also 

have coexisting pathologies with two or more subtypes of dementia. Dementia patients 

show substantial heterogeneity in their individual trajectories of cognitive decline, with 

some patients showing rapid decline while others exhibiting slower decline or remaining 

stable [1]. In addition, the trajectory of cognitive decline also varies across cognitive 

domains, for example, patients with AD typically have more prominent memory deficits 

with additional deficits in language [2-4], whereas patients with FTD show greater 

impairment in language and less impairment in memory [5-9].   

Most research on the identification of distinct longitudinal trajectories on the 

patterns of cognitive decline had focused on a single neuropsychological test using 

group-based trajectory models (GBTM) [10-12] or growth mixture models (GMM) [13-

15]. Both types of models assume that subjects belong to one of several unobserved 

subpopulations/groups/latent classes (in the following chapters, these terms are used 

interchangeably) with each group characterized by a unique longitudinal trajectory. 

GBTM and GMM models have been widely used in many research areas such as 

sociology, psychology, and criminology [11, 14]. However, these models are not well 

suited for multivariate longitudinal data often encountered in dementia studies where 

multiple neuropsychological tests are typically performed in order to characterize patients’ 
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level of cognition. To address this, Proust-Lima and colleagues developed a model that 

treats the multiple tests as measures of a single latent quantity, characterizes the latent 

process exhibiting distinct longitudinal patterns across subpopulations [16, 17]. This new 

model has the flexibility of handling multivariate cognitive outcomes simultaneously. 

However, it only allows one single latent quantity, which is a rather strong assumption 

because neuropsychological tests are from more than one cognitive domain.  

In the first part of this dissertation, we extended the model proposed by Proust-

Lima et al by allowing multiple latent quantities, one for each cognitive domain and 

measured by multiple neuropsychological tests from that domain.  These latent quantities 

jointly identify subpopulations of patients who exhibit distinct longitudinal patterns. This 

model is aimed at identifying subpopulations that may share the same disease etiology 

and leading to better treatment outcomes.  

 One challenging issue in the area of finite mixture models is the determination of 

the number of subpopulations. There are many studies on this topic but no well-

established approach thus far [11, 18-22]. The commonly used likelihood ratio test (LRT) 

cannot be used to compare models with different number of subpopulations due to the 

fact that the null hypothesis involves zero mixing proportions, hence violating the 

regularity condition [19]. Other likelihood-based approaches such as the Lo, Mendell and 

Rubin (LMR) test [23] and  the bootstrap likelihood ratio test (BLRT) [19] have limited 

application due to the high computational burden, especially for complicated models. 

Most studies used information criteria (IC) based approaches such as Akaike’s 

Information Criterion (AIC) [24] and Bayesian Information Criterion (BIC) [25]. 

However, several studies have shown that AIC tends to overestimate the number of 
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groups, especially when sample size is large [19, 20]. BIC has also been known to suffer 

from the overestimation of the number of subpopulations  [26]. In addition, it has been 

observed in several studies that BIC may decrease monotonically as more groups were 

added [11]. In addition to AIC and BIC, there are other IC-based fit indices include 

consistent AIC (CAIC) [27];  sample adjusted BIC (SABIC) [28-31], integrated 

classification likelihood criterion (ICLBIC) [32]. They were proposed to augment the 

performance of AIC and BIC, and in several simulation studies, they showed promising 

results [18, 21, 22]. However, their performance was evaluated in different contexts such 

as latent class modeling and growth mixture modeling. In the second part of this 

dissertation, a simulation study was performed to evaluate the performance of 

aforementioned IC-based indices for the multivariate finite mixture latent trajectory 

model proposed in the first part of this dissertation under different conditions with 

varying number of subjects, number of observations per subject, and level of separation 

among latent classes.  

In some dementia studies, although it is difficult to determine the exact dementia 

subtype for all subjects, there may be a subsample of patients who underwent autopsy 

and have known dementia subtypes. Such data are often called partially labelled data in 

latent class analysis literature [19, 33-36].  Incorporating the true dementia subtype for 

these patients could potentially improve the accuracy of inferring patients’ unknown 

dementia subtype. Studies showed that even 10% of labelled data can improve the 

accuracy of classification [37, 38]. In addition to improved classification accuracy, the 

existence of labelled data can make model estimation more efficient with faster 

convergence [19]. In the third part of this dissertation, the multivariate finite mixture 
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latent trajectory model was further extended to the situation where partially labelled data 

are available. Simulation studies were performed to investigate how labelled data can 

improve the classification accuracy and estimation efficiency under several 

considerations. Then the same data set analyzed in the first part was re-analyzed and 

results were compared to see how the additional information can help identifying 

dementia subtypes.  
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CHAPTER 2. A MULTIVARIATE FINITE MIXTURE LATENT TRAJECTORY 

MODEL WITH APPLICATION TO DEMENTIA STUDIES  

2.1 Summary 

Dementia patients exhibit considerable heterogeneity in individual trajectories of 

cognitive decline, with some patients showing rapid decline following diagnoses while 

others exhibiting slower decline or remaining stable for several years. Dementia studies 

often collect longitudinal measures of multiple neuropsychological tests aimed to 

measure patients’ decline across a number of cognitive domains. We propose a 

multivariate finite mixture latent trajectory model to identify distinct longitudinal patterns 

of cognitive decline simultaneously in multiple cognitive domains, each of which is 

measured by multiple neuropsychological tests. EM algorithm is used for parameter 

estimation and posterior probabilities are used to predict latent class membership. We 

present results of a simulation study demonstrating adequate performance of our 

proposed approach and apply our model to the Uniform Data Set (UDS) from the 

National Alzheimer’s Coordinating Center (NACC) to identify cognitive decline patterns 

among dementia patients.   

 

2.2 Introduction 

Dementia is common in the elderly population with Alzheimer’s disease (AD) the 

leading cause [39] and  is characterized by the progressive decline of cognitive function 

leading to impairment in the ability to perform daily activities and consequently, loss of 

independence. There is considerable heterogeneity in the individual trajectories of 

cognitive decline among dementia patients, with some patients showing rapid decline 
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while others exhibiting slower decline or remaining stable [1]. The heterogeneity of the 

cognitive decline also varies across cognitive domains. Prior research has shown that 

patients with AD had more prominent memory deficits with additional deficits in 

language [2-4], whereas patients with FTD had greater impairment in language and less 

impairment in memory [5-9].     

Research on the identification of distinct longitudinal trajectories of cognitive 

decline has focused on univariate cognitive outcomes, measured by a single 

neuropsychological test using group-based trajectory models (GBTM) [10-12] and 

growth mixture models (GMM) [13-15]. GBTM, also known as  latent class growth 

analysis (LCGA) [14], was proposed  by Nagin and colleagues [10-12] while GMM was 

developed by Muthén et al [13-15]. Both models assume that subjects belong to one of 

several subpopulations/groups/latent classes, each characterized by a unique longitudinal 

trajectory. A key difference between GBTM and GMM is that GBTM assumes 

conditional independence, i.e. longitudinal measures across time within a subject are 

independent, whereas the GMM allows correlations among longitudinal outcomes within 

a subject with the introduction of subject-specific random effects [14].  Therefore, GBTM 

can be considered as a special case of GMM [14].     

Despite the successful application of the GBTM and GMM models in many 

research studies [11, 14], these models are not well suited for multivariate longitudinal 

data due to the restriction that each latent process can only be constructed from one test. 

When evaluating cognitive decline among dementia patients, data are collected across 

several cognitive domains with multiple neuropsychological tests in each domain. Tests 

within each domain are measures of same underlying latent construct from different 
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prospective. Proust-Lima and colleagues extended the GBTM and GMM models to 

multivariate longitudinal data by treating the multiple tests as measures of a single latent 

quantity with a latent process that exhibits distinct longitudinal patterns across 

subpopulations [16, 17].  Although this approach has the flexibility to handle multivariate 

cognitive outcomes, it only allows exploration of longitudinal patterns of a single latent 

quantity, a limitation that undermines the capability of the model. In dementia studies 

where many neuropsychological tests are used to measure different aspects of cognitive 

function including memory, language, and executive function, it will be more realistic to 

assume multiple latent quantities and identify longitudinal patterns associated with 

different cognitive domains.  

In this chapter, we extend the model proposed by Proust-Lima et al by allowing 

more than one latent quantity, each of which can be measured by multiple tests, and 

identifying subpopulations of patients who exhibit distinct longitudinal patterns in these 

latent quantities.  Our work was directly motivated by studies of cognitive decline among 

dementia patients. Our proposed approach is aimed at identifying longitudinal patterns of 

cognitive decline defined in multiple cognitive domains. The identified subpopulations 

share the similar cognitive decline patterns therefore may share the same disease etiology; 

therefore, it can help us to find better patient care and treatment. And these 

phenotypically homogeneous subgroups can be used to improve the ability of searching 

disease causing genes in genetic studies. 

The remainder of the chapter is organized as follows. In Section 2.3, we introduce 

the multivariate finite mixture latent trajectory model. We discuss parameter estimation 

using the EM algorithm and standard error computation in Section 2.4. We present results 
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from simulation studies in Section 2.5. Section 2.6 includes results from the application 

of our model to the Uniform Data Set (UDS) from the National Alzheimer’s 

Coordinating Center (NACC) [40]. We present a discussion and conclude the chapter in 

section 2.7.     

 

2.3 The Multivariate Finite Mixture Latent Trajectory Model 

Assume that the population consists of � subpopulations represented by � latent 

classes. For individual �, � = 1, … , �, we define a �-dimentional vector �	 denoting the 

latent class membership, with 
�� = 1 if individual � belongs to class  and 0 otherwise. 

Suppose there are � neuropsychological tests with continuous outcomes representing 

cognitive function in � cognitive domains. Let �	 = ��	�� , … , �	�� , … , �	�� ��
 be the vector 

of all measurements for individual �, where �	� is a vector of length  ���, which denotes 

the number of longitudinal measurements for individual � and  test � (� = 1, … , �), 

hence the length of �	 is  ∑ ����� ! . Let  "�	(#) and $	(#) be the matrices of covariates 

collected for individual �. $	(#)  can have partial or all columns of "�	(#) but contains at 

least one time variable. Then a measurement model if individual � is in latent class  is: 

�	|�	& � = '	|�	& �(#) + )	*	 + +	,                                                   (2.1) 

Where the latent trajectory is defined as: 

'	|�	&,�(#) = "�	(#)-& + $	(#).	&,                                                 (2.2) 

The length of latent process '	|�	&,�(#) is also ∑ ����� ! . Note that for the tests that are in 

the same domain, they share the same latent process by having the same values in  

'	|�	&,�(#).   -& is the vector of class-specific fixed effects from all cognitive domains in 
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latent class . Its length is / × �, where / is the number of covariates. .	& is the class 

specific random effects for all domains in latent class . Similar to -&, .	&  has length 

1 × �, where 1 is the number of random effects. We assume that .	&  has a multivariate 

normal distribution ��2, 3�45� with 3!4 = 1 and 5 is the covariance matrix of first 

latent class, similarly defined as in Proust et al [16]. *	 in (2.1) is the �-vector of test-

specific random intercept. It introduces correlation among scores of the same test from 

the same individual. Here we assume *	 is distributed as �(2, 6*), where 6* is a diagonal 

matrix with 78�4  in its diagonal. Design matrix )	 in (2.1) is a ∑ ����� ! × �  block matrix 

with the following structure: 

)� = 9� ⋯ 2⋮ ⋱ ⋮2 ⋯ �= 

where � is a column vector of 1s. In �>? column, the column vector of 1s has length ���. 

+	 in (2.1) is an vector of random error with distribution �(2, 6+), where  6+ is a block 

matrix with 7@�4 ABCD at diagonal and all other entries are 0s.  

Accordingly, covariate matrix "�	(#) has the following structure: 

"�	(#) = 9"�	� ⋯ 2⋮ ⋱ ⋮2 ⋯ "�	E= 

Each "�	F has all covariates for all tests in domain G, G = 1, … , � with dimension ��� ×
/. Similarly the design matrix $	(#) has the following structure: 

$	(#) = 9$	� ⋯ 2⋮ ⋱ ⋮2 ⋯ $	E= 

where $	F is a matrix of time polynomial of degree 1 − 1 with dimension ��� × 1. For 

example, if ��� = 3, for a quadratic model, each J�Khas structure as following: 
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$	F = L1 M�! M�!41 M�4 M�441 M�N M�N4
O 

We assume that .	&, *	 and +	 are mutually independent. 

For individual �, � = 1, … , �, the probability that this individual belongs to a 

latent class ,  = 1, … , �, is P��, with  ∑ P�� = 1Q� ! . This can be modeled through a 

multinomial logistic regression as:  

P�� = /(
�� = 1|"R	� ) = STU ("R	� V&)!W∑ STU ("R	� VX)YZ[\,[  ,                                      (2.3) 

where V& is the vector of the class-specific regression coefficients. For identifiability 

purpose, V] are set to 0s. Covariates "R	�  used here can be the same or different from 

"�	(#) in equation (2.2). 

 

2.4 Parameter Estimation 

Since the latent class memberships are unobserved and there are also multiple 

random effects, the expectation-maximization (EM) algorithm can be used for obtaining 

parameter estimates [19, 41-43]. Let  

^ = (-�, … , -&, … , -], 344, … , 3�4, … , 3QR, 5, 6*, 6+, VR, … , V&, … , V])  

be the parameters to be estimated, _��(�	) be the density function of �	 in latent class , 

then the observed-data likelihood is: 

`(^) = ∏ ∑ P��_��(�	)Q� !b� !                                                (2.4) 

_��(�	) has distribution �("�	(#)-&, 6	&), where  

6	& = $	(#)3�45$	(#)� + )	6*)	� + 6+. 
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Augmenting the observed data �	 with unobserved variables ��	, .	� … , .	&, … , .	], *	�,  

the complete-data likelihood function is: 

8̀(^) = c c {P��_(�	e.	&, *	�_�.	&�_(*	)}gChQ
� !

b
� !  

The log-likelihood for the complete data is 

log� 8̀(^)� = l l 
��{log�P��� + log m_��	e.	&, *	�n + log m_�.	&�n + log�_(*	)�}Q
� !

b
� !  

= l l 
��log�P��� − ∑ ����� ! + o + �2 l l 
�� log(2P) − 12 l l 
��log |6+|Q
� !

b
� !

Q
� !

b
� !

Q
� !

b
� !  

− 12 l l 
����	 − "�	(#)-& − $	(#).	& − )	*	�q6+r���	 − "�	(#)-& − $	(#).	&
Q

� !
b

� !
− )	*	� 

− 12 l l 
��log|5| − 12 l l o ∗ 
�� log�3�4� − 12 l l 
��.	&� �3�45�r!.	&
Q

� !
b

� !
Q

� !
b

� !
Q

� !
b

� !  

− 12 l l 
�� log|6*|Q
� !

b
� ! − 12 l l 
��*	�6*r�*	

Q
� !

b
� ! , 

                                  (2.5) 

where o is the dimension of square matrix 5.  

 

2.4.1 The EM algorithm 

The EM algorithm involves taking the conditional expectation of the complete-

data log-likelihood and updating the parameters by maximizing the conditional 
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expectation. Based on (2.5), we can see that the t step at u>? iteration involves 

evaluating the following conditional expectations for each subject: 

 

t^(v)�
��e�	�; t^(v)�
��.	&e�	�;  t^(v)�
��.	&.	&� e�	�; 
t^(v)�
��*	e�	�; t^(v)�
��*	*	�e�	�; t^(v)�
��*	.	&� e�	�. 

 

Calculation of the first conditional expectation is straightforward: 

 

t^(v)�
��e�	� =  Pr (
�� = 1|�	) 
= P��_��(�	)∑ P�?_�?(�	)Q? ! = {��(|), 

(2.6) 

which is the posterior probability of subject � belonging to latent class  at the current 

parameter estimate. In addition, 

 

t^(v)�
��.	&e�	� = t^(v)�.	&e�	, 
�� = 1� 
                                 = t^(v)�.	&e�	, 
�� = 1)Pr ( 
�� = 1|�	� 
                                 = {��(|)t^(v)�.	&e�	, 
�� = 1� 

 

Therefore, similarly, we only need to calculate:  

 

t^(v)�.	&e�	�;  t^(v)�.	&.	&� e�	�; t^(v)(*	|�	); t^(v)�*	*	�e�	�; t^(v)�*	.	&� e�	�. 
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The joint distribution of ��	�, .	&� , *	���
 is a multivariate normal distribution with mean: 

 

9"�	(#)-&22 =, 

 

and variance matrix: 

 

}$	(#)3�45$	(#)� + )	6~)	� + 6� $	(#)3�45 )	6*�$	(#)3�45�� 3�45 2()	6*)� 2 6*
� 

 

Let 6	.*& = �$	(#)3�45 )	6*� and 6.*& = �3�45 22 6*�; therefore the joint distribution 

of .	&,*	 condition on �	 is a multivariate normal distribution with mean 

 

t^(v)�.	&, *	e�	� = 6	.*&� �$	(#)3�45$	(#)� + )	6~)	� + 6��r!(�	 − "�	(#)-&)             

(2.7) 

And variance-covariance matrix: 

 

���^(v)�.	&, *	e�	� = 6.*& − 6	.*&� �$	(#)3�45$	(#)� + )	6*)	� + 6+�r!6	.*& 
= t^(v) �.	&.	&� |�	 .	&*	�|�	*	.	&� |�	 *	*	�|�	 � −  L.	&(�).	&(�)� .	&(�)*	(�)�

*	(�).	&(�)� *	(�)*	(�)� O 

(2.8) 
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From (2.8): 

t^(v) �.	&.	&� |�	 .	&*	�|�	*	.	&� |�	 *	*	�|�	 � 
= 6.*& − 6	.*&� �$	(#)3�45$	(#)� + )	6*)	� + 6+�r!6	.*& 

                         +   L.	&(�).	&(�)� .	&(�)*	(�)�
*	(�).	&(�)� *	(�)*	(�)� O            

(2.9) 

Thus, all conditional expectations can be obtained from (2.9).   

Implementing the M-step is relatively trivial since there exist closed-form 

solutions to the maximization of the conditional expectation of the complete-data log-

likelihood for the majority of the parameters except for ��(|W!)  in the model for  {��(|)
, 

which has to be updated numerically. For all other parameters, closed-form solutions are 

available and are given below: 

 

7@�4(|W!) =  ∑ ∑ ∑ {��(|) m��� − "�	�(#)-&(�) − $	�(#).	&(�) − )	�*	(�)n4 BCD� !Q� !b� ! ∑ ∑ ∑ {��(|)BCD� !Q� !b� !  

78�4(|W!) = ∑ ∑ {��(|)m���(|)n4Q� !b� !∑ ∑ {��(|)Q� !b� !  

3�4(|W!) = ∑ {��(|).	&(�)�5(|)r!.	&�b� ! ∑ o ∗ {��(|)b� !  

5(|W!) = ∑ ∑ {��(|)Q� !b� ! .	&(�).	&(�)�
∑ ∑ {��(|)3�4(|)Q� !b� !  
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-&(�W�) = �l {��(|)"�	(#)�6+(�)Z�"�	(#)b
� ! �r! l {��(|)"�	(#)�6+(�)Z�(�	 − "�	(#).	&(�)b

� !
− )	*	 (�))  

The E-step and M-step will be repeated until the difference of observed likelihood 

becomes smaller than a pre-specified threshold. For model fitting and parameter 

estimation we used SAS PROC IML. Initial parameter estimates used in the iterative 

program were obtained using SAS PROC NLMIXED without any random effects. To 

avoid local maxima, different initial parameter values around the estimates from PROC 

NLMIXED were used. Variance covariance matrix was calculated using the negative 

inversion of Hessian matrix by using the SAS function NLPFDD through the finite-

differences method.  

 

2.4.2 Posterior classification and model selection 

Assignment of each subject into latent classes can be achieved by using the 

posterior probability defined in (2.6) and estimated based on the maximum likelihood 

estimates of the parameters. A subject is classified in the latent class for which he or she 

has the highest posterior probability. These posterior probabilities are then used to 

evaluate the degree to which the latent classes can be distinguished by the data [44]. 

Specifically, we will calculate a � × � classification table, with each row representing 

the average posterior probabilities for each latent class among subjects assigned to a 

given latent class [44]. High diagonal values close to 1 and low off-diagonal values close 

to 0 indicate good classification quality.  



16 

 

The number of latent classes for each data set is unknown and needs to be pre-

specified before each model estimation procedure. Many model selection procedures can 

be used to select the “best” model when varying number of latent classes are used. As 

suggested by many studies, Bayesian information criterion (BIC) [25] will be used to 

select the number of latent classes due to its ease of implementation and superior 

performances [11, 12, 14].  

 

2.5 Simulation Studies 

For the simulation study, we focused on parameter estimation and latent class 

classification, i.e., whether we can identify the true trajectories and assign individuals 

into the correct latent classes. For each domain, linear trajectory was assumed. In addition 

to a time variable, a binary variable and a continuous variable were simulated as 

covariates for the domain specific fixed effects. For class specific random effects, both 

intercept and slope were assumed. To determine the latent class membership, one 

continuous variable was simulated. Since this model aimed at analyzing longitudinal data, 

for each sample, one to three observations at different time points were simulated.  

Five scenarios were used with the assumed number of latent classes between 2 

and 6. For each scenario, we generated 500 replications with each replication consists of 

1500 subjects. Under each scenario we fitted a latent trajectory model with the true 

number of latent classes, e.g. for data that consists of 4 latent classes, only 4-class model 

was fitted.  

Table 2.1 shows the results of parameter estimates for the 2 to 6-class model. It 

appears that our proposed method yields adequate parameter estimates and standard error 
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estimates for all model parameters. Table 2.2 includes the average coverage probabilities 

from 95% confidence intervals of all model parameters and misclassification rates. 

Coverage estimates are defined as the percentage of times that the 95% confidence 

interval of an estimated parameter contains the true parameter across all replications. 

Misclassification rate is calculated as the percentage of samples that are assigned into the 

wrong latent class according to the posterior probability. In our simulations, 

misclassification rates ranged from almost 0 to 13.97% with the trend that 

misclassification rates increase with the increase in the number of latent classes. This is 

expected since there is more room for classification error when there are more latent 

classes. In addition, for a fixed sample size, when the number of latent classes increases, 

the number of samples within each latent class decreases leading to increased standard 

errors estimates of class-specific parameters. Classification error hence increases with 

less well separated classes.  
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Table 2.1: Mean parameter estimates, asymptotic standard error (SE) and empirical 

standard error from 500 replications in simulations for 2 to 6-class model 

A: 2-class model 

Parameter 
True 

Value 

Mean 

estimates 

Asymptotic 

SE 

Empirical 

SE �!! 6.00 6.02 0.32 0.32 �!4 -12.00 -12.05 0.61 0.62 �!! 5.60 5.58 0.13 0.13 �!4 1.60 1.57 0.04 0.05 �!N 1.60 1.60 0.12 0.12 �!� 1.60 1.60 0.19 0.20 �!� 1.20 1.18 0.13 0.14 �!� 1.20 1.16 0.04 0.06 �!� 1.20 1.20 0.13 0.13 �!� 1.20 1.19 0.20 0.22 �4! -5.60 -5.58 0.13 0.13 �44 -1.60 -1.56 0.04 0.05 �4N -1.60 -1.60 0.12 0.12 �4� -1.60 -1.60 0.20 0.20 �4� -1.20 -1.18 0.13 0.13 �4� -1.20 -1.17 0.04 0.05 �4� -1.20 -1.20 0.12 0.12 �4� -1.20 -1.18 0.21 0.21 7@! 0.80 0.80 0.02 0.02 7@4 1.20 1.20 0.02 0.02 7@N 0.90 0.90 0.02 0.02 7@� 1.10 1.10 0.02 0.02 78! 1.10 1.10 0.04 0.04 784 0.90 0.90 0.05 0.05 78N 1.20 1.20 0.04 0.04 78� 0.80 0.79 0.06 0.06 �! 1.20 1.19 0.05 0.05 �4 1.40 1.40 0.03 0.03 �N 1.30 1.29 0.05 0.05 �� 1.50 1.50 0.03 0.03 �!4 0.65 0.65 0.04 0.03 �!N 0.15 0.15 0.05 0.05 �!� 0.15 0.15 0.04 0.04 �4N 0.15 0.15 0.04 0.04 �4� 0.15 0.15 0.03 0.03 �N� 0.58 0.58 0.03 0.03 
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344 0.90 0.90 0.05 0.05 

 

 

B: 3-class model 

Parameter True Value Mean estimates Asymptotic SE Empirical SE 
�!! 11.00 11.05 0.68 0.69 �!4 -14.00 -14.13 0.74 0.72 �4! 7.00 6.99 0.69 0.70 �44 -7.00 -6.99 0.63 0.63 �!! 5.60 5.57 0.13 0.14 �!4 1.60 1.57 0.04 0.06 �!N 1.60 1.60 0.13 0.13 �!� 1.60 1.60 0.22 0.22 �!� 1.20 1.17 0.15 0.15 �!� 1.20 1.16 0.04 0.07 �!� 1.20 1.20 0.13 0.14 �!� 1.20 1.22 0.24 0.24 �4! -5.60 -5.57 0.14 0.15 �44 -1.60 -1.57 0.05 0.06 �4N -1.60 -1.60 0.14 0.14 �4� -1.60 -1.62 0.23 0.24 �4� -1.20 -1.17 0.16 0.16 �4� -1.20 -1.17 0.05 0.07 �4� -1.20 -1.20 0.14 0.15 �4� -1.20 -1.19 0.26 0.25 �N! 6.00 5.98 0.15 0.15 �N4 2.00 1.97 0.05 0.06 �NN 2.00 2.00 0.14 0.13 �N� 2.00 2.00 0.25 0.23 �N� 1.60 1.58 0.15 0.15 �N� 1.60 1.57 0.05 0.06 �N� 1.60 1.59 0.15 0.14 �N� 1.60 1.61 0.24 0.24 7@! 0.80 0.80 0.01 0.01 7@4 1.20 1.20 0.02 0.02 7@N 0.90 0.90 0.02 0.01 7@� 1.10 1.10 0.02 0.02 
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78! 1.10 1.10 0.04 0.04 784 0.90 0.89 0.04 0.04 78N 1.20 1.20 0.04 0.04 78� 0.80 0.80 0.05 0.05 �! 1.20 1.19 0.05 0.05 �4 1.40 1.40 0.03 0.04 �N 1.30 1.29 0.05 0.05 �� 1.50 1.50 0.04 0.04 �!4 0.65 0.65 0.03 0.03 �!N 0.58 0.58 0.03 0.03 �!� 0.15 0.16 0.05 0.05 �4N 0.15 0.15 0.04 0.04 �4� 0.15 0.15 0.04 0.03 �N� 0.15 0.15 0.03 0.03 344 0.90 0.90 0.05 0.05 3N4 0.80 0.80 0.05 0.05 
 

 

C: 4-class model 

Parameter True Value Mean estimates Asymptotic SE Empirical SE 
�!! 15.00 15.16 1.48 1.60 �!4 -14.00 -14.17 1.10 1.19 �4! 12.00 12.15 1.46 1.58 �44 -9.00 -9.13 1.03 1.12 �N! 8.00 8.04 1.24 1.36 �N4 -6.00 -6.03 0.79 0.88 �!! 5.60 5.60 0.16 0.17 �!4 1.60 1.60 0.04 0.07 �!N 1.60 1.60 0.15 0.15 �!� 1.60 1.60 0.26 0.26 �!� 1.50 1.49 0.17 0.18 �!� 1.50 1.50 0.04 0.08 �!� 1.50 1.50 0.16 0.16 �!� 1.50 1.51 0.27 0.28 �4! 7.60 7.60 0.16 0.17 �44 -1.60 -1.60 0.04 0.07 �4N -1.60 -1.60 0.15 0.15 �4� -1.60 -1.60 0.24 0.26 
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�4� -1.50 -1.51 0.17 0.18 �4� -1.50 -1.50 0.04 0.08 �4� -1.50 -1.50 0.17 0.16 �4� -1.50 -1.49 0.28 0.28 �N! 4.00 3.99 0.27 0.27 �N4 1.20 1.20 0.06 0.11 �NN 1.20 1.20 0.23 0.24 �N� 1.20 1.22 0.42 0.42 �N� 1.10 1.11 0.28 0.29 �N� 1.10 1.10 0.06 0.12 �N� 1.10 1.10 0.27 0.26 �N� 1.10 1.09 0.45 0.46 ��! 6.00 6.00 0.16 0.16 ��4 -1.20 -1.20 0.04 0.06 ��N -1.20 -1.19 0.15 0.15 ��� -1.20 -1.20 0.25 0.25 ��� -1.10 -1.10 0.17 0.17 ��� -1.10 -1.10 0.04 0.06 ��� -1.10 -1.10 0.15 0.16 ��� -1.10 -1.12 0.27 0.27 7@! 0.80 0.80 0.01 0.01 7@4 1.20 1.20 0.02 0.02 7@N 0.90 0.90 0.01 0.01 7@� 1.10 1.10 0.02 0.02 78! 1.10 1.10 0.04 0.04 784 0.90 0.90 0.04 0.04 78N 1.20 1.20 0.04 0.04 78� 0.80 0.80 0.05 0.05 �! 1.20 1.19 0.05 0.06 �4 1.40 1.40 0.04 0.04 �N 1.30 1.29 0.06 0.06 �� 1.50 1.50 0.05 0.04 �!4 0.65 0.65 0.04 0.04 �!N 0.58 0.59 0.03 0.03 �!� 0.15 0.15 0.06 0.06 �4N 0.15 0.15 0.04 0.04 �4� 0.15 0.15 0.04 0.04 �N� 0.15 0.15 0.03 0.03 344 0.90 0.90 0.07 0.06 3N4 0.80 0.80 0.08 0.08 3�4 0.60 0.60 0.05 0.04 
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D: 5-class model 

Parameter True Value Mean estimates Asymptotic SE Empirical SE 
�!! 20.00 20.38 1.67 1.77 �!4 -15.00 -15.28 1.23 1.31 �4! 17.00 17.35 1.62 1.73 �44 -11.00 -11.23 1.12 1.19 �N! 14.00 14.26 1.35 1.42 �N4 -8.00 -8.15 0.74 0.77 ��! 10.00 10.14 1.10 1.18 ��4 -5.00 -5.07 0.54 0.58 �!! 5.60 5.61 0.18 0.19 �!4 1.60 1.60 0.05 0.08 �!N 1.60 1.60 0.17 0.17 �!� 1.60 1.60 0.28 0.28 �!� 1.50 1.51 0.18 0.19 �!� 1.50 1.50 0.05 0.08 �!� 1.50 1.51 0.18 0.18 �!� 1.50 1.48 0.31 0.30 �4! 7.60 7.60 0.26 0.26 �44 -1.60 -1.60 0.06 0.11 �4N -1.60 -1.61 0.25 0.23 �4� -1.60 -1.60 0.39 0.41 �4� -1.50 -1.51 0.27 0.27 �4� -1.50 -1.50 0.06 0.12 �4� -1.50 -1.49 0.25 0.25 �4� -1.50 -1.49 0.45 0.44 �N! 4.00 4.00 0.23 0.25 �N4 1.20 1.20 0.06 0.10 �NN 1.20 1.21 0.22 0.22 �N� 1.20 1.18 0.37 0.38 �N� 1.10 1.09 0.26 0.27 �N� 1.10 1.10 0.06 0.11 �N� 1.10 1.09 0.25 0.24 �N� 1.10 1.13 0.40 0.42 ��! 6.00 6.02 0.19 0.20 ��4 -1.20 -1.20 0.05 0.08 
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��N -1.20 -1.19 0.18 0.18 ��� -1.20 -1.23 0.30 0.30 ��� -1.10 -1.09 0.19 0.20 ��� -1.10 -1.10 0.05 0.08 ��� -1.10 -1.10 0.19 0.19 ��� -1.10 -1.12 0.32 0.32 ��! 3.00 3.01 0.21 0.22 ��4 1.40 1.40 0.05 0.11 ��N 1.40 1.40 0.20 0.20 ��� 1.40 1.39 0.34 0.34 ��� -1.30 -1.29 0.22 0.23 ��� -1.30 -1.30 0.05 0.10 ��� -1.30 -1.31 0.22 0.21 ��� -1.30 -1.30 0.37 0.36 7@! 0.80 0.80 0.01 0.01 7@4 1.20 1.20 0.02 0.02 7@N 0.90 0.90 0.01 0.01 7@� 1.10 1.10 0.02 0.02 78! 1.10 1.10 0.04 0.04 784 0.90 0.90 0.05 0.05 78N 1.20 1.20 0.04 0.04 78� 0.80 0.80 0.05 0.05 �! 1.20 1.19 0.06 0.06 �4 1.40 1.40 0.04 0.04 �N 1.30 1.29 0.06 0.06 �� 1.50 1.50 0.05 0.05 �!4 0.65 0.66 0.04 0.04 �!N 0.58 0.59 0.03 0.03 �!� 0.15 0.15 0.06 0.06 �4N 0.15 0.15 0.04 0.04 �4� 0.15 0.15 0.04 0.04 �N� 0.15 0.15 0.03 0.03 344 0.90 0.90 0.08 0.08 3N4 0.80 0.79 0.08 0.08 3�4 0.60 0.60 0.05 0.05 3�4 1.10 1.10 0.09 0.09 
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E: 6-class model 

Parameter True Value Mean estimates Asymptotic SE Empirical SE 
�!! 21.00 21.31 1.60 1.85 �!4 -14.00 -14.26 1.04 1.12 �4! 20.00 20.28 1.56 1.83 �44 -10.00 -10.18 0.81 0.93 �N! 17.00 17.21 1.47 1.72 �N4 -8.00 -8.11 0.67 0.78 ��! 14.00 14.17 1.43 1.63 ��4 -6.00 -6.07 0.59 0.68 ��! 10.00 10.11 1.31 1.37 ��4 -4.00 -4.04 0.51 0.53 �!! 5.60 5.61 0.31 0.32 �!4 1.60 1.60 0.07 0.13 �!N 1.60 1.58 0.29 0.28 �!� 1.60 1.60 0.49 0.50 �!� 1.50 1.50 0.31 0.34 �!� 1.50 1.50 0.08 0.14 �!� 1.50 1.50 0.30 0.30 �!� 1.50 1.49 0.51 0.55 �4! 7.60 7.60 0.17 0.18 �44 -1.60 -1.61 0.05 0.07 �4N -1.60 -1.60 0.15 0.16 �4� -1.60 -1.59 0.26 0.27 �4� -1.50 -1.51 0.17 0.18 �4� -1.50 -1.50 0.05 0.08 �4� -1.50 -1.50 0.18 0.17 �4� -1.50 -1.49 0.28 0.29 �N! 4.00 3.99 0.26 0.30 �N4 1.20 1.20 0.06 0.12 �NN 1.20 1.19 0.24 0.25 �N� 1.20 1.21 0.42 0.46 �N� 1.10 1.09 0.29 0.33 �N� 1.10 1.09 0.07 0.13 �N� 1.10 1.10 0.27 0.27 �N� 1.10 1.11 0.48 0.52 ��! 6.00 6.03 0.29 0.32 ��4 -1.20 -1.20 0.07 0.12 ��N -1.20 -1.20 0.26 0.27 ��� -1.20 -1.23 0.45 0.49 
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��� -1.10 -1.08 0.28 0.32 ��� -1.10 -1.10 0.06 0.12 ��� -1.10 -1.10 0.28 0.29 ��� -1.10 -1.13 0.46 0.54 ��! 3.00 3.00 0.24 0.25 ��4 1.40 1.40 0.06 0.13 ��N 1.40 1.41 0.22 0.23 ��� 1.40 1.39 0.39 0.40 ��� -1.30 -1.31 0.25 0.28 ��� -1.30 -1.30 0.07 0.12 ��� -1.30 -1.30 0.25 0.25 ��� -1.30 -1.30 0.42 0.45 ��! 6.00 6.01 0.24 0.24 ��4 -1.40 -1.40 0.06 0.11 ��N -1.40 -1.40 0.22 0.22 ��� -1.40 -1.41 0.37 0.38 ��� 1.30 1.29 0.25 0.27 ��� 1.30 1.30 0.06 0.12 ��� 1.30 1.31 0.24 0.24 ��� 1.30 1.30 0.42 0.42 7@! 0.80 0.80 0.01 0.01 7@4 1.20 1.20 0.02 0.02 7@N 0.90 0.90 0.01 0.01 7@� 1.10 1.10 0.02 0.02 78! 1.10 1.10 0.04 0.04 784 0.90 0.90 0.05 0.05 78N 1.20 1.20 0.04 0.04 78� 0.80 0.80 0.06 0.05 �! 1.20 1.18 0.07 0.07 �4 1.40 1.39 0.07 0.07 �N 1.30 1.28 0.08 0.08 �� 1.50 1.49 0.07 0.07 �!4 0.65 0.66 0.04 0.04 �!N 0.58 0.59 0.03 0.03 �!� 0.15 0.15 0.06 0.06 �4N 0.15 0.15 0.04 0.04 �4� 0.15 0.15 0.04 0.04 �N� 0.15 0.15 0.03 0.03 344 0.90 0.91 0.10 0.10 3N4 0.80 0.80 0.11 0.11 3�4 0.60 0.60 0.09 0.09 3�4 1.10 1.12 0.12 0.13 
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3�4 1.05 1.06 0.12 0.12 
 

Note: Asymptotic standard error is the average of SE from 500 replications; Empirical SE 

is standard error of estimates from 500 replications; �, 7@ , 78 , �, 34, � are defined in 

section 2.3;   �! to �� are the square roots of the diagonal elements of matrix �, and all 

other � parameters are correlation coefficients of the corresponding terms as indicated by 

numbers in the subscripts.  

 

 

Table 2.2: Average coverage probabilities of 95% confidence intervals for all parameters 

in a given model and misclassification rates of simulation results 

Number of classes Average coverage (range) Misclassification rate 

2 94.89% (92.60%-98.80%) 0.001% 

3 95.16% (92.80%-99.00%) 2.29% 

4 95.61% (91.40%-99.80%) 8.60% 

5 95.73% (93.00%-100.00%) 12.29% 

6 96.15% (92.60%-100.00%) 13.97% 

 

 

2.6 Application to the UDS data:  

The proposed multivariate finite mixture latent trajectory model was applied to 

study longitudinal patterns of cognitive decline among dementia patients using data from 

the UDS in the NACC data repository. The UDS is an ongoing data collection that was 

implemented in 2005 at 34 past and present NIA-founded Alzheimer’s Disease Centers 

(ADC) around the country [40]. Patients were recruited into the ADCs and followed 

annually to collect information relevant to aging and dementia, including performance 
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measures on neuropsychological tests in multiple cognitive domains such as memory and 

language [45, 46].  

The sample used for the analysis included Caucasian patients with dementia who 

had at least four annual cognitive evaluations. We also restricted our analyses to those 

whose cognitive decline began after 60 years of age in order to exclude patients with 

early onset dementia. Tests from two cognitive domains were used: logical memory 

immediate and delayed recalls tests for the memory domain; Animal Fluency Test and 

the Boston Naming Test for the language domain. As indicated by Weintraub et al, age of 

onset, gender and education had significant effects on test scores and were included in 

both the class membership model and the latent trajectory model [46]. Final analysis data 

set included 30,004 observations from 1517 patients, of whom 52.74% were male with 

15.07 mean years of education and 73.33 as mean age of onset. Since these four test 

scores have different ranges, all outcomes were rescaled to be between 0 and 10 to 

achieve computational efficiency. In addition, education (in number of years) and age of 

onset (in years) were rescaled to be between 0 and 1. The time variable, age, was 

measured by decades and centered on the mean age. We tested linear and quadratic 

trajectories with the assumed number of latent classes ranging from 2 to 6. We present 

the estimated log likelihood and BIC for all models in table 2.3. 
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Table 2.3: Estimated log likelihoods and BICs in the UDS data for various models 

assuming different numbers of latent classes 

 
Linear Trajectory Quadratic Trajectory 

number 

of classes 

number of 

parameters 

Log 

Likelihood 
BIC 

number of 

parameters 

Log 

Likelihood 
BIC 

2 43 -47711.57 95738.10 47 -47675.48 95695.22 

3 58 -47394.82 95214.45 64 -47329.63 95128.02 

4 73 -46992.81 94520.31 81 -46971.34 94535.97 

5 88 -46871.30 94387.15 98 -46832.84 94383.48 

6 103 -46791.45 94337.31 115 -46713.23 94268.78 

 

It can be seen that the differences between linear and quadratic models are small 

relative to the complexity of the models. Therefore, we chose the linear model for its ease 

of interpretation. The decrease in BIC was more pronounced when the number of latent 

classes increased from 2 to 4, but the BIC values became relatively flat with 4 or more 

latent classes; thus, we chose the model with 4 latent classes as the final model following 

the recommended practice by several authors [11, 12, 14]. Parameters estimates in the 

multinomial model for latent class membership and for the fixed effects in the latent 

trajectory models are presented in table 2.4.  
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Table 2.4: Parameter estimates for the latent class memebership model and for the fixed 

effects in the latent trajactory model 

Class 1 Class 2 Class 3 Class 4 

Models Parameter Est. SE Est. SE Est. SE Est. SE 

Multinomial 

 Intercept 3.08 0.63 4.71 0.63 5.53 0.61 

 

0 

 

Ref 

 Sex -0.20 0.28 -0.63 0.28 -0.20 0.32 0 Ref 

 Education -1.65 0.99 -3.99 0.97 -5.98 0.80 0 Ref 

 
Age of 

onset 
-4.16 1.16 -1.98 1.19 -1.52 1.72       0 Ref 

 

Trajectory 

       
  

Memory 

domain 

Intercept -2.28 0.26 -0.37 0.36 -0.14 0.10 -9.19 1.58 

Linear 

slope -2.18 0.12 -1.90 0.16 -0.50 0.04 -8.42 0.39 

Sex -0.08 0.08 -0.29 0.17 -0.03 0.03 -0.39 0.85 

Education 0.19 0.34 1.40 0.40 0.02 0.12 0.34 1.93 

Age of 

onset 8.50 0.54 6.30 0.89 1.92 0.21 34.32 2.01 

Language 

domain 

Intercept -6.98 1.51 1.49 0.53 0.22 0.41 -0.73 0.37 

Linear 

slope -8.17 0.17 -2.35 0.14 -2.92 0.11 -4.91 0.30 

Sex -0.26 0.33 -0.38 0.16 -0.35 0.14 -0.40 0.54 

Education 0.31 1.87 2.28 0.66 2.25 0.57 -1.47 1.02 

Age of 

onset 

31.10 0.97 7.41 0.70 9.67 0.65 19.03 1.63 

 

Note: male is the reference for gender. 

 

In figure 2.1, we present the predicted trajectories of male patients with 15 years 

of education and age of onset at 73 (chosen as the sample means) in four latent classes. 

Latent class 1 has the steepest decline in language but relatively flat in memory decline; 

latent class 4 has the fastest decline in memory and also the second fastest decline in 
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language; patients in latent classes 2 and 3 have less decline in both language and 

memory domains than those in latent classes 1 and 4.  



 

 

 

3
1
 

 

Figure 2.1: Estimated trajectories of language (left) and memory (right) decline for male dementia patients with education and age of 

onset at the sample means in four latent classes.
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We further examined the association between patient characteristics and the four 

identified latent classes and present the results in Table 2.5. Since APOE e4 allele is an 

important risk factor for AD and about 60% of AD patients carry this allele [47-50], we 

also included percentages of samples having it in each latent class. Latent classes 3 and 2 

captured the majority of patients followed by latent class 1 and 4. More than 70% of the 

patients in latent classes 1 and 3 were clinically diagnosed as probable AD only as 

defined by NINCDS-ADRDA criteria [51, 52] and  no any other forms of dementia; 

while class 2 had the lowest percentage of probable AD only (41.37%) and the highest 

percentage of other dementia. Patients in latent class 1 also had the highest percentage of 

being an APOE e4 carrier compared to patients in the other classes. For latent classes 2 

and 4, about half of samples have other types of dementia and not surprisingly, less than 

half of samples have APOE e4 allele. However, just as there were differences between 

latent classes 1 and 3, latent classes 2 and 4 also differ in gender composition, years of 

education, and age of onset pointing to potentially  different etiologies.  

 

Table 2.5: Patients characteristics by the four identified latent classes. 

class 

number 

of 

patients 

male % 

Average 

years of 

Education 

(SD) 

Average 

age of onset 

(SD) 

APOE 

e4 

carrier 

(%) 

Probable 

AD only 

(%) 

Other 

Dementia 

(%) 

1 300 54.00 15.91(2.89) 70.66(6.56) 72.69 76.00 22.67 

2 510 59.80 15.18(3.30) 73.35(7.21) 44.57 41.37 55.88 

3 560 46.96 14.16(3.24) 74.03(6.88) 57.79 71.96 27.14 

4 147 47.62 16.38(2.10) 76.06(9.00) 47.06 51.02 42.86 
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To evaluate model fit, the average posterior probabilities for the linear model with 

4 latent classes are presented in table 2.6. The diagonal values are all greater than 0.84, 

indicating a good separation of the four latent classes. 

 

Table 2.6: Average posterior probabilities of 4 latent classes identified 

Classified 

class 
1 2 3 4 

1 0.87 0.04 0.07 0.02 

2 0.02 0.88 0.04 0.06 

3 0.05 0.10 0.84 0.00 

4 0.02 0.09 0.00 0.89 

 

 

2.7 Discussion 

In this chapter, we proposed a multivariate finite mixture latent trajectory model 

aiming at analyzing data that are often encountered in dementia studies. In these studies, 

there exist latent constructs of multiple domains, each of which may be measured by 

multiple neuropsychological tests. Our model is an extension of GBTM, GMM and the 

non-linear latent class model proposed by Proust-Lima et al, and can be used in studies 

where more than one test for the same underlying variable is used. We applied our 

method to the UDS data and identified four latent cognitive decline patterns.  

Given that multiple cognitive measures are routinely collected in dementia and 

aging studies, appropriate statistical models with realistic assumptions for multiple tests 

in more than one domain is extremely important. The naïve method of analyzing data 

with multiple tests by modeling each test with a separate latent trajectory can lead to the 
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identification of many latent classes and without combining the information across 

different cognitive domains. There exist some methods that aim at reducing 

dimensionality by combining tests within the same domain using sum or weighted 

average test scores. However, as indicated by Gray and Brookmeyer, data reduction may 

cause loss of information and the results may be difficult to interpret [53].  In our method, 

by jointly modeling tests within the same domain, the numbers of model parameters is 

greatly reduced. By adding random test-specific effects, the difference and correlation 

among tests are accounted for. Furthermore, since these tests are measurements of the 

same underlying latent construct, joint modeling can improve our ability to identify the 

true latent construct.  

The identified latent classes can be used for therapeutic and research purpose. 

Since patients in the same latent classes share similar cognitive decline patterns, this can 

help care providers and clinicians for better patients care and treatment. In addition, 

patients in each latent class may share the same disease etiology and may be caused by 

same genes; therefore the power in genetic studies that look for genes related dementia 

can be improved. For example, based on recent summary at ALzGene database, 695 

genes related AD are found from 1395 studies, however, only a few of them are 

confirmed by multiple studies [47, 48]. The reason for this is, although patients are all 

clinically diagnosed as AD, their cognitive decline patters differ dramatically and this 

heterogeneity makes results from a given study hard to replicate thus the ability to find 

true genes is greatly reduced. Our method can be used to find samples that have similar 

cognitive decline patterns and genetics studies from these phenotypically homogenous 

sub groups will be more comparable. 
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In our model, we assumed normal distribution due to its tractability and ease of 

implementation.  However, the normal distribution assumption may not apply for tests 

that have categorical or binary responses. In the future, we will extend our work to model 

non-normal variables and/or mixed types variables. Another limitation of using normal 

distribution lies in selecting the number of classes using information based criterion like 

BIC. It has been observed in this and many other studies that BIC is always decreasing as 

more classes are added [11, 19]. This problem is more pronounced when the sample size 

is large and sample sizes in each class are imbalanced. In these cases, the latent classes 

with larger sample sizes can be split into two or more latent classes [11] and currently the 

best way to address this problem is using background information to help model selection. 

A common problem encountered in many dementia studies is floor or ceiling 

effects associated with some test scores. Proust et al proposed a transformation for the 

test scores using cumulative beta distribution and they demonstrated that the 

transformation fits the data well [16]. Jacqmin-Gadda et al also proposed a semi-

parametric latent process model to address the problem of  different sensitivities of tests 

at different dementia stages [54]. Future research will be needed to extend our models to 

handle these additional challenges.  
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CHAPTER 3. INFORMATION BASED CRITERIA FOR MODEL SELECTION        

IN FINITE MIXTURE LATENT TRAJECTORY MODELS: A SIMULATION 

STUDY  

3.1 Summary 

A challenge in finite mixture latent trajectory models is the selection of the 

number of classes. In this chapter, we performed a simulation study to compare the 

performance of information-based model selection criteria including the commonly used 

Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC), and other 

less commonly used information criteria such as consistent AIC (CAIC), sample adjusted 

BIC and integrated classification likelihood criteria (ICLBIC). These model selection 

criteria were compared across different scenarios with varying number of subjects, the 

number of observations for each subject, and the level of separation between latent 

classes. We found that the level of separation had substantial impact on the performances 

of model selection criteria. Sample adjusted BIC performed uniformly better in all 

scenarios and is therefore recommended for the selection of number of subpopulations for 

multivariate finite mixture latent trajectory models. 

 

3.2 Introduction 

In biomedical research, data are often collected from a heterogeneous population 

consisting of several unobserved subpopulations. For example, dementia patients exhibit 

considerable heterogeneity in their longitudinal trajectory of cognitive function, with 

some patients showing rapid decline following dementia diagnosis while others show 

slower decline or may even remain stable for several years [1]. Patients’ cognitive 

trajectories also differ across cognitive domains, with some patients showing more rapid 
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decline in memory while others showing faster decline in language or executive function 

[2-9].  In our previous work, we have proposed a multivariate finite mixture latent 

trajectory model to identify patient subgroups with similar longitudinal patterns of 

cognitive decline using data from multiple cognitive domains. Both simulation studies 

and an application to a data set from dementia studies showed that the proposed model 

can accommodate the complexity of the data and has the capability to uncover the 

heterogeneity of the population. However, one unresolved issue in the application of the 

proposed model is the determination of the number of subpopulations.  

Selecting the number of unobserved subpopulations is a critical but challenging 

issue for latent mixture models. Many studies have been devoted to this topic [11, 18-22]. 

However, there has been no well-established approach thus far. Information criteria (IC) 

based approaches have been commonly used in model selection for latent class models, 

with Akaike’s Information Criterion (AIC) [24] and Bayesian Information Criterion (BIC) 

[25] being the most popular methods due to their ease of implementation. In the literature 

of finite mixture models, in particular for latent class modeling and growth mixture 

modeling, there were several simulation studies on the performance of IC-based fit 

indices [11, 19-22]. These studies have shown that AIC tends to overestimate the number 

of groups, especially when sample size is large [19, 20]. BIC is recommended by many 

researchers [12, 19, 20], and it yielded the best performance in several simulation studies 

[11, 20]. However, in some situations, BIC also selected larger numbers of groups than 

necessary [26]. In addition, it has been observed in several studies that BIC may decrease 

monotonically as more groups were added [11]. In addition to AIC and BIC, there are 

other IC-based fit indices including consistent AIC (CAIC) [27];  and sample adjusted 
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BIC (SABIC) [28-31]. They were proposed to augment the performance of AIC and BIC, 

and in several simulation studies, these modified indices showed considerable 

improvement, especially SABIC, which is the best in several recent studies [18, 21, 22]. 

In addition to above likelihood-based information criteria, classification-based 

information criteria have also been developed to measure the accuracy of classification, 

for example, the classification likelihood criterion [55], normalized entropy criterion [56], 

partition coefficient [57], and integrated classification likelihood criterion (ICLBIC) [32]. 

As reviewed by McLachlan and Peel, these methods either have restriction on the mixing 

proportions or unsatisfactory performance with the exception of ICLBIC [19, 58, 59]. 

ICLBIC was proposed by Biernacki et al and the goal is to correct the overestimation 

problem of  BIC [32]. Therefore, it was referred to as ICLBIC in McLachlan and Peel’s 

simulation studies [19].  ICLBIC was found to outperform all other information criteria 

including AIC and BIC in McLachlan and Peel’s simulation study [19].  

Another type of approach for determining the number of latent classes is 

likelihood-based approach. The commonly used likelihood ratio test (LRT) cannot be 

used to compare models with differing number of latent classes because the null 

hypothesis involves zero mixing proportions, resulting in parameters on the boundary of 

parameter space and hence violating the regularity condition [19]. Alternative likelihood-

based approaches include the Lo, Mendell and Rubin (LMR) test [23] and  the bootstrap 

likelihood ratio test (BLRT) [19]. Application of these likelihood-based tests has been 

limited due to the high computational burden. We therefore restrict our simulation study 

to IC-based approaches.  
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Although IC-based approaches have been widely used in many applications and 

studied in literature, their performance was evaluated in different contexts such as latent 

class modeling and growth mixture modeling. Performance of these indices for 

multivariate finite mixture latent trajectory models is not known. In this study, we will 

perform a simulation study to evaluate the performance of IC-based indices under 

different conditions with varying number of subjects, number of observations per subject, 

and level of separation among latent classes. The rest of this chapter is organized as 

follows. Section 3.3 presents an overview of the multivariate finite mixture latent 

trajectory model. Section 3.4 introduces IC-based fit indices considered in our study. In 

Section 3.5, we describe the simulation study and present the results. A brief discussion is 

presented in Section 3.6. 

 

3.3 The Multivariate Finite Mixture Latent Trajectory Model 

This model has been described in detail previously and will only be briefly 

introduced here. Our work was directly motivated by studies of cognitive decline among 

dementia patients, in which multiple neuropsychological tests are typically performed to 

characterize patients’ level of cognition in several cognitive domains. Our model allows 

more than one latent quantity, each of which can be measured by multiple tests, and 

identifying subpopulations of patients who exhibit distinct longitudinal patterns in these 

latent quantities. 

Assume that the population consists of � subpopulations represented by � latent 

classes. For individual �, � = 1, … , �, we define a �-dimentional vector �	 denoting the 

latent class membership, with 
�� = 1 if individual � belongs to class  and 0 otherwise. 
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Suppose there are � neuropsychological tests with continuous outcomes representing 

cognitive function in � cognitive domains. Let �	 = ��	�� , … , �	�� , … , �	�� ��
 be the vector 

of all measurements for individual �, where �	� is a vector of length  ���, which denotes 

the number of longitudinal measurements for individual � and  test � (� = 1, … , �), 

hence the length of �	 is  ∑ ����� ! . Let  "�	(#) and $	(#) be the matrices of covariates 

collected for individual �. $	(#)  can have partial or all columns of "�	(#) but contains at 

least one time variable. Then a measurement model if individual � is in latent class ,
 = 1, … , �,  is: 

�	|�	& � = '	|�	& �(#) + )	*	 + +	,                                               (3.1) 

Where the latent trajectory is defined as: 

'	|�	&,�(#) = "�	(#)-& + $	(#).	&,                                             (3.2) 

The length of latent process '	|�	&,�(#) is also ∑ ����� ! . Note that for tests that are in the 

same domain, they share the same latent process by having the same values in  

'	|�	&,�(#).   -& is the vector of class-specific fixed effects from all cognitive domains in 

latent class .  .	& is the class specific random effects for all domains in latent class . 

We assume that .	&  has a multivariate normal distribution ��2, 3�45� with 3!4 = 1 and 

5 is the covariance matrix of first latent class, similarly defined as in Proust et al [16]. *	 
in (3.1) is the �-vector of test-specific random intercept. It introduces correlation among 

scores of the same test from the same individual. Here we assume *	 is distributed as 

�(2, 6*), where 6* is a diagonal matrix with 78�4  in its diagonal. +	 in (3.1) is an vector of 

random error with distribution �(2, 6+), where  6+ is a block matrix with 7@�4 ABCD at 

diagonal and all other entries are 0s.  
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For individual �, the probability that this individual belongs to a latent class  is 

P��, with  ∑ P�� = 1Q� ! . This can be modeled through a multinomial logistic regression 

as:  

P�� = /(
�� = 1|"R	� ) = STU ("R	� V&)!W∑ STU ("R	� VX)YZ[\,[  ,                                        (3.3) 

 

where V& is the vector of the class-specific regression coefficients. For identifiability 

purpose, V] are set to 0s. Covariates "R	�  used here can be the same or different from 

"�	(#) in equation (3.2). Let 

 

^ = (-�, … , -&, … , -], 344, … , 3�4, … , 3QR, 5, 6*, 6+, VR, … , V&, … , V]) 

 

be the parameters to be estimated, _��(�	) be the density function of �	 in latent class , 

then the observed-data likelihood is: 

 

`(^) = c l P��_��(�	)Q
� !

b
� !  

 

_��(�	) has distribution �("�	(#)-&, 6	&), where 

 

6	& = $	(#)3�45$	(#)� + )	6*)	� + 6+ 

 

Since the latent class memberships are unobserved and there are also multiple 

random effects, the expectation-maximization (EM) algorithm can be used for obtaining 
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parameter estimates [19, 41-43]. The EM algorithm evaluates the conditional expectation 

of the complete-data log-likelihood and the parameters are updated by maximizing the 

conditional expectation. Closed-form solutions to the maximization of the conditional 

expectation of the complete-data log-likelihood for the majority of parameters are 

available except for ��in the model for {��, which has to be updated numerically. The E-

step and M-step will be repeated until the difference of observed likelihood becomes 

smaller than a pre-specified threshold and the likelihood at the last step is used for the 

calculation of information criteria. 

 

3.4 Information Criteria Surveyed 

In our study, we will consider the commonly used indices including AIC, BIC, as 

well as CAIC, SABIC, and ICLBIC. CAIC, SABIC and ICLBIC were chosen because 

they showed better results than AIC and/or BIC in previous simulation studies [19-21]. 

AIC is the first information criterion proposed and derived by Akaike in early 1970’s by 

using Kullback-Leibler measure [24, 60]. It is still widely used today and defined as: 

±²³ =  −2ou`(^) + 2´ 

where ´ is the number of model parameters and `(^) is the likelihood as defined 

previously. It is not consistent in the sense that it only penalizes on the number of 

parameters no matter what the sample size is. To overcome this problem, Bozdogan 

proposed  CAIC, in which  ou(�) + 1 was used as the multiplier instead of 2 [27].: 

³±²³ =  −2ou`(^) + ´(ou(�) + 1) 

where N is the number of independent subjects.  
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BIC is proposed by Schwarz within the Baysian framework and it is the most used 

information criterion [25]. BIC is defined as: 

�²³ =  −2ou`(^) + ´(log(�)) 

Compared to AIC, BIC penalizes both numbers of parameters and samples.  CAIC is 

similar to BIC but puts extra penalty on the number of parameters.   

Using the minimum description length (MDL) principle in computational learning 

theory, Rissanen proposed an information criterion that is basically BIC but the  sample 

size N is replaced by an adjusted sample size N* [29-31], which is defined as:  

N∗ = (N + 2)/24  
It is referred as adjusted BIC in Nylund et al study [20],  ADBIC in Kim’s study [18], 

SABIC in Tofighi and Enders study [21]. We will refer this index as SABIC in our study. 

For comparison purpose, Tofighi and Enders also used N* in CAIC and called it SACAIC 

[21]. Although it is not the best overall index, since SACAIC had better performance than 

BIC in their study in several settings [21], we will also include it in our study. 

Biernacki et al noticed that sometimes BIC chose more components than it should  

and to overcome this overestimation problem, they proposed ICLBIC [32]. It requires an 

additional penalty term called entropy. Let {�� be the posterior probability of individual � 
belonging to group ,  = 1, … , �, then entropy  t�({) is defined as: 

t�({) =  − l l {��log (Q
� ! {��)b

� !  

and ICLBIC is [32]: 

²³`�²³ =  −2ou`(^) + 2t�({) + ´ou(�) 
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Since the entropy term is always positive thus ICLBIC also has larger penalty than BIC. 

Similar to what Tofighi and Enders did in their study, it is of scientific interest to see 

ICLBIC’s performance if we replaced N with N*, therefore, we will also include it in our 

simulation study and refer it as SAICLBIC. 

 

3.5 Simulation 

The purpose of this simulation study is to evaluate the overall performance of the 

IC-based indices in terms of how often each index correctly identifies the true number of 

latent classes. We also investigated the performance of these indices under different 

factors, and in the case that a wrong model is chosen, what the direction of model 

misspecification is, i.e. whether more or less number of classes is chosen.  

Data were simulated based on the multivariate finite mixture latent trajectory 

model described in section 3.3. In this simulation study, we assumed 4 tests from 2 

different domains with each domain having 2 tests. Tests within each domain shared the 

same fixed effect but have different test specific random effects. In addition, there were 

also domain-specific random effects. Fixed effects in each domain include a linear 

trajectory over time, as well as a binary covariate and a continuous covariate. Domain-

specific random effects include intercept and slope, while only random intercept was 

included for test specific random effect. The latent class membership was associated with 

one continuous covariate.  

We tested performance of IC-based fit indices under considerations of three 

factors: number of subjects in each data set, number of observations for each subject, and 

level of separation between groups. In simulation I, we examined the performance of fit 
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indices assuming 1000, 1500 and 2000 subjects with each subject having1 to 3 

observations. In simulation II, we examined the performance of fit indices assuming 1 to 

3 observations per subject and 1 to 4 observations per subject with 1500 subjects in each 

data set.  In Simulation III, we assumed 1500 subjects in each data set with 1 to 3 

observations for each subject, and with two different levels of group separations. Since 

each latent class in our model is determined jointly by latent trajectory and multinomial 

model, we used expected misclassification rate to measure the class separation. It is 

defined as the percentage of samples that could be assigned into the wrong latent class 

according to the posterior probability. High expected misclassification rate indicates the 

latent classes are close to each other and it is difficult to distinguish them, therefore, it has 

low class separation. Two expected misclassification rates, 7.76% and 15.44%, were used 

for high and low class separation respectively. For simulations I and II, we also used high 

class separation. Since in our previous application of multivariate finite mixture latent 

trajectory model on dementia data, we identified four distinct cognitive decline classes, 

therefore, all our data were simulated under a 4-class model.  

For every scenario, we simulated 500 data sets. For each data set, we fitted five 

models with 2, 3, 4, 5, and 6 latent classes and compared each fit index across these five 

models. The number of classes associated with the lowest index value will be selected for 

each index. If the model with the lowest value of the fit index is the true model (4-class 

model), then the fit index is said to have correctly identified the number of latent classes. 

For each simulation setting, we calculated the percentages each class number was 

selected using the IC-based criteria. The percentage of selecting four classes represents 
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the rate of correctly selecting the true model while the percentage of selecting other class 

numbers represents model selection errors (model misidentification or misspecification).   

Simulation I, II and III results are presented in tables 3.1 to 3.3 respectively. Table 

3.1 shows effects of different numbers of subjects on performance of these indices. 

Except AIC, which sample size N is not used, and both versions of ICLBIC, which 

almost never chose the correct numbers of classes, with the increase of subjects, the 

number of correct identification increased, especially CAIC and BIC when samples size 

changed from 1000 to 1500. For SACAIC and SABIC, since the number of correct 

identification was close to perfect, the effect of number of subjects was not obvious. The 

worse performance for CAIC and BIC with 1000 subjects is not a surprise and this agrees 

with the study of Tofighi and Enders [21].  They observed that BIC had bad performance 

in complicated models when sample size is small.  For multivariate finite mixture latent 

trajectory models, the number of parameters is usually large, e.g. in our simulation, there 

are 59 parameters in the 4-class mode, therefore, although there were 1000 subjects, it 

still cannot be considered as a big sample. 

The effects of number of observations are presented in table 3.2. Four indices are 

either already having perfect performance (SACAIC and SABIC) or 0 correct 

identification (both versions of ICLBIC), therefore, varying the number of observations 

had no effect on them. For all others, by increasing the number of observations, the 

performance is more or less better, and surprisingly, AIC has the biggest improvement. 

The small increase of performance of CAIC and BIC is expected because for longitudinal 

data, effective sample size is increased with the increase of number of observation, 
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although sample size is unchanged. Again, this agrees with the results of Tofighi and 

Enders, which also found numbers of observations have small impact [21].  

The result of different class separation is in table 3.3. In our study, the level of 

class separation has the biggest effect on the performance of these indices. When class 

separation is low, the performance dropped dramatically. CAIC and BIC have 98.4% and 

92.2% misidentification rates respectively; SACAIC only correctly identified a little bit 

more than half of the data sets. The only indices with acceptable performance are AIC 

and SABIC. The bad performance of BIC is contradicting with Nylund et al [20] but 

agrees with Tofighi and Enders [21]. The possible explanation for this is the model 

complexity. Both ours and Tofighi and Enders had more complicated models than 

Nylund et al.   

The directions of misidentification are also presented in tables 3.1 to 3.3. Except 

the scenario when number of subjects is 1000, AIC overestimated the number of classes 

as widely observed. CAIC and SACAIC corrected this overestimation problem by 

penalizing on sample size; however, CAIC obviously over corrected it and now it has 

underestimation problem. Similarly BIC suffers a little bit over correction problem and 

SABIC seems perfect except when class separation is low. Both versions of ICLBIC 

penalized too much and most of time, only 2-class model, the simplest one we tested, was 

chosen, just as observed in Nagin’s study [11]. 

As expected, AIC didn’t have the best performance in every scenario; however, in 

all scenarios except low separation, it has correct identification rates >94%. In addition, 

its performance did not vary as dramatically as some other indices, such as BIC and 

CAIC. For low class separation AIC has more than 20% misidentification rate; however, 
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every index had bad performance in that scenario and AIC is almost as good as SABIC, 

which has the best performance. Its consistent version, CAIC has comparable 

performance for 1500 subjects, 2000 subjects and 1 to 4 observations with AIC but much 

worse performance for 1000 subjects and low class separation. Sample adjusted CAIC 

greatly improved the performance, with perfect or almost perfect in all scenarios except 

low class separation. BIC is slightly better than AIC in many scenarios but shares the 

similar pattern as CAIC due to the similarity of their formula: the performance in 1000 

subjects and low group separation is unacceptable.  However, compared with BIC, the 

extra penalty on number of parameters in CAIC obviously degraded its performance. 

Sample adjusted BIC, just as observed in several other simulations studies, is the winner 

of this study. It outperformed all indices in all scenarios. Surprisingly, the performance of 

ICLBIC, whether sample adjusted or not, misidentified almost all data sets in all 

scenarios. This is contradicting to the study of McLachlan and Peel, in which ICLBIC 

was the best [19] but agrees with Nagin’s study [11].   
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Table 3.1: Percentage of the lowest value of indices in each model fit under different numbers of subjects 

Criteria 

 

1000 Subjects 
 

1500 Subjects 
 

2000 Subjects 

2-g 3-g 4-g 5-g 6-g 
 

2-g 3-g 4-g 5-g 6-g 
 

2-g 3-g 4-g 5-g 6-g 

AIC 0 0.4 96.0 1.6 2 0 0 94.4 2.2 3.4 0 0 98.6 0.6 0.8 

CAIC 72.4 0 27.6 0 0 4.8 0 95.2 0 0 0.2 0 99.8 0 0 

SACAIC 1.2 0 98.8 0 0 0 0 100 0 0 0 0 100 0 0 

BIC 35.4 0 64.6 0 0 1.0 0 99.0 0 0 0 0 100 0 0 

SABIC 0.4 0 99.6 0 0 0 0 100 0 0 0 0 100 0 0 

ICLBIC 99.6 0 0.4 0 0 100 0 0 0 0 100 0 0 0 0 

SAICLBIC 99.4 0 0.6 0 0  100 0 0 0 0  100 0 0 0 0 

 

Note: different numbers of subjects under a 4-class model with each subject having 1-3 observations. The bold numbers are 

percentages of data sets that correct number of classes were chosen.  
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Table 3.2: Percentage of the lowest value of indices in each model fit under different numbers of observations for each subject. 

Criteria 

 

1-3 Observations 
 

1-4 Observations 

2-g 3-g 4-g 5-g 6-g 2-g 3-g 4-g 5-g 6-g 

AIC 0 0 94.4 2.2 3.4 0 0 99.4 0.2 0.4 

CAIC 4.8 0 95.2 0 0 2.2 0 97.8 0 0 

SACAIC 0 0 100 0 0 0 0 100 0 0 

BIC 1.0 0 99.0 0 0 0 0 100 0 0 

SABIC 0 0 100 0 0 0 0 100 0 0 

ICLBIC 100 0 0 0 0 100 0 0 0 0 

SAICLBIC 100 0 0 0 0  100 0 0 0 0 

 

Note: different numbers of observations for each subject under a 4-classs model with 1500 subjects in each data set. The bold numbers 

are percentages of data sets that correct number of classes were chosen.  
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Table 3.3: Percentage of the lowest value of indices in each model fit under high and low class separation 

Criteria 

 

High Separation 
 

Low Separation 

2-g 3-g 4-g 5-g 6-g 2-g 3-g 4-g 5-g 6-g 

AIC 0 0 94.4 2.2 3.4 0 0 78.0 15.8 6.2 

CAIC 4.8 0 95.2 0 0 0 98.4 1.4 0.2 0 

SACAIC 0 0 100 0 0 0 46.4 53.4 0.2 0 

BIC 1.0 0 99.0 0 0 0 92.2 7.6 0.2 0 

SABIC 0 0 100 0 0 0 21.6 78.2 0.2 0 

ICLBIC 100 0 0 0 0 69.2 30.8 0 0 0 

SAICLBIC 100 0 0 0 0  61.0 39.0 0 0 0 

 

Note: high and low group separation under a 4-class model with 1500 subjects in each data set and each subject having 1-3 

observations. The bold numbers are percentages of data sets that correct number of classes were chosen.  
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Since SABIC had the best performance in all scenarios, we calculated it in our 

applications of the Uniform Data Set (UDS) from the National Alzheimer’s Coordinating 

Center (NACC) [40]. We observed the same trend as BIC and 4-class model still seems 

reasonable. This is expected because there are 1507 subjects in that data set and each 

subject has at least 4 visits. From the right part of table 3.2, which has the similar sample 

size as our real data, we can see BIC and SABIC all have perfect correct identification 

rates.  

  

3.6 Conclusion and Discussion  

In this chapter, we performed a simulation study to investigate the performances 

of most commonly used IC-based fit indices including AIC, BIC, as well as CAIC, 

sample adjusted CAIC, sample adjusted BIC, ICLBIC, and sample adjusted ICLBIC for 

selecting the number of latent classes in multivariate finite mixture latent trajectory 

model. We also investigated the effects of number of subjects, number of observations, 

and level of separation between classes on their performance. We found SABIC 

performed uniformly better in all situations and level of class separation has the biggest 

impact on their performance. 

Among the two popular IC-based criteria, AIC outperformed BIC. Although AIC 

has a slight overestimation problem, it has correct identification rate > 94% in all 

scenario except low class separation, in which it had the second best performance. BIC 

did not perform as well as AIC when sample size is small or when class separation is low. 

SABIC greatly improved the performance of BIC and similar improvement was seen for 

CAIC and SACAIC over that of AIC. SABIC had the best performance in all simulation 
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scenarios and should be the preferred model selection method for latent trajectory models. 

Classification based information criteria had the worst performance in all scenarios and in 

most cases they only selected the simplest model. Therefore, they shouldn’t be used in 

complex models. 

In this study, information criteria were tested under our multivariate latent 

trajectory model, therefore, generalization of our conclusion to other models should be 

preceded with caution, especially for less complicated models. In addition, the simulation 

setting was based on our analysis of NACC data sets and we only tested true model with 

4 classes. For data sets that are much simpler or more complicated, the behavior of these 

indices may be different. Also in this simulation, each class had similar numbers of 

samples, i.e. they are balanced, however, in real data analysis, some classes may have 

extreme bigger or smaller sample size than other classes. In the future, we will expand 

our simulation study to more latent class models with more simulation settings to give a 

general guidance for model selection in finite mixture modeling. 
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CHAPTER 4. A MULTIVARIATE FINITE MIXTURE LATENT TRAJECTORY 

MODEL WITH PARTIALLY LABELLED DATA: SIMULATIONS AND 

APPLICATION TO DEMENTIA STUDIES 

4.1 Summary 

In Chapter 2 we developed a multivariate finite mixture latent trajectory model 

aimed at identifying the classes of subjects sharing the same multivariate longitudinal 

trajectories. In practice, a subset of subjects may have known class memberships, e.g. 

dementia patients may have known subtype if they underwent autopsy after death. These 

data are referred as the labelled data and adding this information can improve the model’s 

ability to classify the remaining data with unknown latent class membership. In this study, 

we first extended the multivariate finite mixture latent trajectory model by incorporating 

the partially labelled information. Then we performed simulation studies to investigate 

the effect of adding labelled information to our model under different considerations. 

Results showed that the performances were improved in all scenarios, even in situations 

where there were only 10% of data labelled, and latent classes were not well separated. 

We also re-analyzed the Uniform Data Set (UDS) from National Alzheimer’s 

Coordinating Center (NACC) by adding pathological information. Compared with our 

previous analysis, we found that with labelled data the newly defined latent classes can 

be more phenotypically homogenous. 

 

4.2 Introduction 

Dementia is a common disease among the elderly population and is characterized 

by the impairment of cognitive function. According to different disease etiology, there 

are several subtypes of dementia, such as Alzheimer’s disease (AD), vascular dementia 
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(VD), Frontotemporal dementia (FTD), and Lewy Body Dementia (LBD), etc [39]. 

Accurate clinical diagnosis of dementia subtype is critical for therapeutic intervention 

and for scientific investigations. However, the exact dementia subtype is often defined by 

pathological finding after patients’ death. Previous studies have demonstrated differences 

in dementia profiles by various dementia subtypes with AD patients having dominant 

problems in memory [2-4]  and FTD patients showing more deficit in executive function 

[5-9]. Based on those findings, we have developed a multivariate finite mixture latent 

trajectory model using patients’ longitudinal neuropsychological test results. Using data 

from patients in the Uniform Data Set (UDS) collected by the Alzheimer’s Disease 

Centers (ADCs) across the nation [40], this model identified four distinct cognitive 

decline patterns.  

Although it is difficult to determine the exact dementia subtype for all subjects, 

there is a subsample of patients in the UDS with known dementia subtype based on the 

pathological data. These data were obtained through autopsy. Methodological approaches 

that incorporate these dementia subtypes are attractive because information from these 

patients could potentially improve the accuracy of inferring patients’ unknown dementia 

subtype. Such data are often called partially labelled data in the latent class analysis 

literature [19, 33-36]. By combining labelled and unlabeled data,  the classification rule 

established from labelled data is updated and will have better performance [19, 36], or the 

classification rule will be more accurate than using labelled data or unlabeled alone [19, 

33, 34]. In their studies, Hosmer, Hosmer and Dick found that when only 10% of the data 

were labelled, accuracy of classification was improved [37, 38]. This improved 

performance was acquired mostly by the co-existence of features that were not captured 
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by using labelled data or unlabeled data only [33-35]. Beside better classification abilities, 

the existence of labelled data can make estimation  faster, i.e. improve its efficiency [19]. 

In addition, since most methods used numerical estimations and the values of starting 

points played an important role in finding the global maxima, labelled data can be 

analyzed first if sample size is sufficiently large, and the results can be used as starting 

points for subsequent analyses. 

In this chapter, we extend the multivariate finite mixture latent trajectory model, 

originally proposed to identify subpopulations using multivariate longitudinal data 

without labelled data, to the situation where partially labelled data are available. We will 

perform simulation studies to investigate how labelled data can improve the classification 

performance of the multivariate finite mixture latent trajectory modeling under different 

conditions. In particular, we will examine whether observing the class membership for a 

small proportion of the sample improves the classification of the unlabeled cases, 

especially in situations where the classes are not well separated. Then we will re-analyze 

the UDS data utilizing the partially available pathological information on dementia 

subtype. The remainder of this chapter is organized as follows. Section 4.3 describes the 

model and estimation. Section 4.4 presents the simulation study. In Section 4.5, we apply 

our model to UDS data. Conclusion and discussion are in section 4.6. 

 

4.3 Multivariate Finite Mixture Latent Trajectory Model With Partially Labelled Data  

This model was directly motivated by studies of cognitive decline among 

dementia patients, in which multiple neuropsychological tests are typically performed to 

characterize patients’ level of cognition in several cognitive domains. Our model allows 
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more than one latent quantity, each of which can be measured by multiple tests, and 

identifying subpopulations of patients who exhibit distinct longitudinal patterns in these 

latent quantities. 

Assume that the population consists of � subpopulations represented by � latent 

classes. For individual �, � = 1, … , �, we define a �-dimentional vector �	 denoting the 

latent class membership, with 
�� = 1 if individual � belongs to class  and 0 otherwise. 

Suppose there are � neuropsychological tests with continuous outcomes representing 

cognitive function in � cognitive domains. Let �	 = ��	�� , … , �	�� , … , �	�� ��
 be the vector 

of all measurements for individual �, where �	� is a vector of length  ���, which denotes 

the number of longitudinal measurements for individual � and  test � (� = 1, … , �), 

hence the length of �	 is  ∑ ����� ! . Let  "�	(#) and $	(#) be the matrices of covariates 

collected for individual �. $	(#)  can have partial or all columns of "�	(#) but contains at 

least one time variable. Then a measurement model if individual � is in latent class ,
 = 1, … , �,  is: 

�	|�	& � = '	|�	& �(#) + )	*	 + +	,                                                   (4.1) 

Where the latent trajectory is defined as: 

'	|�	&,�(#) = "�	(#)-& + $	(#).	&,                                                 (4.2) 

The length of latent process '	|�	&,�(#) is also ∑ ����� ! . Note that for the tests that are in 

the same domain, they share the same latent process by having the same values in  

'	|�	&,�(#).   -& is the vector of class-specific fixed effects from all cognitive domains in 

latent class .  .	& is the class specific random effects for all domains in latent class . 

We assume that .	&  has a multivariate normal distribution ��2, 3�45� with 3!4 = 1 and 
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5 is the covariance matrix of first latent class, similarly defined as in Proust et al [16]. *	 
in (4.1) is the �-vector of test-specific random intercept. It introduces correlation among 

scores of the same test from the same individual. Here we assume *	 is distributed as 

�(2, 6*), where 6* is a diagonal matrix with 78�4  in its diagonal. +	 in (4.1) is an vector of 

random error with distribution �(2, 6+), where  6+ is a block matrix with 7@�4 ABCD at 

diagonal and all other entries are 0s.  

For individual �, the probability that this individual belongs to a latent class  is 

P��, with  ∑ P�� = 1Q� ! . This can be modeled through a multinomial logistic regression 

as:  

P�� = /(
�� = 1|"R	� ) = STU ("R	� V&)!W∑ STU ("R	� VX)YZ[\,[  ,                                        (4.3) 

 

where V& is the vector of the class-specific regression coefficients. For identifiability 

purpose, V] are set to 0s. Covariates "R	�  used here can be the same or different from 

"�	(#) in equation (4.2). 

Assume for these � individuals belonging to one of the G latent classes, · 

individuals (· < �) have known latent class membership (i.e. labelled data), thus for 

those · individuals, �	 is observed. Then the density function of (�	, �	) is  P��_��(�	) if 

individual � is known to belong to class . Therefore, the density function of labelled data 

can be written as ∏ {P��_��(�	))}gChQ� ! . If individual � does not have known class 

membership, then the density function of (�	, �	) is a mixture distribution:  

∑ P��_��(�	)Q� ! . 

Let  
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^ = (-�, … , -&, … , -], 344, … , 3�4, … , 3QR, 5, 6*, 6+, VR, … , V&, … , V])  

be the parameters to be estimated, then the observed likelihood is:  

 

`(^) = ∏ ∏ {P��_��(�	)}gChQ� !¹� ! ∏ ∑ P��_��(�	)Q� !b� ºW!                        (4.4) 

 

Since the latent class memberships for some subjects are unobserved and there are also 

multiple random effects in our model, the expectation-maximization (EM) algorithm can 

be used. Augmenting the observed data �	 with unobserved variables 

��	, .	� … , .	&, … , .	], *	�,  the complete-data likelihood function is:  

 

8̀(^) = c c {P��_��	e.	&, *	�_�.	&�_(*	)»gChQ
� !

¹
� !  

                                          ∏ ∏ {P��_(�	e.	&, *	�_�.	&�_(*	)}gChQ� !b� ¹W!                   (4.5) 

 

In (4.5), although the first and second parts look exactly same, 
�� in second part is 

unobserved. The log likelihood is: 

 

log� 8̀(^)� = l l 
��{log�P��� + log m_��	e.	&, *	�n + log m_�.	&�n + log�_(*	)�}Q
� !

¹
� !  

+ l l 
��{log�P��� + log m_��	e.	&, *	�n + log m_�.	&�n + log�_(*	)�}Q
� !

b
� ¹W!  

= l l 
��log�P��� − ∑ ����� ! + o + �2 l l 
�� log(2P) − 12 l l 
��log |6+|Q
� !

b
� !

Q
� !

b
� !

Q
� !

b
� !  
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− 12 l l 
����	 − "�	(#)-& − $	(#).	& − )	*	�q6+r���	 − "�	(#)-& − $	(#).	&
Q

� !
b

� !
− )	*	� 

− 12 l l 
��log|5| − 12 l l o ∗ 
�� log�3�4� − 12 l l 
��.	&� �3�45�r!.	&
Q

� !
b

� !
Q

� !
b

� !
Q

� !
b

� !  

− 12 l l 
�� log|6*|Q
� !

b
� ! − 12 l l 
��*	�6*r�*	

Q
� !

b
� ! , 

                                  (4.6) 

 

where o is the dimension of square matrix 5. 

From (4.6), we can see at u>? step, we need to calculate:  

 

t^(v)�
��e�	�; t^(v)�
��.	&e�	�;  t^(v)�
��.	&.	&� e�	�; 
t^(v)�
��*	e�	�; t^(v)�
��*	*	�e�	�; t^(v)�
��*	.	&� e�	�. 

 

However, for t^(v)�
��e�	�, if an individual has known class membership, then it is 

either 1 or 0 depending on their latent class memberships and no calculation of the 

expected value is needed. For other individuals without known class membership, it will 

need to be evaluated; therefore, the maximization steps only involve those t^(v)�
��e�	� 

from unlabeled data. Closed-form solutions to the maximization of the conditional 

expectation of the complete-data log-likelihood for the majority of the parameters are 

available except for ��in (4.3), which has to be updated numerically. The E-step and M-
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step will be repeated until the difference of observed likelihood becomes smaller than a 

pre-specified threshold. 

 

4.4 Simulation Study 

The goals of the simulation study are three-fold. First, we evaluated whether 

labelled information improves classification accuracy. The classification accuracy is 

measured by misclassification rate, defined as the percentage of samples that are 

classified incorrectly. Second, we examined whether labelled data improves the model 

estimation efficiency with smaller number of EM iterations and hence faster convergence 

of the algorithm. Lastly, we evaluated how improvements in classification accuracy and 

model estimation efficiency are influenced by various factors including sample size, 

number of longitudinal measurements per subject, the number of latent classes, and the 

level of separation of the latent classes. 

 

4.4.1 Simulation Setup 

Data were simulated based on the multivariate finite mixture latent trajectory 

model described in section 4.3. In this simulation study, we assumed 4 tests from 2 

different domains with each domain having 2 tests. Tests within each domain shared the 

same fixed effect but have different test specific random effects. In addition, there were 

also domain-specific random effects. Fixed effects in each domain include a linear 

trajectory over time, as well as a binary covariate and a continuous covariate. Domain-

specific random effects include intercept and slope, while only the intercept was included 
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for the test specific random effect. The latent class membership was associated with one 

continuous covariate.  

Performance of the model was examined in three simulation studies. In simulation 

I, we evaluated the model performance with varied number of subjects (N=500, 1000, 

and 1500), assuming 1-3 longitudinal measurements per subject and 4 latent classes. In 

Simulation II, we examined the performance while varying the number of longitudinal 

measurements per subject (1-3 observations and 1-4 observations), assuming 500 subjects 

and 4 latent classes. In Simulation III, we assessed the performance with varied number 

of latent classes (3, 4, and 5 classes), assuming 500 subjects and 1-3 longitudinal 

measurements per subject. For each simulation, we generated data with low and high 

levels of separation of the latent classes. Since each latent class in our model was 

determined jointly by latent trajectory and multinomial model, we used expected 

misclassification rate to measure the class separation.  High expected misclassification 

rate indicates the latent classes are close to each other and it is difficult to distinguish 

them, therefore, it has low class separation. For every scenario, we generated 500 

replicates. For each replicate, we fitted 3 models with 0%, 10%, and 20% subjects 

randomly selected with known class membership. All models were fitted assuming the 

same number of latent classes as the truth, including the model with no labelled data. 

After each model fitting, unlabeled subjects were assigned to their most likely latent class 

according to the posterior probabilities. Misclassification rates were then calculated and 

summarized across 500 replicates using averages and ranges. In order to evaluate whether 

labelled data improves the efficiency of the EM algorithm, we also reported the number 

of iterations it took for the algorithm to converge.  
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4.4.2 Simulation Results 

Table 4.1 is the summary of performance with different numbers of subjects. In 

all settings, performance improved with more labelled data. However, when the numbers 

of subjects increased, the improvements were getting smaller. For example, for 1500 

subjects, when expected misclassification rate was low, the improvements were almost 

negligible. In table 4.2, the same trend was observed when the numbers of observations 

increased. When sample size or number of observations is large, the effective sample 

sizes of both labelled and unlabeled data increase and performances are good even 

without labelled data; therefore, the room for improvement is small. The performance 

under different numbers of latent classes is shown in table 4.3. We noticed that for more 

classes, it was getting slower to reach the expected misclassification rates and reduction 

of iterations needed were also smaller. For example, for 5-class model when expected 

misclassification rate was high, even with 20% labelled data, the misclassification rate 

was still 10% higher than expected; and there was only 63% of reduction of iterations 

needed. The reason for this is, for same number of subjects, when adding more classes, 

there are more parameters and number of subjects in each class are smaller; therefore, 

there are more errors for estimation. 

From tables 4.1 to 4.3, when expected misclassification rates were high, there 

were big improvements, especially from no labelled data to only 10% labelled; and when 

expected misclassification rates were low, although the improvements were not dramatic, 

there were still clear trends of better performances with increasing proportions of labelled 

data. The small decrease of misclassification rate when expected misclassification was 

low is due the fact that the misclassification rates were already close to expected even 
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without labelled data and again there was no much room for improvement. Just as 

misclassification rates, the numbers of iterations needed also dropped as the proportions 

of labelled data increased. And when expected misclassification rates were high, the 

reduction can be as high as 75%. For both misclassification rates and iterations needed, 

while there were big improvements from no labelled data to 10% labelled, the 

improvements were much smaller from 10% to 20%.  

To further check where these improvements were from, we listed the average 

parameter estimations and their standard errors for some of parameters in table 4.4. As 

can be seen, with more labelled data added, while there were just marginal improvements 

of the average of estimations, the standard errors were several times smaller, therefore 

classification accuracy was improved. 
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Table 4.1: Misclassification rates and average iterations used in Simulation I. 

  
500 Subjects 

 
1000 Subjects 

 
1500 Subjects 

% of 

Labelled  

% of 

Exp.MR 

% of MR 

(range) 

Avg.iter 

(range)  

% of 

Exp.MR 

% of MR 

(range) 

Avg.iter 

(range)  

% of 

Exp.MR 

% of MR 

(range) 

Avg.iter 

(range) 

0 

9.13 

9.90 

(6.00-18.40) 

127.37 

(38-318) 

9.07 

9.32 

(6.60-12.60) 

121.39 

(42-266) 

9.08 

9.17 

(6.80-11.73) 

125.34 

(41-265) 

10 

9.76 

(6.18-17.98) 

121.24 

(10-290) 

9.28 

(6.12-12.58) 

118.40 

(22-259) 

9.14 

(6.77-11.40) 

123.20 

(14-246) 

20 

9.70 

(5.78-14.96) 

118.68 

(7-268) 

9.23 

(5.97-12.67) 

115.84 

(12-252) 

9.11 

(6.60-12.09) 

121.78 

(16-248) 

   

0 

29.60 

38.15 

(27.60-59.40) 

241.02 

(76-855) 

28.28 

33.55 

(26.20-53.50) 

235.83 

(67-945) 

28.33 

32.00 

(26.67-45.33) 

229.73 

(61-787) 

10 

32.61 

(25.33-49.33) 

55.86 

(12-417) 

29.79 

(24.67-36.43) 

65.24 

(10-544) 

29.35 

(25.26-34.28) 

61.77 

(12-505) 

20 

31.27 

(24.81-39.90) 

34.36 

(9-387) 

29.16 

(24.65-34.70) 

38.42 

(9-552) 

28.90 

(24.15-34.04) 

35.97 

(7-330) 

 

Note: Exp.MR, expected misclassification rates; MR, misclassification rates; Avg.iter, average numbers of iterations.  
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Table 4.2: Misclassification rates and average iterations in Simulation II. 

  
1-3 Observations 

 
1-4 Observation 

% of 

Labelled  

% of 

Exp.MR 

% of MR 

(range) 

Avg.iter 

(range)  

% of 

Exp.MR 

% of MR 

(range) 

Avg.iter 

(range) 

0 

9.13 

9.90 

(6.00-18.40) 

127.37 

(38-318) 

8.12 

9.06 

(5.00-15.00) 

142.72 

(55-375) 

10 

9.76 

(6.18-17.98) 

121.24 

(10-290) 

8.94 

(4.40-15.56) 

138.04 

(41-373) 

20 

9.70 

(5.78-14.96) 

118.68 

(7-268) 

8.95 

(4.96-16.25) 

137.01 

(6-368) 

  

0 

29.60 

38.15 

(27.60-59.40) 

241.02 

(76-855) 

27.93 

35.35 

(24.00-53.80) 

248.72 

(77-842) 

10 

32.61 

(25.33-49.33) 

55.86 

(12-417) 

31.17 

(23.50-47.17) 

79.72 

(10-561) 

20 

31.27 

(24.81-39.90) 

34.36 

(9-387) 

29.93 

(22.66-39.39) 

46.98 

(7-356) 

         

 

Note: Exp.MR, expected misclassification rates; MR, misclassification rates; Avg.iter, average numbers of iterations.  

  



 

 

 

6
7
 

Table 4.3: Misclassification rates and average iterations in Simulation III 

  
3-Group 

 
4-Group 

 
5-Group 

% of 

Labelle

d 
 

% of 

Exp.

MR 

% of MR 

(range) 

Avg.iter 

(range)  

% of 

Exp.

MR 

% of MR 

(range) 

Avg.iter 

(range)  

% of 

Exp.

MR 

% of MR 

(range) 

Avg.iter 

(range) 

0 

7.66 

8.21 

(4.80-13.80) 

103.79 

(34-271) 

9.13 

9.90 

(6.00-18.40) 

127.37 

(38-318) 

12.66 

14.53 

(8.40-30.20) 

165.70 

(50-393) 

10 

8.17 

(5.07-12.81) 

101.75 

(33-249) 

9.76 

(6.18-17.98) 

121.24 

(10-290) 

14.13 

(8.32-20.40) 

150.49 

(16-330) 

20 

8.16 

(3.93-12.50) 

101.97 

(36-248) 

9.70 

(5.78-14.96) 

118.68 

(7-268) 

13.99 

(8.44-19.55) 

141.31 

(7-272) 

   

0 

25.87 

33.06 

(21.80-62.00) 

212.77 

(53-549) 

29.60 

38.15 

(27.60-59.40) 

241.02 

(76-855) 

30.26 

36.55 

(28.80-51.60) 

262.72 

(86-735) 

10 

27.49 

(20.22-38.70) 

50.33 

(15-314) 

32.61 

(25.33-49.33) 

55.86 

(12-417) 

34.38 

(25.11-44.76) 

128.44 

(9-478) 

20 

26.78 

(20.20-33.83) 

34.80 

(10-170) 

31.27 

(24.81-39.90) 

34.36 

(9-387) 

33.53 

(25.43-42.17) 

97.64 

(8-605) 

 

Note: Exp.MR, expected misclassification rates; MR, misclassification rates; Avg.iter, average numbers of iterations. 
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Table 4.4: Selected parameter estimations and standard errors 

 
 

0% Labelled 
 

10% Labelled 
 

20% Labelled 

 

Parameter 
True 

Value 

Average 

estimation 
SE 

 Average 

estimation 
SE 

 Average 

estimation 
SE 

 �!! 15 16.90 13.58 

 

16.19 3.15 

 

16.15 2.96 �!4 -14 -15.47 9.09  -14.99 2.30  -14.96 2.17 �4! 12 13.80 13.59  13.09 3.13  13.06 2.94 �44 -9 -10.26 9.08  -9.78 2.20  -9.76 2.06 �N! 8 9.45 13.59  8.80 2.75  8.76 2.61 �N4 -6 -6.95 9.08  -6.52 1.79  -6.49 1.70 

 

Note: Data were simulated under a 4-class model with 500 subjects in each data set and 

each subject having 1-3 observations, 9.13% expected misclassification rate. � is as 

defined in section 4.3. 

 

4.5 Application to the UDS data: 

The proposed multivariate finite mixture latent trajectory model with partially 

labelled data was applied to the UDS data. For the purpose of comparison with our 

previous result when no labelled information was used, we analyzed the same data set: 

only Caucasian patients with dementia who had at least four cognitive evaluations were 

included. Again, we restricted analyses to those with cognitive decline after 60 years in 

order to exclude patients with early onset dementia. Tests from two domains were used: 

logical memory immediate recall and delayed recall tests for the memory domain; 

Animal Fluency Test and the Boston Naming Test for the language domain. Age of onset, 

gender and education were included in both the latent class membership model and the 

latent trajectory model as in previous study. Final analysis data set included 30,004 
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observations from 1517 patients, in which 52.74% are male and average years of 

education and age of onset are 15.07 and 73.33 respectively. Since these four test scores 

have different ranges, all outcomes were rescaled to be between 0 and 10 to have a 

similar magnitude. In addition, education (in number of years) and age of onset (in years) 

were rescaled to be between 0 and 1. The time variable, age, was measured by decades 

and centered on the mean age. For previous analysis, our final result was a linear latent 

trajectory model with 4 latent classes; therefore, the exactly same model was fitted. 

Among the 1517 subjects we used, there were 196 subjects who had pathological 

data available. Most of them were primary AD only or primary AD combined with other 

subtypes of dementia. Some of the subjects had 3 or more subtypes of dementia. 

Therefore, there are many different ways to classify these subtypes. Due to the fact that 

the numbers of primary VD, LBD and FTD only patients were very small and most of 

VD, LBD and FTD patients also have AD, we divided those 196 patents into the 

following four classes: a. 46 patients with primary AD only and no any other subtypes of 

dementia; b. 52 primary or contributing VD patients and no any other subtypes of 

dementia except AD; c. 35 primary or contributing LBD patients and no any other 

subtypes of dementia except AD; d, all any other subtypes of dementia except AD, VD 

and LBD.  Here we named classes alphabetically to distinguish them from classes 1 to 4 

we identified previously when no labeled information was used. 

Assignment of each subject into latent classes was achieved by using the posterior 

probability. A subject was classified in the latent class for which he or she has the highest 

posterior probability. To evaluate classification errors of the latent class assignment, we 

again calculated a � × � classification table as we did previously for model without 
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labelled data, with each row representing the average posterior probabilities for each 

latent class among subjects assigned to a given latent class [44]. Therefore, the diagonal 

part of this table is the average posterior probabilities of correct classifications. High 

diagonal values close to 1 and low off-diagonal values close to 0 indicate good 

classification accuracy. The result is presented in table 4.5. The diagonal elements are 

close to or large than 0.8 indicating adequate model classification performance.  

 

Table 4.5: Average posterior probabilities of 4 latent classes identified 

Classified 

class 
a b c d 

A 0.83 0.02 0.11 0.04 

B 0.01 0.81 0.07 0.11 

C 0.07 0.07 0.82 0.04 

D 0.05 0.12 0.04 0.79 

 

 

To compare the class assignments of models with and without labelled data, we 

listed the crosstab of subjects classified in each class based on the two models in table 4.6. 

Table 4.6A is for all 1517 samples. Columns are classes identified with labelled data and 

rows are classes identified without labelled data. The classes identified by models with 

and without labelled data were matched by common samples in both classes, for example, 

for those 300 subjects assigned into latent classes 1 when no labelled data was used, by 

adding labelled information, 264 samples are in class a and they consist almost 70% of 

entire sample in class a; therefore, class 1 corresponds to class a. Similarly, classes b, c 

and d are corresponding to classes 2, 3 and 4 respectively. In table 4.6, if two models 

agree with each other, then off diagonal part will be close to 0.  From table 4.6A, latent 
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classes 1 and 4 show higher agreement rates with classes a and d. For previously 

identified latent class 2, labelled information makes more than half of patients being 

reclassified to latent classes c and d. For previously identified latent class 3, after adding 

labelled information, although majority patients were in class c, some of them were 

reclassified to other latent classes, mostly to class a. Table 4.6B is break-up of 196 

subjects with pathological information only. By comparing the numbers in tables 4.6A 

and 4.6B, it can be seen for classes 1 and 4; those disagreements are almost all from 

labelled subjects only, meaning those subjects didn’t have similar trajectories with 

unlabeled data in classes 1 and 4, and their existences didn’t change the latent class 

assignments, or stated in another way: class 1 is not prime AD only and class 4 is not 

consisted of all any other subtypes of dementia except AD, VD and LBD.  For previously 

identified latent class 3, those reclassified into latent classes b and d after adding labelled 

information are almost all from labelled subjects only, however, 58 subjects now in latent 

class a. For previously identified latent class 2, most of subjects were reclassified into 

other latent classes.  
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Table 4.6: Comparison of class assignments of models with and without labelled 

information. 

A. 

 
 

 Partial labelled  
 

 
 

 a b c d  Sum 

No 

label 

1 
 

264 12 16 8 
 

300 

2  38 192 176 104  510 

3  74 19 435 32  560 

4  9 11 3 124  147 

 sum  385 234 630 268  1517 

 

B. 

 
 

 Partial labelled  
 

 
 

 a b c d  sum 

No 

label 

1 
 

13 12 12 8 
 

45 

2  10 11 13 17  51 

3  16 19 8 31  74 

4  7 10 2 7  26 

 sum  46 52 35 63  196 

 

Note: A, all 1517 subjects; B, 196 subjects with pathological information only. 

 

We presented the characteristics of these 4 latent classes in table 4.7. Not 

surprisingly, there was not much change for latent classes a and d compared with 

previous latent classes 1 and 4. However, for latent classes b and c, the percentages of 

patients with APOE e4 allele and clinically diagnosed AD dropped, especially for latent 

class b. Therefore, adding labelled information makes these two groups more 
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homogeneous, or put it in another way, latent class b is more likely to have VD and latent 

class c is more likely to have LBD. In figure 4.1 we plotted model trajectories of male 

patients with education and age of onset at the sample means in 4 latent classes using 

linear model for memory domain and language domain. Again, there were obvious 

changes for latent classes b and c.   

 

Table 4.7: Characteristics of 4 latent classes identified 

Latent 

class 
Male % 

Average years of 

Education (SD) 

Average age 

of onset (SD) 

APOE e4 

carrier (%) 

Probable AD 

only (%) 

a 50.91 15.75(2.93) 71.46(6.79) 70.18 74.09 

b 61.11 14.64(3.29) 72.94(7.45) 37.86 32.77 

c 51.43 14.34(3.33) 73.41(7.01) 55.91 64.98 

d 51.12 16.17(2.60) 76.19(7.71) 47.37 53.53 

 



 

 

 

7
4
  

Figure 4.1: Estimated trajectories of language (left) and memory (right) decline for male dementia patients in four latent classes.
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4.6 Conclusion and discussion 

In this work, we performed simulation studies to survey the effects of adding 

labelled data to our finite mixture latent trajectory model under different considerations 

and re-analyzed UDS data by incorporating pathological information. We found that 

adding as little as 10% labelled data improves the classification accuracy and efficiency, 

especially when data were not well separated.  

In practice, usually we don’t have prior information about whether data are well 

separated or not, thus, labelled information should always be used. However, we found 

that there was just a little improvement of performance when proportion of labelled data 

changed from 10% to 20%, or when number of overall subjects was big. Therefore, 

although it is always ideal to get as more labelled data as possible, if that process is very 

expensive and/or resource is limited, recruiting more unlabeled data to increase the 

overall number of subjects can also improve the performance.  

In our application of UDS data, we found when labelled data was not 

representative of underlying classes, the group assignments almost didn’t change for 

those unlabeled subjects (e.g. latent classes a and d). On the other hand, when labelled 

data was representative of some underlying classes, the newly defined classes became 

more homogenous (e.g. latent classes b and c). Due to the lack of background 

information and small sample sizes, the 4 classes we defined from data with pathological 

information was arbitrary and they were not well matched to the latent classes we 

previously identified. UDS data collection is still ongoing and more pathological data 

will be available in the near future. We will re-analyze UDS data when we have better 

understanding of disease subtypes and their cognitive decline patterns.      
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Our study is aimed at analyzing UDS data and in order to fit the general purpose, 

there are several extensions we need to consider. First, we assume those labelled data 

were chosen randomly. This is not a problem in our dementia study. However, it is not 

always true, for example, if one disease is much harder to diagnoses than other diseases, 

we will have disproportionally smaller number of patents with that particular disease. 

Second, in some cases the proportion of each latent class is already known, for example, 

in Hosmer’s study, the proportion of male fish was already known [37], and that 

information can also be included to improve the performance. Third, in current studies, 

we assume that there were no unknown or unobserved latent classes, i.e. unlabeled data 

has to belong to one of the latent classes observed in labelled data, which is a very strong 

assumption. Ideally, a series of model, with numbers of latent classes equal to or larger 

than the number of classes observed should be fitted, then using appropriate criteria to 

identify correct number of latent classes that are most biologically meaningful. 
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CHAPTER 5. CONCLUSION AND DISCUSSION 

In this dissertation, we first proposed a multivariate finite mixture latent trajectory 

model motivated by data that are often encountered in dementia studies. This model has 

the capability to identify latent subpopulations in multiple cognitive domains with each 

domain measured by multiple neuropsychological tests. Simulation results showed 

adequate performance of this model. By applying this model to the UDS data set, four 

distinct cognitive decline patterns were identified. In the second part of this dissertation, 

through a simulation study, we investigated the performances of several commonly used 

IC-based fit indices including AIC, BIC, as well as CAIC, sample adjusted CAIC, sample 

adjusted BIC, ICLBIC, and sample adjusted ICLBIC for selecting the number of latent 

classes using multivariate finite mixture latent trajectory models. The level of separation 

between the latent classes had the greatest impact on the performance of these indices. 

The sample adjusted BIC performed uniformly better in all situations and is therefore the 

preferred approach for multivariate finite mixture trajectory models. In the third part of 

this dissertation, the multivariate finite mixture latent trajectory model was further 

extended to incorporate labeled class information. Our results showed that even small 

amount of labeled data can improve classification accuracy and estimation efficiency, 

especially for not well separated data. This model was applied to the same UDS data set 

and compared to previous analysis based on the unlabeled data. Results showed that 

subjects classified in the same class based on the partially labelled data have more similar 

trajectories with each other. 

In dementia and aging studies, multiple cognitive measures from several cognitive 

domains are routinely collected. Neuropsychological tests within the same domain can be 



 

78 

 

considered as measures of the same underlying latent construct. Joint modeling of test 

results from multiple domains can improve our ability to identify unique patterns of 

cognitive decline. In addition, by adding labeled information, the classes identified can be 

linked directly to the known classes, hence making results more biological meaningful. 

For complex latent mixture models, the total number of parameters is usually large, thus 

it is important to apply appropriate amount of penalty when using IC based criteria for 

model selection. When a new class is added, all parameters associated with that class are 

also added leading to a large penalty from number of parameters. Our simulation study 

on comparing information based criteria suggests that SABIC, which uses adjusted 

sample size, reduced the overall penalty and outperformed commonly used AIC and BIC 

in all scenarios.  

Currently the proposed models assumed the normal distribution due to its 

tractability and ease of implementation. For further research, non-normal distributions 

and/or mixed distribution need to be included. For many neuropsychological test scores, 

there are floor or ceiling effects and approaches to model those data also need to be 

considered. Additional extension to our current work is when the proportions of each 

class in the population are known and the models will be extended to consider these 

additional constrains. 

This work was motivated by studies of cognitive decline among dementia patients 

and the ultimate goal is to find patients that have similar cognitive decline pattern and 

therefore possibly share the same disease etiology. In our application of UDS data, 4 

distinct cognitive decline patterns were found. However, these 4 classes cannot be 

directly linked to known dementia subtypes, even with the help of pathological 
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information. One reason for that is, although there are only a few dementia subtypes, 

many patients have more than one type of dementia. Therefore, the combination of 

different kinds of dementia creates many classes, some of them with sample sizes too 

small to model. Since the UDS data collection is still ongoing and more pathological data 

will be available in the future, a further extension of the current work would be the 

capability of modeling mixed types of dementia.      

 

  



 

80 

 

BIBLIOGRAPHY 

1. Hayden, K.M., et al., Cognitive decline in the elderly: an analysis of population 

heterogeneity. Age Ageing, 2011. 40(6): p. 684-9. 

2. Galton, C.J., et al., Atypical and typical presentations of Alzheimer's disease: a 

clinical, neuropsychological, neuroimaging and pathological study of 13 cases. 

Brain, 2000. 123 Pt 3: p. 484-98. 

3. Martin, A., et al., Towards a behavioral typology of Alzheimer's patients. J Clin 

Exp Neuropsychol, 1986. 8(5): p. 594-610. 

4. Neary, D., et al., Neuropsychological syndromes in presenile dementia due to 

cerebral atrophy. J Neurol Neurosurg Psychiatry 1986. 49(2): p. 163-174. 

5. Miller, B.L., et al., Frontal lobe degeneration: clinical, neuropsychological, and 

SPECT characteristics. Neurology, 1991. 41(9): p. 1374-82. 

6. Neary, D., J. Snowden, and D. Mann, Frontotemporal dementia. Lancet Neurol, 

2005. 4(11): p. 771-80. 

7. Neary, D., et al., Frontotemporal lobar degeneration: a consensus on clinical 

diagnostic criteria. Neurology, 1998. 51(6): p. 1546-54. 

8. Neary, D., et al., Dementia of frontal lobe type. J Neurol Neurosurg Psychiatry, 

1988. 51(3): p. 353-61. 

9. Perry, R.J. and J.R. Hodges, Differentiating frontal and temporal variant 

frontotemporal dementia from Alzheimer's disease. Neurology, 2000. 54(12): p. 

2277-84. 

10. Nagin, D.S., Analyzing developmental trajectories: A semiparametric, group-

based approach. Psychol Methods, 1999. 4: p. 139-57. 

11. Nagin, D.S., Group-based modeling of development. 2005, Cambridge, Mass: 

Harvard University Press. 

12. Nagin, D.S. and C.L. Odgers, Group-based trajectory modeling in clinical 

research. Annu Rev Clin Psychol, 2010. 6: p. 109-38. 

13. Muthen, B., Beyond SEM: General latent variable modeling. Behaviormetrika, 

2002. 29: p. 81–117. 

14. Muthen, B., Latent variable analysis: growth mixture modeling and related 

techniques for longitudinal data. The Sage Handbook of Quantitative 

Methodology for the Social Sciences, ed. D. Kaplan. 2004, Newbury Park, CA. 

345–68. 

15. Muthen, B. and K. Shedden, Finite mixture modeling with mixture outcomes 

using the EM algorithm. Biometrics, 1999. 55: p. 463–469. 

16. Proust, C., et al., A nonlinear model with latent process for cognitive evolution 

using multivariate longitudinal data. Biometrics, 2006. 62(4): p. 1014–1024. 

17. Proust-Lima, C., L. Letenneur, and H. Jacqmin-Gadda, A nonlinear latent class 

model for joint analysis of multivariate longitudinal data and a binary outcome. 

Statistics in Medicine, 2007. 26: p. 2229–2245. 

18. Kim, S.Y., Determining the Number of Latent Classes in Single- and Multi-Phase 

Growth Mixture Models. Struct Equ Modeling, 2014. 21(2): p. 263-279. 

19. McLachlan, G.J. and D. Peel, Finite Mixture Models. 2004, New York: Wiley-

Intersci. 



 

81 

 

20. Nylund, K.L., T. Asparouhov, and B.O. Muthen, Deciding on the number of 

classes in latent class analysis and growth mixture modeling: a Monte Carlo 

simulation study. Struct. Equ. Model., 2007. 14: p. 535-69. 

21. Tofighi, D. and C.K. Enders, Identifying the correct number of classes in growth 

mixture models. Advances in Latent Variable Mixture Models, 2008: p. 317-341. 

22. Yang, C.-C., Evaluating latent class analysis models in qualitative phenotype 

identification. Computational Statistics & Data Analysis, 2006. 50(4): p. 1090-

1104. 

23. Lo, Y.T., N.R. Mendell, and D.B. Rubin, Testing the number of components in a 

normal mixture. Biometrika, 2001. 88(767-78). 

24. Akaike, H., New look at statistical-model identification. IEEE Trans. Automatic 

Control, 1974. 19: p. 716-23. 

25. Schwartz, G., Estimating the dimension of a model. Ann. Stat., 1978(6): p. 461-

64. 

26. Baudry, J., et al., Combining Mixture Components for Clustering. J Comput 

Graph Stat., 2010 June 1. 9(2): p. 332-353. 

27. Bozdogan, H., Model Selection and Akaike Information Criterion (Aic) - the 

General-Theory and Its Analytical Extensions. Psychometrika, 1987. 52(3): p. 

345-370. 

28. Sclove, S.L., Application of Model-Selection Criteria to Some Problems in 

Multivariate-Analysis. Psychometrika, 1987. 52(3): p. 333-343. 

29. Rissanen, J., A universal prior for integers and estimation by minimum 

description length. The Annals of Statistics, 1983. 11(2): p. 416-431. 

30. Rissanen, J., Modeling by shortest data description. Automatica, 1978. 14: p. 465-

471. 

31. Rissanen, J., Minimum-description-length principle. Encyclopedia of Statistical 

Sciences. Vol. 5. 1985, New York: John Wiley & Sons. 

32. Biernacki, C., G. Celeux, and G. G, Assessing a Mixture Model for Clustering 

with the Integrated Classification Likelihood. Technical Report No. 3521. 1998, 

Rhone-Alpes: INRIA. 

33. Nigam, K., et al., Text Classification from Labeled and Unlabeled Documents 

using EM. Machine Learning, 2000. 39: p. 103-134. 

34. Seeger, M., Learning with labeled and unlabeled data (Technical Report) 2001, 

Institute for Adaptive and Neural Computation, University of Edinburgh: 

Edinburgh, United Kingdom. 

35. Zhu, X. and A.B. Goldberg, Introduction to semi-supervised learning. Synthesis 

lectures on artificial intelligence and machine learning, 2009. 3(1): p. 1-130. 

36. McLachlan, G.J., Discriminant Analysis and Statistical Pattern Recognition. 

1992, New York: Wiley. 

37. Hosmer, D.W., A comparison of iterative maximum likelihood estimates for the 

parameters of a mixture of two normal distributions under three different types of 

sample. Biometrics, 1973. 29: p. 761-770. 

38. Hosmer, D.W. and N.P. Dick, Information and mixtures of tow normal 

distributions. Journal of Statistical Computation and Simulation, 1977. 6: p. 137-

148. 



 

82 

 

39. Salmon, D.P. and M.W. Bondi, Neuropsychological assessment of dementia. 

Annu Rev Psychol, 2009. 60: p. 257-82. 

40. The National Alzheimer's Coordinating Center. Available from: 

https://www.alz.washington.edu/. 

41. McLachlan, G.J. and T. Krishnan, The EM Algorithm and Extensions. 1997, New 

York: John Wiley & Sons, Inc. . 

42. Ng, S.K., et al., A mixture model with random-effects components for clustering 

correlated gene-expression profiles. Bioinformatics, 2006. 22(14): p. 1745-52. 

43. Dempster, A.P., N.M. Laird, and D.B. Rubin, Maximum Likelihood from 

Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, 

Series B, 1977. 39(1): p. 1-38. 

44. Muthen, B., et al., General growth mixture modeling for randomized preventive 

interventions. Biostatistics, 2002. 3(4): p. 459-75. 

45. Morris, J.C., et al., The Uniform Data Set (UDS): clinical and cognitive variables 

and descriptive data from Alzheimer Disease Centers. Alzheimer Dis Assoc 

Disord, 2006. 20(4): p. 210-6. 

46. Weintraub, S., et al., The Alzheimer's Disease Centers' Uniform Data Set (UDS): 

the neuropsychologic test battery. Alzheimer Dis Assoc Disord, 2009. 23(2): p. 

91-101. 

47. Alzheimer's Disease Genetics Consortium. Available from: 

https://alois.med.upenn.edu/adgc/about/overview.html. 

48. The AlzGene database Available from: http://www.alzgene.org/. 

49. Corder, E.H., et al., Gene dose of apolipoprotein E type 4 allele and the risk of 

Alzheimer's disease in late onset families. Science, 1993. 261(5123): p. 921-3. 

50. Strittmatter, W.J., et al., Apolipoprotein E: high-avidity binding to beta-amyloid 

and increased frequency of type 4 allele in late-onset familial Alzheimer disease. 

Proc Natl Acad Sci U S A, 1993. 90(5): p. 1977-81. 

51. McKhann, G., et al., Clinical diagnosis of Alzheimer's disease: report of the 

NINCDS-ADRDA Work Group under the auspices of Department of Health and 

Human Services Task Force on Alzheimer's Disease. Neurology, 1984. 34(7): p. 

939-44. 

52. McKhann, G.M., et al., The diagnosis of dementia due to Alzheimer's disease: 

recommendations from the National Institute on Aging-Alzheimer's Association 

workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers 

Dement, 2011. 7(3): p. 263-9. 

53. Gray, S.M. and R. Brookmeyer, Estimating a treatment effect from 

multidimensional longitudinal data. Biometrics, 1998. 54(3): p. 976-88. 

54. Jacqmin-Gadda, H., C. Proust-Lima, and H. Amieva, Semi-parametric latent 

process model for longitudinal ordinal data: Application to cognitive decline. 

Statistics in Medicine, 2010. 29(26): p. 2723–2731. 

55. Biernacki, C. and G. Govaert, Using the Classification Likelihood to Choose the 

Number of Clusters. Computing Science and Statistics, 1997. 29(3): p. 451-457. 

56. Celeux, G. and G. Soromenho, An entropy criterion for assessing the number of 

clusters in a mixture model. Journal of Classification, 1996. 13(2): p. 195-212. 



 

83 

 

57. Bezdek, J.C., Pattern recognition with fuzzy objective function algorithms. 

Advanced applications in pattern recognition. 1981, New York: Plenum Press. xv, 

256 p. 

58. Biernacki, C., G. Celeux, and G. Govaert, An improvement of the NEC criterion 

for assessing the number of clusters in a mixture model. Pattern Recognition 

Letters, 1999. 20(3): p. 267-272. 

59. Windham, M.P. and A. Cutler, Information Ratios for Validating Mixture 

Analyses. Journal of the American Statistical Association, 1992. 87(420): p. 1188-

1192. 

60. Kullback, S. and R.A. Leibler, On information and sufficiency. Annals of 

Mathematical Statistics, 1951. 22: p. 79-96. 



 

 

 

CURRICULUM VITAE 

 

Dongbing Lai 

 

    

Education: 
08/09-08/15: Ph. D. in Biostatistics, Department of Biostatistics, IUPUI. 

08/07-05/09:  M.S. in Applied Statistics, Department of Mathematical Sciences, IUPUI.  

08/01-05/03:  M.S. in Bioinformatics, School of Informatics, IUPUI. 

09/89-07/93:  B.S. in Biochemistry, Department of Biology, Nankai University.  

Employment:  

05/08-Present: Applied statistician II, Department of Medical and Molecular Genetics, 

IUPUI 

05/05/-04/08:  Applied statistician, Department of Medical and Molecular Genetics, 

IUPUI  

07/03-04/05:   Research data analyst, Department of Medical and Molecular Genetics, 

IUPUI 

09/01-06/03:   Research assistant, Department of Medical and Molecular Genetics, 

IUPUI 

09/96-05/99:   Research assistant, Department of Biochemistry & Molecular Biology, 

Peking Union Medical College & Chinese Academy of Medical Science. 

09/93-08/96:   Research technician, Center of Biochemical Immune Preparation, China 

Institute for Radiation Protection   

 

 


