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ABSTRACT
Motivation: Tandem mass spectrometry has become the method
of choice for protein identification and quantification. In the era of
big data biology, tandem mass spectra are often searched against
huge protein databases generated from genomes or RNA-Seq data
for peptide identification. However, most existing tools for mass
spectrometry-based peptide identification compare a tandem mass
spectrum against all peptides in a database whose molecular masses
are similar to the precursor mass of the spectrum, making mass
spectral data analysis slow for huge databases. Tag-based methods
extract peptide sequence tags from a tandem mass spectrum and
use them as a filter to reduce the number of candidate peptides, thus
speeding up the database search. Recently, gapped tags have been
introduced into mass spectral data analysis because they improve
the sensitivity of peptide identification compared with sequence tags.
However, the blocked pattern matching problem, which is an essential
step in gapped tag-based peptide identification, has not been fully
solved.
Results: In this paper, we propose a fast and memory-efficient
algorithm for the blocked pattern matching problem. Experiments on
both simulated and real data sets showed that the proposed algorithm
achieved high speed and high sensitivity for peptide filtration in
peptide identification by database search.
Contact: cswangl@cityu.edu.hk xwliu@iupui.edu

1 INTRODUCTION
With the developments of high throughput genomics, transcriptomics,
and proteomics, combining multiple omics data provides a new
way for studying complex biological systems. In multiple omics
data analysis, tandem mass (MS/MS) spectra are searched against
protein databases generated from genomes or RNA-Seq data for
peptide identification. These protein databases are often huge.
For example, in human microbiome studies, MS/MS spectra are
searched against databases containing protein sequences generated
from hundreds, even thousands, of genomes (Rudney et al., 2010;
Dewhirst et al., 2010).
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Most mass spectrometry (MS)-based peptide identification tools
match an MS/MS spectrum against all peptides in a database
whose molecular masses are similar to the precursor mass of the
spectrum (Eng et al., 1994; Perkins et al., 1999; Craig and Beavis,
2003; Geer et al., 2004). These tools become slow when the
database is large. An alternative approach is based on peptide
sequence tags: Peptide sequence tags are extracted from an MS/MS
spectrum and searched against a database to identify a small number
of candidate peptides that match at least one of the tags, then a
rescoring function is applied to report the highest scoring candidate
peptide (Mann and Wilm, 1994; Tabb et al., 2003; Tanner et al.,
2005; Ma et al., 2011). The trade-off between speed and sensitivity
is an important problem in tag-based methods. To increase the
sensitivity, it is essential that the set of sequence tags extracted from
a spectrum contains a correct one that matches the target peptide.
To increase the speed, long sequence tags (length≥ 5) are preferred
because they are efficient in filtering out incorrect peptides. As a
result, correct long sequence tags are extremely useful in tag-based
methods because they speed up database searches without losing
sensitivity. However, correct long sequence tags may not be found
in MS/MS spectra because of missing and noise peaks (Jeong et al.,
2011).

To utilize long sequence tags, Kim et al. (2009) proposed
to generate a spectral dictionary containing full-length peptide
constructions from an MS/MS spectrum for peptide identification.
A drawback of this approach is that a spectral dictionary of an
MS/MS spectrum with a large precursor mass may contain billions
of peptides. Jeong et al. (2011) introduced gapped peptides to solve
this problem. Since a gapped peptide represents many non-gapped
peptides, the use of gapped peptides significantly reduces the sizes
of spectral dictionaries and speeds up peptide identification without
losing sensitivity.

Similar to the method proposed by Jeong et al. (2011), replacing
sequence tags with gapped tags can achieve both high speed and
high sensitivity in tag-based peptide identification. A gapped tag
is represented by a sequence of mass values instead of amino
acids. Each mass value is the mass of one amino acid residue or
the sum of the masses of several consecutive amino acid residues.
Many MS/MS spectra do not contain long sequence tags because of
missing peaks, but contain long gapped tags.
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Gapped tags and gapped peptides give rise to the blocked pattern
matching (BPM) problem in which a blocked pattern generated from
a gapped tag is searched against a text to find matched substrings.
Ng et al. (2011) proposed an O(m) algorithm for querying a
blocked pattern of length m against a text of length n. However, the
time and space needed for the preprocessing step of the algorithm is
O(2k), where k is the length of the longest substring to identify.
When k = 30, the preprocessing step is slow and the space
required by the algorithm is huge. In this paper, we present a fast
and memory-efficient algorithm for the BPM problem. The time
and space complexity of the preprocessing step of the algorithm
is O(n). In the application of MS-based peptide identification, the
time complexity for querying a blocked pattern is sublinear in n.
Experiments on both simulated and real MS/MS data sets showed
that the proposed algorithm achieved high speed and high sensitivity
for peptide filtration in peptide identification by database search.

2 METHODS
2.1 The blocked pattern matching problem
LetN be the set of all natural number and Σ a subset ofN . A string
overN is called a pattern string, and a string over Σ is called a text
string. When a pattern string is searched against a text string, the
pattern string is called a blocked pattern. Let S = s1, s2, . . . , sn
be a text string. The mass of a substring si, si+1, . . . , sj of S is
the sum of all numbers in the substring, i.e., si + si+1 + . . . +
sj . Substrings si, si+1, . . . , sj and sj+1, sj+2, . . . sk are called
consecutive substrings of S. A partition R of S is a sequence of
consecutive substrings A1, A2, . . . , Ak of S, where A1 starts from
s1 and Ak ends at sn. The mass string of the partition R is a string
comprised of the masses of the consecutive substrings of R. For
example, when Σ = {71, 113, 114, 128}, S = 71, 113, 114, 128,
A1 = 71, A2 = 113, 114, and A3 = 128, the substrings
A1, A2, A3 is a partition of S and the corresponding mass string
is 71, 227, 128, where 227 is the mass of A2. A blocked pattern
matches a text string if there is a partition of the text string such that
the mass string of the partition is identical to the blocked pattern. In
the previous example, the blocked pattern 71, 227, 128 matches the
text string 71, 113, 114, 128.

The blocked pattern matching (BPM) problem Given a text T =
t1, t2, . . . , tn over a finite alphabet Σ ⊂ N and a blocked pattern
P = p1, p2, . . . , pm overN , find all substrings in T that match P .

2.2 An efficient algorithm for the BPM problem
In this subsection, we present an efficient algorithm for the BPM
problem, in which the text T is represented by a suffix tree. While
the proposed algorithm works for suffix trees in which each edge
is labeled with a text string with one or more letters, here we
assume that each edge is labeled with only one letter to simplify
the following analysis. Before discussing the new algorithm, we
review the steps to search a text string against a suffix tree. To
find substrings in T matching a text string a1, a2, . . . , am, we
start from the root N0 of the suffix tree and find a list of nodes
N1, N2, . . . , Nm such that the path from the root to Ni, for 1 ≤
i ≤ m, spells out the prefix a1, a2, . . . , ai. In addition, the letter ai

is the label on the edge connecting Ni−1 and Ni.

The BPM Algorithm
Input: A text T of length n over a finite alphabet Σ ⊂ N and

a blocked pattern P of length m overN .
Output: All substrings in T that match P .
1. Use a suffix tree to represent T , initialize U0 as the

set containing only the root of the tree, and compute
V1, V2, . . . , Vm.

2. For i = 1 to m do
3. For each node u ∈ Ui−1 and each text string S ∈ Vi do
4. Search S against the suffix tree starting from u. If

there exists a path from u to a node v that spells
out the text string S, add v into Ui.

5. EndFor
6. EndFor
7. Report all substrings corresponding to Um and their

positions in T .

Fig. 1. An efficient algorithm for the BPM problem.

We cannot search the blocked pattern P against the suffix tree
directly since the text T is over Σ (Σ ⊂ N ), whereas P is over N .
Alternatively, we can first convert P into the set Ω of all text strings
matching P and then search each text string in Ω against the suffix
tree. Let Vi be the set of all text strings whose masses equal pi. An
example of Vi is shown in Table 1 in the supplementary material.
Each text string in Ω is the concatenation of a list of text strings
v1, v2, . . . , vm in which vi ∈ Vi for 1 ≤ i ≤ m. The number of
text strings in Ω is Πm

i=1|Vi|, which may introduce a combinatorial
explosion when |Vi| > 1 for most pi in P . As a result, it is not fast
to search P by converting it to Ω explicitly.

Prefixes of P are used to speed up blocked pattern searches. A
text string S is a prefix text string of P if S matches a prefix pattern
string of P . Moreover, if a prefix text string of P is identical to a
substring of T , we say it is an identifiable prefix text string of P . For
example, when Σ = {71, 113, 114, 128}, P = 71, 227, 128, and
T = 87, 71, 113, 114, 128, 97, both 71, 113, 114 and 71, 114, 113
are prefix text strings of P . The string 71, 113, 114 is an identifiable
prefix text string of P , but 71, 114, 113 is not. If a prefix text string
S is not identifiable, then all text strings in Ω with the prefix are not
identifiable, making it not necessary to generate and search these
text strings.

The idea of the BPM algorithm is to speed up blocked pattern
searches by removing non-identifiable prefix text strings (Fig. 1).
Each identifiable prefix text string corresponds to a unique node
in the suffix tree. Let Ui be the set of nodes corresponding to all
identifiable prefix text strings that match the prefix p1, p2, . . . , pi
of P . Similar to searching a text string, we initialize U0 as the
set containing only the root of the tree and find U1, U2, . . . , Um

progressively. The set Um contains the solution to the BPM problem
because the identifiable prefix text strings that match p1, p2, . . . , pm
are substrings in T that match P . To find Ui from Ui−1, we start
from each node u ∈ Ui−1 and search for each text string S ∈ Vi.
If there exists a node v such that the path from u to v spells out
the string S, then the node v is added to Ui. The total number of
searches in the iteration, i.e., finding Ui from Ui−1, is |Ui−1|×|Vi|.
After the last set Um is found, the BPM problem is solved by
reporting all substrings corresponding to Um and their positions in
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T , which are stored in Um. Since the text T is represented by a
suffix tree, the space complexity of the algorithm is O(n).

2.3 Time complexity
Representing the text T as a suffix tree is a preprocessing
step for pattern queries. Its time complexity is O(n). Let
G be the largest number in the blocked pattern P , that is,
G = maxm

i=1 pi. We denote by Wk the set of all text strings
whose masses equal k. To obtain V1, V2, . . . , Vm, we generate
a lookup table W0,W1, . . . ,WG. The number of operations for
computing W0,W1, . . . ,WG is an exponential function of G.
(See the supplementary material.) In peptide identification by
tandem mass spectra, the value G is not extremely large and
the sets W0,W1, . . . ,WG can be computed in a short time. (See
Section 3.2.) Below we focus on the query time complexity of the
BPM algorithm (steps 2-7 of the algorithm in Fig. 1).

When prefix text strings of P are long, most of them cannot
be found in the text T (i.e., they are not identifiable) and will be
removed from further consideration. As a result, the size of Ui is
often smaller than |Ui−1| × |Vi|. That is the reason why pattern
queries in the BPM algorithm are fast.

Let N = maxm
i=1 |Vi|. The running time of searching P against

the suffix tree is determined by
∑m

i=1 |Ui| ·N . Let L be the length
of the longest prefix text string of P . We define Xl as the set of
all length l prefix text strings of P and Yl as the set of all length
l identifiable prefix strings of P , for 1 ≤ l ≤ L. Since each
node in ∪m

i=1Ui corresponds to an identifiable prefix text string in
∪L

l=1Yl, we have
∑m

i=1 |Ui| =
∑L

l=1 |Yl|. The expectation of |Yl|
is determined by the size of Xl and the probability that a length l
text string is found in T . As a result, the running time of the pattern
query is related to the sizes of Yl and Xl.

Each length l prefix text string in Xl has only one partition
A1, A2, . . . , Ak such that the mass string of the partition, which
is a length k pattern string, is the same to a prefix of P . Let li be the
length of Ai for 1 ≤ i ≤ k. We say l1, l2, . . . , lk is the configuration
of the prefix text string. For example, when Σ = {2, 3} and
P = 3, 6, 4, we have V1 = {(3)}, V2 = {(3, 3), (2, 2, 2)} and
V3 = {(2, 2)}. The configuration of the length 4 prefix text string
3, 2, 2, 2 is 1, 3 because it has only one partition A1 = 3 and
A2 = 2, 2, 2 such that the mass string of the partition matches the
prefix 3, 6 of P . The total number of configurations of length l prefix
text strings of P is bounded by 2l.

Let XC
l be the set of all prefix text strings in Xl with a

configuration C = l1, l2, . . . , lk satisfying l =
∑k

i=1 li. Each
prefix text string in XC

l is the concatenation of k text strings
v1, v2, . . . , vk such that vi ∈ Vi and the length of vi is li for
1 ≤ i ≤ k. We divide Vi into subsets Vi,1, Vi,2, . . . , Vi,d, where
d is the length of the longest text string in Vi. The subset Vi,j

contains all length j text strings in Vi. The size of XC
l is Πk

i=1|Vi,li |.
Because the probability that a prefix text string in XC

l is found in
T is a function of l, we want to represent the upper bound of |XC

l |
as a function of l. To this end, we introduce an expansion factor
ri,j = |Vi,j |1/j for each set Vi,j . The largest expansion factor is
denoted as r = maxi,j ri,j . Since |Vi,li | ≤ rli for 1 ≤ i ≤ k,

|XC
l | = Πk

i=1|Vi,li | ≤ Πk
i=1r

li = r
∑k

i=1 li = rl.

Because the number of configurations of prefix text strings in Xl is
bounded by 2l, we can prove that (2r)l is an upper bound of |Xl|
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Fig. 2. An example spectrum for the peptide FTALNQVR. A gapped tag
71.04, 227.13, 128.08 is extracted from the spectrum based on the distances
between peak pairs, where 71.04 is the mass of the amino acid residue
A, 227.13 is the sum of the masses of the amino acid residues L and N,
and 128.08 is the mass of the amino acid residue Q. A blocked pattern
71, 227, 128 is generated by rounding each mass in the gapped tag to an
integer.

and further give the average-case time complexity of a pattern query
in the BPM algorithm.

THEOREM 1. When the size of Σ is a constant and 1 < 2r < |Σ|,
the average-case time complexity of a pattern query in the BPM
algorithm is O(nlog|Σ| 2rN + M), where M is the number of
matched substrings in T .

A proof of the above theorem is given in the supplementary
material. The average-case time complexity is obtained by
analyzing the expectation of the size of Yl. In the worst case, the
size of Yl is bounded by the length of the text. Consequently, the
worst-case time complexity of a pattern query in the BPM algorithm
is O(mnN).

2.4 Peptide identification by blocked pattern matching
In peptide identification, blocked patterns are often obtained from
gapped tags. A gapped tag of a spectrum is represented by a list
of masses, each of which is the distance between two peaks in
the spectrum, which may correspond to one or more amino acids.
Fig. 2 gives an example spectrum for the peptide FTALNQVR
from which we can generate a gapped tag 71.04, 227.13, 128.06
rather than a sequence tag ALNQ because the peak for the fragment
FTAL is missing. A gapped tag is converted into a blocked
pattern by rounding each mass in the gapped tag into an integer.
Although rounding masses to integers has been successfully applied
to analyzing low accuracy mass spectra (Kim et al., 2008), it may
introduce large errors in analyzing high accuracy mass spectra. For
example, a large error 0.23 is introduced by rounding the mass
426.23 (with an accuracy of 0.01) of the fragment ion ALNQ in
Fig. 2 to 426. To avoid this problem, mass values are multiplied
by a scale factor before rounded to integers (Liu et al., 2013).
For example, when the scale factor is 100, the mass of the amino
acid residue A is converted into 7, 104. High accuracy fragment
ion peaks and a large scale factor are important in reducing the
number of text strings matched to a blocked pattern and speeding
up pattern queries. Since the BPM algorithm is designed for high
accuracy MS/MS spectra with high accuracy precursors, it may fail
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to efficiently search blocked patterns generated from low accuracy
MS/MS spectra.

Blocked patterns can also be generated from sequence tags when
local confidence scores of amino acids in the sequence tags are
available (Ma et al., 2003; Tabb et al., 2003). In general, amino
acids with low confidence scores tend to be incorrect. A sequence
tag is converted into a gapped tag by replacing neighboring amino
acids that have low confidence scores with the sum of their masses
and substituting an amino acid that has a high confidence score
with its single mass. The gapped tag is further converted into a
blocked pattern by rounding its masses to integers. In practice, gaps
in gapped tags are no larger than 500 Dalton (Da) (Ng et al., 2011).
When a sequence tag contains several consecutive amino acids with
low confidence scores such that the sum of their masses is larger
than 500 Da, the sequence tag is broken into two short sequence
tags by the large gap from which gapped tags are generated. The
threshold for confidence scores determines which amino acids in a
sequence tag are combined. When the threshold is lower than the
smallest confidence score in a sequence tag, every amino acid in
the sequence tag is converted to a mass in the gapped tag. When
the threshold is extremely high, all amino acids in a sequence tag is
combined to a large mass and the search of the blocked pattern is
equivalent to peptide identification by using its precursor mass.

In peptide identification, the residue mass values of the 20
standard amino acid are converted into integers by using a scale
factor. The alphabet Σ of text strings is the set of the resulting
integers. Since leucine (L) and isoleucine (I) have the same mass,
they are treated as the same in blocked pattern searches. As a result,
the size of Σ is 19. A protein database is converted to a text over Σ
by replacing each amino acid in the database by its corresponding
integer in Σ.

Blocked patterns are generated from a tandem mass spectrum and
searched against the text translated from a protein database to find
candidate peptides. After the candidate peptides are identified, they
are filtered by the precursor mass of the spectrum. The resulting
peptide-spectrum-matches (PSMs) are further rescored to find the
highest scoring one (Fig. 2 in the supplementary material). Any
scoring function can be utilized in the rescoring step to improve
the sensitivity of peptide identification. Searching blocked patterns
against the text generated from a database is an essential step that
determines the speed and sensitivity of peptide identification.

In peptide identification by tandem mass spectra, the numbers
(letters) in P are usually not extremely large. When the largest
gap in gapped tags is 500 Da and the scale factor is 100, the
largest number in P is 50, 000. In this case, the number N in
Theorem 1 can be treated as a constant value. In addition, log|Σ| 2r
in Theorem 1 is usually smaller than 1. In this application, the
average-case time complexity for a pattern query is sublinear in the
size of the database.

The numbers in a blocked pattern may have small errors that
are introduced in measuring the m/z values of fragment ions. To
account for these errors, an error tolerance is allowed when blocked
patterns are searched against a text. In the BPM algorithm, a text
string is included into the set Vi if the difference between pi and the
sum of all the numbers in the text string is within a predefined error
tolerance.

3 RESULTS
We implemented the BPM algorithm in Java and tested it on both
simulated and real data sets. All the tests were performed on a Linux
(64-bit) desktop PC with a 1.4GHz CPU and 32GB RAM. We were
not able to compare the BPM algorithm with that described in Ng
et al. (2011) because it is not available.

3.1 Data set
A data set generated from human cell lysate (Frese et al., 2011) was
used to test the BPM algorithm. In the preparation of the data set, the
protein mixture was analyzed on an Orbitrap Velos (Thermo Fisher
Scientific) coupled with a high-performance liquid chromatography
(HPLC) system. High accuracy MS and MS/MS spectra were
collected at a resolution of 30,000 and 7,500, respectively. Triplicate
higher energy collisionally activated dissociation (HCD) data sets
were then acquired, of which only one with 37, 810 tandem mass
spectra was selected to evaluate the BPM algorithm. Details of the
experiment can be found in Frese et al. (2011).

3.2 Running time analysis
The human proteome database (about 12 MB) was downloaded
from the Swiss-Prot database. We constructed a suffix tree
from the human proteome database using the Ukkonen’s
algorithm (Ukkonen, 1995) implemented by Nelson and ported
to Java by Havsiyevych1. The running time for the suffix tree
construction was about 30 seconds.

In the implementation of the BPM algorithm, the scale factor is
100. Let Σ be the alphabet generated from the 19 amino acids (the
amino acids I and J are treated as the same). In practice, gapped tags
typically do not exceed 500 Da (Ng et al., 2011), and the largest
number in blocked patterns is 50, 000. For each number k between
0 and 50, 000, we generated the set Wk of all text strings on Σ
such that the sum of the numbers in the text string is the same
to k with an error tolerance of 5. The size of the lookup table
W1,W2, . . . ,W50000, that is,

∑50000
k=1 |Wk|, is about 3.34 × 106.

The running time for generating the lookup table was about 1
second. In the following analyses, we will ignore the preprocessing
time for generating the suffix tree and the lookup table and only
consider spectral query time unless otherwise stated.

The value log|Σ| 2r defined in Section Methods is the exponent
that determines the time complexity of the BPM algorithm.
We estimated the value of r when the largest number in
a blocked pattern is 50, 000. We divided Wk into subsets
Wk,1,Wk,2, . . . ,Wk,j , . . ., where Wk,j contains all length j text
strings in Wk. Let rk = maxj |Wk,j |

1
j . The histogram of rk

shows that rk ≤ 5.7 (Fig. 3 in the supplementary material). Since
log19 (2× 5.7) ≈ 0.83, the average-case time complexity of the
BPM algorithm is sublinear in the size of the database in this
application.

When a blocked pattern of length m is generated from a sequence
tag with n amino acids, we define n/m as the gap ratio of the
pattern. For example, the blocked pattern 71, 227, 128 can be
generated from a sequence tag ALNQ (71, 113, 114, 128), and

1 The source code of the implementation can be found at
http://illya-keeplearning.blogspot.com/2009/04/suffix-trees-java-ukkonens-
algorithm.html
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(a) (b)

Fig. 3. Performance of the BPM algorithm with various settings of the pattern length and the confidence score threshold c on the HUMAN data set.

the gap ratio is 4/3. We tested the BPM algorithm on simulated
data to find the relationship between the running time and the gap
ratio. Blocked patterns were generated directly from peptides in the
human proteome database: A total of 1 million peptides of length
20 were randomly selected from the database. Given a peptide
A = a1, a2, . . . , a20, a block A[i, j] (1 ≤ i ≤ j ≤ 20) denotes
the substring of ai, ai+1, . . . , aj . To construct a blocked pattern
from A, we first partition it into blocks of length k (possibly except
for the last block), i.e. A[1, k], A[k + 1, 2k], . . . , A[lk + 1, 20]
(l = d 20

k
e − 1), and then sum up the rounded scaled masses (the

scale factor is 100) of the amino acids in each block. The resulting
list of d 20

k
e numbers is a blocked pattern with a gap ratio about k.

Four patterns were constructed for each peptide for k = 1, 2, 3, and
4. When the gap ratio increases from 2 to 4, the range of the largest
extension factors r for the blocked patterns changes from [1, 4.3]
to [2.1, 5.7] (Fig. 4 in the supplementary material). The blocked
patterns were then searched against the suffix tree constructed from
the human proteome database. The average query time for blocked
patterns was fast for all four gap ratios (Fig. 5 in the supplementary
material). When the gap ratio was 4, the average query time was
less than 0.003 seconds per pattern. In addition, the average query
time significantly increased as the gap ratio increased, so large gaps
should be avoided to guarantee that the query time is fast in practice.

3.3 Evaluation on the real data set
To evaluate the performance of the BPM algorithm, we generated
a set of peptide-spectrum-matches (PSMs) from the human lysate
data set. MS-GF+ (Kim et al., 2008) was employed to search each
spectrum in the data set against a target-decoy concatenated human
proteome database. With 1% spectrum level false discovery rate
(FDR), MS-GF+ identified 13,135 spectra (in about 18 minutes),
which are assumed correct and used as a gold standard for the
following evaluation. The 13, 135 spectra are called identifiable
spectra. For brevity, the set of 13, 135 spectra is referred to as the
HUMAN data set.

Evaluation criteria In peptide identification, a set of blocked
patterns are extracted from a spectrum and searched against a
protein database to find candidate peptides that contain at least one
blocked pattern. If one of the extracted blocked patterns is correct
(in the target peptide) and the filtration based on the blocked patterns
reports a set of candidate peptides that contains the target one, then

the spectrum is said to be efficiently filtered. The filtration efficiency
is defined as follows:

filtration efficiency

=
# of identifiable spectra that can be efficiently filtered

# of identifiable spectra
.

The second evaluation criterion is the query speed of blocked
patterns. The speed of peptide identification is also related to the
number of the candidate peptides reported by blocked pattern based
filtration, which is the third evaluation criterion.

Pattern generation We performed de novo sequencing on the
HUMAN data set using PEAKS 6.0 (Ma et al., 2003) and reported
10 peptides with the highest scores for each spectrum. Each peptide
was converted into a blocked pattern as follows. Consecutive amino
acids were replaced by the sum of their masses if they all had a local
confidence score < c (a predefined threshold), while an amino acid
with a local confidence score ≥ c was replaced by its single mass.
The masses were multiplied by the scale factor 100 and rounded to
integers.

Pattern length and confidence score thresholds We tested the
filtration efficiency and speed of the BPM algorithm by varying the
two parameters, i.e., the length of blocked patterns and the threshold
c for confidence scores, on the HUMAN data set. To obtain
length l blocked patterns, we enumerated all length l substrings
of the blocked patterns generated from the data set. The filtration
efficiency of the algorithm decreases and the speed of the algorithm
improves with the increase of the length of blocked patterns (Fig. 3).
As the patterns become longer, the average number of candidate
peptides for each spectrum decreases (Table 1). Particularly, when
the pattern length ≥ 7, most spectra contain only 0 or 1 candidate
peptide. When the pattern length is 5 or 6, the BPM algorithm
achieves a good balance between the speed and filtration efficiency.
Moreover, when the pattern length is fixed, the filtration efficiency
decreases as the parameter c increases, while the running time is
almost the same (Fig. 3). Therefore, a relative low cutoff value c
should be used in practice.

There are three parameters: the pattern length, the confidence
score threshold, and the number of blocked patterns, that affect the
filtration efficiency of the BPM algorithm. When the confidence
score threshold is fixed, the number of blocked patterns extracted
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Table 1. The average number of candidate peptides reported by the filtration
based on blocked patterns for the spectra in the HUMAN data set. The local
confidence score cutoff c is fixed as 60.

Pattern length 4 5 6 7 8 9 10
#candidate peptides 4.18 1.15 0.84 0.74 0.60 0.47 0.36

from a spectrum decreases when the pattern length increases and
more shorter blocked patterns can be extracted from a spectrum than
longer ones. The high filtration efficiency of short blocked patterns
has two possible reasons: the large number of short patterns and the
short pattern length. To find which is the main reason, we tested the
filtration efficiency of the BPM algorithm by fixing the confidence
score threshold and the number of patterns and varying the pattern
length. The experiment results show that the main reason that short
gapped tags have high filtration efficiency is the short pattern length,
not the large number of short patterns. (See the supplementary
material.)

Comparison with a baseline algorithm We compared the running
time of the BPM algorithm with a trivial baseline algorithm. Given a
blocked pattern P = p1, p2, . . . , pm and a text T = t1, t2, . . . , tn,
the baseline algorithm simply examines, for each position i, 1 ≤
i ≤ n, if there is a prefix of ti, ti+1, . . . , tn that matches P and
outputs matched prefixes. The time complexity of the algorithm is
O(nL), where L is the length of the longest text string that matches
P . By setting the pattern length as 4 and the confidence score
threshold as 60, a total of 170,149 blocked patterns were extracted
from the HUMAN data set using the described method. While the
baseline algorithm took about 9 hours to search all the patterns
against the human proteome database, the BPM algorithm took only
less than 1 minute, which is a significant 540 times speedup.

Comparison with sequence tags For each spectrum in the HUMAN
data set, we generated both ordinary patterns (sequence tags) and
blocked patterns from the 10 peptides reported by PEAKS. When
ordinary patterns were generated, the confidence score threshold
was set as 0, and all amino acids in a peptide were replaced by
their single masses. Note that the length of a blocked pattern may
not be the same to its corresponding sequence tag. For example, the
length of the sequence tag ALNQ (71, 113, 114, 128) is 4, and the
length of the blocked pattern 71, 227, 128 is 3. To compare blocked
patterns with ordinary patterns, we redefine the length of a blocked
pattern as the length of the sequence tag (i.e. number of amino acids)
from which the blocked pattern is generated.

Both the blocked patterns and ordinary patterns were searched
against the suffix tree. The parameter c was fixed as 60 for
generating blocked patterns. The BPM algorithm with blocked
patterns achieved a higher filtration efficiency than that with
ordinary patterns (Fig. 4(a)). The difference in the filtration
efficiency increases as the pattern length increases (Fig. 4(a)). By
contrast, the running time of the BPM algorithm with blocked
patterns is longer than that with ordinary patterns (Fig. 4(b)),
especially when pattern length is 4. However, the difference in the
running time becomes smaller when the pattern length increases.
Particularly, when the pattern length ≥ 6, the running time is
within 20 seconds for both methods. The experiments demonstrated

that replacing sequence tags with blocked patterns improved the
filtration efficiency without significant increase of the running time.

Comparison with MASCOT To further investigate the filtration
efficiency of the BPM algorithm, we ran MASCOT (Perkins
et al., 1999) on the whole human cell lysate data set with 37,810
tandem mass spectra. The error tolerances for precursor masses
and fragment ion masses were set as 20 ppm and 0.05 Da,
respectively. Using the target-decoy approach, MASCOT identified
10,953 spectra and 9,284 distinct peptides with 1% spectrum level
FDR in 6.1 minutes. Without any filtering algorithm, MS-GF+
identified 13,135 spectra and 10,800 peptides with the same FDR.
It identified 2,141 peptides missed by MASCOT and missed 625
peptide identified by MASCOT. When the BPM algorithm (pattern
length = 4, confidence score threshold = 60) was used as a filtering
step for MS-GF+, a total of 982 peptides were missed because
of the filtration, and MS-GF+ identified 11,845 spectra and 9,818
peptides. MS-GF+ with the BPM filtering algorithm identified 1,456
peptides missed by MASCOT and missed 922 peptides identified by
MASCOT. When coupled with the BPM algorithm, the sensitivity
of MS-GF+ is still comparable to MASCOT because of the high
filtration efficiency of the BPM algorithm.

Searching spectra against the human genome Most existing
software tools for peptide identification by database search are slow
when the protein database is huge. We evaluated the speed of the
BPM algorithm by searching the HUMAN data set against the six-
frame translation of the human genome. This approach has found
many important applications in proteogenomics studies (Yates et al.,
1995; Andersen and Mann, 2001; Bitton et al., 2010).

The complete human genome (Homo sapiens.GRCh37.74) was
downloaded from Ensembl. The translation of each chromosome
starts from the first, second and third nucleotide on each strand
according to the standard genetic code regardless of the position
of the start codon. The HUMAN data set was searched against the
translated putative protein sequences using both MS-GF+ and the
BPM algorithm. The translated protein database was split into parts
of about 100 MB to reduce the memory usage of MS-GF+ and the
BPM algorithm. The largest memory usage of the BPM algorithm
for searching a 100 MB database was about 12 GB. The average
running time for MS-GF+ was 3 seconds per spectrum while it was
0.3 seconds for the BPM algorithm when the pattern length was 4
(Fig. 7 in the supplementary material). The running time of the BPM
algorithm decreased with the increase of the pattern length. When
the pattern length was 6, the running time was about 0.08 seconds
per spectrum.

4 CONCLUSIONS
Peptide identification of MS/MS spectra by database search has
been dominated by the approach of comparing a spectrum against
all peptides in the protein database whose molecular masses are
similar to the precursor mass of the spectrum. However, in the era
of big data biology, this approach may become slow with the rapid
growth of the sizes of protein databases. An alternative approach
based on sequence tags or blocked patterns (gapped tags) is fast
for identifying peptides when the database is huge. In this paper,
we proposed an efficient BPM algorithm for filtering peptides using
blocked patterns and tested it on simulated and real data sets. The
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(a) (b)

Fig. 4. Comparisons between blocked patterns and ordinary patterns: (a) the filtration efficiency, (b) the running time.

experiments showed that the BPM algorithm achieved high speed
in filtration of peptides, even when the database is huge, e.g., the
six frame translation of the human genome. We also compared
blocked patterns with sequence tags for peptide filtration and found
that blocked patterns outperformed sequence tags in terms of the
sensitivity of peptide filtration. Because the BPM algorithm is
fast and sensitive, it is a promising tool for searching MS/MS
spectra against huge protein databases. In practice, the length of
blocked patterns plays an important role in the performance of the
BPM algorithm. The experiments on the length of blocked patterns
showed that the BPM algorithm achieved a good balance between
the filtration efficiency and the running time when the length was 5
or 6.
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